The Langlands Correspondence for Function Fields following Laurent Lafforgue

Gérard Laumon

In June 1999, Laurent Lafforgue proved the Langlands correspondence for GL_r over a function field. His proof follows the strategy introduced by V. Drinfeld, more than 25 years ago, in the rank 2 case. In this lecture, I explain Lafforgue's theorem. I also sketch some of his argmuments in the everywhere unramified case.

I would like to thank S.-T. Yau for his kind invitation to the CDM conference and L. Lafforgue for his help during the preparation of these notes.

1. The statement

Let X be a smooth, projective and geometrically connected curve over a finite field \mathbb{F}_q with q elements and let F be its function field.

We denote by $\mathbb{A} = \prod_x' F_x$ the topological ring of adeles of F. Here x runs through the set of places of F, or equivalently the set |X| of closed points of X, and F_x is the completion of F at x. For each x we denote by $\mathcal{O}_x = \{a_x \in F_x \mid x(a_x) \geq 0\}$ the ring of integers of the local field F_x and by $\deg(x)$ the degree of its residue field $\kappa(x)$ over \mathbb{F}_q . There is a degree map

$$\deg: \mathbb{A}^{\times} \, \rightarrow \mathbb{Z}, \; a \mapsto \sum_{x \in |X|} \deg(x) x(a_x)$$

which vanishes on F^{\times} and \mathcal{O}^{\times} . It is well known that, for each $a \in \mathbb{A}^{\times}$ whose degree is non zero, the quotient $F^{\times} \setminus \mathbb{A}^{\times} / \mathcal{O}^{\times} a^{\mathbb{Z}}$ is finite.

Let $r \geq 1$ be an integer.

We first consider the adelic group $GL_r(A)$. As usual we identify its center (the subgroup of scalar matrices) with A^{\times} . The space of cuspidal automorphic forms

$$L_{\text{cusp}} = L_{\text{cusp}}(\text{GL}_{\tau}(F) \backslash \text{GL}_{\tau}(\mathbb{A}))$$

is by definition the space of complex functions φ on $GL_r(\mathbb{A})$ which satisfy the following properties:

- - $\varphi(\gamma g) = \varphi(g), \forall \gamma \in GL_r(F), \forall g \in GL_r(A),$
- - there exists a subgroup $K_{\varphi} \subset K := GL_r(\mathcal{O}) = \prod_x GL_r(\mathcal{O}_x)$ of finite index such that $\varphi(gk) = \varphi(g), \forall g \in GL_r(\mathbb{A}), \forall k \in K_{\varphi},$
- - there exists $a \in \mathbb{A}^{\times}$ such that $\deg(a) \neq 0$ and $\varphi(ga) = \varphi(g)$, $\forall g \in \mathrm{GL}_r(\mathbb{A})$,

• - for every non trivial partition $r = r_1 + \cdots + r_s$ defining a standard parabolic subgroup $P = MU \subseteq \operatorname{GL}_r$ with unipotent radical U and Levi component $M \cong \operatorname{GL}_{r_1} \times \cdots \times \operatorname{GL}_{r_s}$, we have

$$\int_{U(F)\backslash U(\mathbb{A})} \varphi(ug)du = 0, \ \forall g \in \mathrm{GL}_r(\mathbb{A}),$$

where du is any Haar measure on $U(F)\setminus U(\mathbb{A})$.

The Hecke algebra $\mathcal{H} = \mathcal{C}_c^{\infty}(\mathrm{GL}_r(\mathbb{A}))$ is the convolution algebra of locally constant functions with compact support on $\mathrm{GL}_r(\mathbb{A})$. It acts on L_{cusp} by right convolution.

The cuspidal automorphic representations of $GL_{\tau}(\mathbb{A})$ are by definition the simple \mathcal{H} -modules which occur as subquotients of L_{cusp} . We will denote by \mathcal{A}_{τ} the set of (isomorphism classes of) these representations. Any $\pi \in \mathcal{A}_{\tau}$ admits a central character $\omega_{\pi} : F^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$ which is of finite order as we have $\omega_{\pi}(a) = 1$ for some $a \in \mathbb{A}^{\times}$ of non zero degree.

The Hecke algebra is the restricted tensor product of local Hecke algebras \mathcal{H}_x . Accordingly any $\pi \in \mathcal{A}_r$ is a restricted tensor product of simple \mathcal{H}_x -modules π_x .

Let $e_{K_x} \in \mathcal{H}_x$ be the characteristic function of the standard maximal compact subgroup $K_x = \mathrm{GL}_r(\mathcal{O}_x) \subset \mathrm{GL}_r(F_x)$. For each $\pi \in \mathcal{A}_r$ the set N_π of ramified places of π is by definition the finite set of places x such that

$$\pi_x * e_{K_x} = (0).$$

For any $x \notin N_{\pi}$ the complex vector space $\pi_x * e_{K_x}$ is an irreducible module over the commutative algebra

$$e_{K_x} * \mathcal{H}_x * e_{K_x} \cong \mathbb{C}[z_1, z_1^{-1}, \dots, z_r, z_r^{-1}]^{\mathfrak{S}_r}.$$

Therefore, it is one dimensional and its isomorphism class is completely determined by an unordered r-tuple

$$(z_{x,1}(\pi),\ldots,z_{x,r}(\pi))$$

of complex numbers, the so-called *Hecke eigenvalues* of π at x, or equivalently by the sequence of power sums

$$S_x^{(n)}(\pi) = z_{x,1}(\pi)^n + \dots + z_{x,r}(\pi)^n, \ n \ge 1,$$

or by the local L factor

$$L_x(\pi, s) = \frac{1}{\prod_{i=1}^r (1 - z_{x,i}(\pi) q^{-s \deg(x)})}.$$

We fix a separable closure \overline{F} of F and we denote by Γ_F the Galois group of \overline{F} over F. We fix some prime number ℓ distinct from the characteristic of \mathbb{F}_q and an algebraic closure $\overline{\mathbb{Q}}_{\ell}$ of \mathbb{Q}_{ℓ} .

A ℓ -adic representation of Γ_F of rank r is a group homomorphism $\sigma: \Gamma_F \to \mathrm{GL}_r(\overline{\mathbb{Q}}_\ell)$ which has the following properties:

- - there exists $g \in \mathrm{GL}_r(\overline{\mathbb{Q}}_\ell)$ and a finite extension E_λ of \mathbb{Q}_ℓ in $\overline{\mathbb{Q}}_\ell$ such that $g\sigma(\Gamma_F)g^{-1} \subset \mathrm{GL}_r(E_\lambda) \subset \mathrm{GL}_r(\overline{\mathbb{Q}}_\ell)$,
- - $g\sigma g^{-1}: \Gamma_F \to \mathrm{GL}_r(E_\lambda)$ is continuous for the Krull topology on Γ_F and the ℓ -adic topology on $\mathrm{GL}_r(E_\lambda)$,

• - for all but finitely many $x \in |X|$, σ is unramified at x, i.e. the restriction σ_x of σ to any decomposition subgroup $D_x \subset \Gamma_F$ at x is trivial on the inertia subgroup $I_x \subset D_x$, and thus factors through the quotient $D_x/I_x \cong \Gamma_{\kappa(x)} = \operatorname{Frob}_x^{\widehat{Z}}$, where Frob_x is the geometric Frobenius element in the Galois group $\Gamma_{\kappa(x)}$ of $\kappa(x)$.

We consider the set \mathcal{G}_r of (isomorphism classes of) irreducible ℓ -adic representations σ of Γ_F of rank r, the determinant of which is of finite order. For each $\sigma \in \mathcal{G}_r$ we denote by N_σ its finite set of ramified places. For any $x \notin N_\sigma$ we denote by

$$(z_{x,1}(\sigma),\ldots,z_{x,r}(\sigma))$$

the unordered r-tuple of the eigenvalues of $\sigma_x(\text{Frob}_x)$, by

$$S_x^{(n)}(\sigma) = z_{x,1}(\sigma)^n + \dots + z_{x,r}(\sigma)^n, \ n \ge 1,$$

the corresponding sequence of power sums and by

$$L_x(\sigma, s) = \frac{1}{\prod_{i=1}^r (1 - z_{x,i}(\sigma)q^{-s\deg(x)})}$$

the corresponding local L factor.

We fix an isomorphism $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$. Each time the ℓ -adic topology of $\overline{\mathbb{Q}}_{\ell}$ plays no role we will freely use this isomorphism to identify $\overline{\mathbb{Q}}_{\ell}$ with \mathbb{C} .

M AIN THEOREM (Langlands Correspondence). — There exists a unique bijection

$$A_r \xrightarrow{\sim} \mathcal{G}_r, \ \pi \mapsto \sigma(\pi),$$

such that, for every $\pi \in A_r$ we have the equality of power sums

$$S_x^{(n)}(\sigma(\pi)) = S_x^{(n)}(\pi), \ \forall n \ge 1,$$

or equivalently the equality of local L factors

$$L_x(\sigma(\pi), s) = L_x(\pi, s),$$

for all but finitely many places $x \notin N_{\sigma(\pi)} \cup N_{\pi}$.

For r=1 this is a reformulation of the abelian class field theory in the function field case. For r=2 the theorem has been proved by Drinfeld [3]. The general case $r\geq 3$ is due to Lafforgue [6].

For arbitrary r's but particular π 's, some cases of the theorem had been proved earlier by Flicker and Kazhdan, and myself.

- Remarks: (i) The uniqueness of the map $\mathcal{A}_r \xrightarrow{\sim} \mathcal{G}_r$ and its injectivity (assuming its existence) had been known for a long time. They respectively follow from the Čebotarev density theorem and from the strong multiplicity one theorem of Piatetski-Shapiro.
- (ii) Let us fix an integer r. In order to prove the existence of the bijection $\mathcal{A}_{r'} \xrightarrow{\sim} \mathcal{G}_{r'}$ for $r' = 1, \ldots, r$ it is sufficient to prove the following weaker statement for $r' = 1, \ldots, r$:
- $(A)_{r'}$ For every $\pi' \in A_{r'}$ there exists a Galois representation $\sigma'(\pi') \in \mathcal{G}_{r'}$ which satisfies the equality of local L factors

$$L_x(\sigma'(\pi'), s) = L_x(\pi', s),$$

for all but finitely many places $x \notin N_{\pi'} \cup N_{\sigma'(\pi')}$.

Indeed, as was remarked by Deligne, if we have already proved the assertion $(A)_{r'}$ for r' = 1, ..., r-1 the Grothendieck functional equation and the converse theorem of Hecke, Weil and Piatetski-Shapiro give for free the inverse maps

$$\mathcal{G}_{r'} \to \mathcal{A}_{r'}, \ \sigma' \mapsto \pi'(\sigma'),$$

for $r'=1,\ldots,r$.

(iii) By standard techniques of L-functions one easily gets from the main theorem that $N_{\sigma(\pi)} = N_{\pi}$, that

$$L_x(\sigma(\pi),s) = L_x(\pi,s),$$

for all places $x \notin N_{\pi}$ and that, for each $x \in N_{\pi}$, the restriction of $\sigma(\pi)$ to any decomposition subgroup $D_x \subset \Gamma_F$ at x corresponds to π_x by the local Langlands correspondence.

It is well known that the Jacquet-Shalika estimates of the Hecke eigenvalues of cuspidal automorphic representations and the main theorem imply the *Ramanujan-Petersson conjecture*:

T HEOREM (Drinfeld [2] for r=2, Lafforgue [4], [6] for $r\geq 3$). — For every $\pi\in\mathcal{A}_r$ and every place $x\notin N_\pi$ we have

$$|z_{x,i}(\pi)|=1, \ \forall i=1,\ldots,r.$$

There is a now standard strategy for constructing the map $\mathcal{A}_r \to \mathcal{G}_r$, $\pi \to \sigma(\pi)$. The first step is to construct a "variety" V over F, equipped with an action of the Hecke algebra \mathcal{H} , so that its ℓ -adic cohomology

$$H_{\mathbf{c}}^*(\overline{F}\otimes_F V,\overline{\mathbb{Q}}_{\ell})$$

is a representation of the product of the Hecke algebra \mathcal{H} and the Galois group Γ_F . The second step is to compute the trace of this representation by the Grothendieck-Lefschetz trace formula.

The last step is to compare this geometric trace formula with the *Arthur-Selberg trace formula* in order to prove that the representation

$$\bigoplus_{\pi \in \mathcal{A}_{\pi}} \pi \otimes \sigma(\pi)$$

of $\mathcal{H} \times \Gamma_F$ that we are looking for occurs in $H_c^*(\overline{F} \otimes_F V, \overline{\mathbb{Q}}_{\ell})$.

In the case we are considering there is an obstruction to the occurrence of the above direct sum representation into any ℓ -adic cohomology group. This strategy has thus to be slightly modified. Following Drinfeld it is the representation

$$\bigoplus_{\pi \in A_{-}} \pi \otimes \sigma(\pi)^{\vee} \otimes \sigma(\pi)$$

of the product $\mathcal{H} \times \Gamma_F \times \Gamma_F$, where σ^{\vee} is the contragredient representation of σ , which should occur in ℓ -adic cohomology.

Lafforgue proves the Langlands correspondence by induction on r. Assuming the Langlands correspondence $\mathcal{A}_{r'} \xrightarrow{\sim} \mathcal{G}_{r'}$ for all $1 \leq r' < r$ he constructs $\sigma(\pi)$ for each $\pi \in \mathcal{A}_r$.

Let $\mathcal{A}_r(K) \subset \mathcal{A}_r$ be the subset of everywhere unramified cuspidal automorphism representations π of $\mathrm{GL}_r(\mathbb{A})$ $(N_\pi = \emptyset)$. For simplicity we will only explain in this lecture Lafforgue's construction of $\sigma(\pi)$ for $\pi \in \mathcal{A}_r(K)$.

2. Drinfeld shtukas

All the schemes (or stacks) that we will consider are over \mathbb{F}_q . We simply denote by $S \times T$ the product over \mathbb{F}_q of two schemes (or stacks). If k is a field which contains \mathbb{F}_q and S is a scheme (or a stack), we will also use the notation $k \otimes S = \operatorname{Spec}(k) \times S$. For each scheme (or stack) S we denote by Frob_S its Frobenius endomorphism (relative to \mathbb{F}_q). For each scheme (or stack) S and each vector bundle \mathcal{E} on $S \times X$ we define a new vector bundle ${}^{\tau}\mathcal{E}$ on $S \times X$ by

$$^{\tau}\mathcal{E} = (\operatorname{Frob}_{\mathcal{S}} \times \operatorname{Id}_{X})^{*}\mathcal{E}.$$

Let k be an algebraically closed field which contains \mathbb{F}_q .

A rank r vector bundle \mathcal{E} on $k \otimes X$ equipped with an isomorphism ${}^{\tau}\mathcal{E} \xrightarrow{\sim} \mathcal{E}$ is nothing else than a rank r vector bundle on X. As it has been shown by Weil the set of isomorphism classes of rank r vector bundles on X is canonically isomorphic to the double coset space $\mathrm{GL}_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/\mathrm{GL}_r(\mathcal{O})$.

D efinition (Drinfeld [1]). — A (right) shtuka $\widetilde{\mathcal{E}}$ of rank r over k is a diagram $\mathcal{E} \xleftarrow{j_{\infty}} \mathcal{E}' \xleftarrow{j_{\infty}} \tau \mathcal{E}$

where:

- - \mathcal{E} and \mathcal{E}' are two locally free $\mathcal{O}_{k\otimes X}$ -Modules of rank r, or equivalently rank r vector bundles on $k\otimes X$,
- - j_{∞} and j_{o} are two injective $\mathcal{O}_{k \otimes X}$ -linear maps,
- - the torsion $\mathcal{O}_{k\otimes X}$ -Modules $\operatorname{Coker}(j_{\infty})$ and $\operatorname{Coker}(j_{\alpha})$ are of length 1.

The supports $\infty, o \in X(k)$ of $\operatorname{Coker}(j_{\infty})$ and $\operatorname{Coker}(j_o)$ are called the pole and the zero of the shtuka.

In other words a shtuka is a double modification of a rank r vector bundle \mathcal{E} ,

$$\mathcal{E} \xrightarrow{j_{\infty}} \mathcal{E}' \xleftarrow{j'_{\circ}} \mathcal{E}''$$

(an elementary upper modification j_{∞} at the point ∞ followed by an elementary lower modification j'_{o} at o), together with an isomorphism

$$^{\tau}\mathcal{E} \xrightarrow{\sim} \mathcal{E}''$$
.

The rank r shtukas are the points of a Deligne-Mumford algebraic stack Sht^r . The pole and the zero of the universal shtuka define a morphism

$$(\infty, o): \operatorname{Sht}^r \to X \times X$$

which is smooth of pure relative dimension 2r-2.

The stack Sht^r has infinitely many components $(\operatorname{Sht}^{r,d})_{d\in\mathbb{Z}}$ which are indexed by the degree of the universal shtuka

$$deg(\widetilde{\mathcal{E}}) = deg(\mathcal{E}) = deg(\mathcal{E}') - 1.$$

Example: For every integer d, the stack $Sht^{1,d}$ is the fibered product

$$\begin{array}{ccc}
\operatorname{Sht}^{1,d} & \longrightarrow & \operatorname{Bund}^{1,d} \\
\downarrow & & & \downarrow L \\
X \times X & \xrightarrow{A} & \operatorname{Bund}^{1,0}
\end{array}$$

where Bund^{1,d} is the Artin algebraic stack of line bundles of degree d on X, A is the Abel-Jacobi morphism which maps $(\infty, o) \in X(k) \times X(k)$ onto the line bundle $\mathcal{O}_{k\otimes X}(\infty-o)$, and L is the Lang "isogeny" which maps \mathcal{L} onto $\mathcal{L}^{-1}\otimes_{\mathcal{O}_{k\otimes X}}{}^{\tau}\mathcal{L}$.

In particular, for every integer d the stack $\operatorname{Sht}^{1,d}$ is of finite type and admits a coarse moduli space which is a finite etale Galois covering of $X \times X$.

But, except for r = 1 none of the components $Sht^{r,d}$ is of finite type.

The Picard group $F^{\times}\backslash \mathbb{A}^{\times}/\mathcal{O}^{\times}$ of line bundles on X acts on the algebraic stack Sht^r : a line bundle $\mathcal L$ over X takes a rank r shtuka $\widetilde{\mathcal E}$ on $k\otimes X$ to

$$\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{E} \xrightarrow{\operatorname{Id} \otimes j} \mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{E}' \xrightarrow{\operatorname{Id} \otimes t} \mathcal{L} \otimes_{\mathcal{O}_{X}} {}^{\tau} \mathcal{E} = {}^{\tau} (\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{E}).$$

This action does not change the pole and the zero.

Any $g \in GL_r(\mathbb{A})$ defines a Hecke correspondence

$$c = (c_1, c_2) : \operatorname{Sht}^r(g) \to \operatorname{Sht}^r \times_{X \times X} \operatorname{Sht}^r$$
,

where $\operatorname{Sht}^r(g)$ is a Deligne-Mumford algebraic stack and c_1,c_2 are etale representable morphisms. This correspondence only depends on the double coset $KgK \subset \operatorname{GL}_r(\mathbb{A})$ and does not change the pole and the zero. If N_g is the finite set of places x such that $g_x \notin F_x^\times K_x \subset \operatorname{GL}_r(F_x)$, c_1 and c_2 are finite over $((X \setminus N_g) \times (X \setminus N_g)) \times_{X \times X} \operatorname{Sht}^r$.

If $a \in \mathbb{A}^{\times}$ is a central element in $GL_r(\mathbb{A})$ the corresponding Hecke operator is nothing else that the action of the element $F^{\times}a\mathcal{O}^{\times}$ of the Picard group of X.

3. Truncations

From now on we fix $a \in \mathbb{A}^{\times}$ such that $\deg(a) \neq 0$ and we assume that $r \geq 2$.

The quotient stack

$$\operatorname{Sht}^r/a^{\mathbb{Z}} \cong \coprod_{d=1}^{r \operatorname{deg}(a)} \operatorname{Sht}^{r,d}$$

has finitely many components, but is not of finite type. To study its ℓ -adic cohomology we will need to truncate it.

As for vector bundles on Riemann surfaces it is not difficult to define the *Harder-Narasimhan polygon* of a rank r shtuka $\widetilde{\mathcal{E}}$ over an algebraically closed field $k \supset \mathbb{F}_q$.

A subobject $\widetilde{\mathcal{F}}$ of $\widetilde{\mathcal{E}}$ is a pair of $\mathcal{O}_{k\otimes X}$ -submodules $(\mathcal{F}\subset\mathcal{E},\mathcal{F}'\subset\mathcal{E}')$ such that

- - $j(\mathcal{F}) \subset \mathcal{F}'$ and $t({}^{\tau}\mathcal{F}) \subset \mathcal{F}'$,
- ullet \mathcal{E}/\mathcal{F} and $\mathcal{E}'/\mathcal{F}'$ are locally free $\mathcal{O}_{k\otimes X}$ -modules of the same rank.

A subobject has a rank

$$\operatorname{rk}(\widetilde{\mathcal{F}}) = \operatorname{rk}(\mathcal{F}) = \operatorname{rk}(\mathcal{F}')$$

and, for each $\alpha \in \mathbb{R}$ an α -degree

$$\deg_{\alpha}(\widetilde{\mathcal{F}}) = (1 - \alpha)\deg(\mathcal{F}) + \alpha\deg(\mathcal{F}').$$

If $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ are two subobjects of $\widetilde{\mathcal{E}}$ we say that $\widetilde{\mathcal{G}}$ is contained in $\widetilde{\mathcal{F}}$ and we write $\widetilde{\mathcal{G}} \subset \widetilde{\mathcal{F}}$ if $\mathcal{G} \subset \mathcal{F}$ and $\underline{\mathcal{G}}' \subset \mathcal{F}'$.

Let $(0) = \widetilde{\mathcal{F}}_0 \subseteq \widetilde{\mathcal{F}}_1 \subseteq \cdots \subseteq \widetilde{\mathcal{F}}_s = \widetilde{\mathcal{E}}$ be a filtration by subobjects of a shtuka. Its α -polygon is the continuous function

$$p:[0,r]\to\mathbb{R}$$

which vanishes at 0 and r, which is affine on the interval $[\operatorname{rk}(\widetilde{\mathcal{F}}_{j-1}), \operatorname{rk}(\widetilde{\mathcal{F}}_{j})]$ for $j=1,\ldots,s$, and which takes the values

$$p(\operatorname{rk}(\widetilde{\mathcal{F}}_j)) = \deg_{\alpha}(\widetilde{\mathcal{F}}_j) - \frac{\operatorname{rk}(\widetilde{\mathcal{F}}_j)}{r} \deg_{\alpha}(\widetilde{\mathcal{E}}), \ \forall j = 1, \dots, s-1.$$

For a given $\alpha \in [0,1]$ and a given shtuka $\widetilde{\mathcal{E}}$ the set of the α -polygons of all the possible filtrations of $\widetilde{\mathcal{E}}$ admits a largest element $p_{\alpha}^{\mathrm{HN}}(\widetilde{\mathcal{E}})$, the so-called *Harder-Narasimhan polygon of index* α of the shtuka. It is a convex function.

The α 's play a crucial role in Lafforgue's work. But in this lecture we will restrict ourself to $\alpha=0$ and simply call *Harder-Narasimhan polygon* the polygon $p^{\text{HN}}=p_0^{\text{HN}}$.

We call truncation parameter any convex continuous function $p:[0,r]\to\mathbb{R}_{\geq 0}$ which vanishes at 0 and r and which is affine on each interval [i-1,i] for $i=1,\ldots,r$.

P ROPOSITION (Lafforgue [4]). — For each truncation parameter p there exists a unique open substack

$$\operatorname{Sht}^{r;\leq p}\subset\operatorname{Sht}^r$$

such that, for any algebraically closed field $k \supset \mathbb{F}_q$, we have

$$\operatorname{Sht}^{r; \leq p}(k) = \{ \widetilde{\mathcal{E}} \in \operatorname{Sht}^{r}(k) \mid p^{\operatorname{HN}}(\widetilde{\mathcal{E}}) \leq p \}.$$

For every integer d and every truncation parameter p the open substack

$$\operatorname{Sht}^{r,d} \leq p = \operatorname{Sht}^{r,d} \cap \operatorname{Sht}^{r} \leq p$$

is of finite type.

The open substacks $\operatorname{Sht}^{r,\leq p}\subset\operatorname{Sht}^r$ are obviously stable under the action of the Picard group of X. Therefore the algebraic stack $\operatorname{Sht}^r/a^{\mathbb{Z}}$ is an increasing union of open substacks of finite type

$$\operatorname{Sht}^{r;\leq p}/a^{\mathbb{Z}}\subset \operatorname{Sht}^{r\cdot}/a^{\mathbb{Z}}.$$

But none of the open substacks $\operatorname{Sht}^{r;\leq p}/a^{\mathbb{Z}}$ is stable under the action of the Hecke correspondences.

4. Lefschetz numbers

If ∞ and o are two closed points in X the finite subscheme $\infty \times o \subset X \times X$ has exactly $\delta(\infty, o)$ closed points, where $\delta(\infty, o)$ is the greatest common divisor of $\deg(\infty)$ and $\deg(o)$. For each $\xi \in \infty \times o$ the residue field $\kappa(\xi)$ is a composed

extension of $\kappa(\infty)$ and $\kappa(o)$, and its degree $\deg(\xi)$ over \mathbb{F}_q is thus the least common multiple

$$\mu(\infty, o) = \frac{\deg(\infty)\deg(o)}{\delta(\infty, o)}$$

of $deg(\infty)$ and deg(o).

If ξ is a closed point in $X \times X$ we denote by $\operatorname{Sht}_{\xi}^r/a^{\mathbb{Z}}$ the fiber at ξ of the canonical projection $\operatorname{Sht}^r/a^{\mathbb{Z}} \to X \times X$. It is a smooth algebraic stack of pure dimension 2r-2 over the finite field $\kappa(\xi)$. We denote by

$$\operatorname{Frob}_{\xi}: \operatorname{Sht}_{\xi}^{r}/a^{\mathbb{Z}} \to \operatorname{Sht}_{\xi}^{r}/a^{\mathbb{Z}}$$

its geometric Frobenius endomorphism relative to $\kappa(\xi)$.

Let us fix $g \in GL_r(\mathbb{A})$. Let ∞ and o be two closed points in $X \setminus N_g$, let ξ be a closed point in $\infty \times o$, let n be a positive integer and let $p:[0,r] \to \mathbb{R}$ be a truncation parameter. We denote by

$$c_{\xi} = (c_{1,\xi}, c_{2,\xi}) : \operatorname{Sht}_{\xi}^{r}(g)/a^{\mathbb{Z}} \to \operatorname{Sht}_{\xi}^{r}/a^{\mathbb{Z}} \times_{\kappa(\xi)} \operatorname{Sht}_{\xi}^{r}/a^{\mathbb{Z}}$$

the fiber at ξ of the Hecke correspondence which is defined by g.

D EFINITION The Lefschetz number

$$\operatorname{Lef}(g \times \operatorname{Frob}_{\xi}^{n}, \operatorname{Sht}_{\xi}^{r; \leq p}/a^{\mathbb{Z}})$$

is the sum

$$\sum_{y} \frac{1}{|\operatorname{Aut}(y)|}$$

where y runs through the set of (isomorphism classes of) points in $\mathrm{Sht}^r_\xi(g)/a^\mathbb{Z}$ such that

$$c_{1,\xi}(y) = \operatorname{Frob}_{\xi}^{n}(c_{2,\xi}(y)) \in \operatorname{Sht}_{\xi}^{r; \leq p}/a^{\mathbb{Z}} \subset \operatorname{Sht}_{\xi}^{r}/a^{\mathbb{Z}},$$

and where Aut(y) is the finite automorphism group of the fixed point y.

We say that a truncation parameter is *convex enough* if, for every $i = 1, \ldots, r-1$ the slope of p on the interval [i-1,i] is much bigger than the slope of p on the interval [i,i+1].

Using Drinfeld's adelic description of shtukas, the particular case of the fundamental lemma proved by Drinfeld and the Arthur-Selberg trace formula, Lafforgue has shown:

. — If $deg(\infty)$ and deg(o) are large enough with respect to g and if p is convex enough with respect to g, the average Lefschetz number

$$\frac{1}{\delta(\infty, o)} \sum_{\xi \in \infty \times o} \operatorname{Lef}(g \times \operatorname{Frob}_{\xi}^{n}, \operatorname{Sht}_{\xi}^{r; \leq p} / a^{\mathbb{Z}}).$$

is equal to the spectral expression

$$\begin{split} & \sum_{\substack{\pi \in \mathcal{A}_r(K) \\ \omega_\pi(a) = 1}} & \operatorname{Tr}_\pi(f_g) q^{(r-1)n\mu(\infty,o)} S_\infty^{\left(-\frac{n\mu(\infty,o)}{\deg(\infty)}\right)}(\pi) S_o^{\left(\frac{n\mu(\infty,o)}{\deg(o)}\right)}(\pi) \\ & + \sum_{\substack{1 \leq r' < r \\ 1 \leq r'' < r}} & \sum_{\substack{\pi' \in \mathcal{A}_{r'}(K) \\ \pi'' \in \mathcal{A}_{r''}(K)}} \operatorname{Tr}_{\pi',\pi''}^{\leq p}(f_g, n\mu(\infty,o)) S_\infty^{\left(-\frac{n\mu(\infty,o)}{\deg(o)}\right)}(\pi') S_o^{\left(\frac{n\mu(\infty,o)}{\deg(o)}\right)}(\pi'') \end{split}$$

where

- - f_g the characteristic function of $KgK \subset \operatorname{GL}_r(\mathbb{A})$ and $\operatorname{Tr}_{\pi}(f_g)$ is the trace of the operator $\pi(f_g)$,
- - $m \mapsto \operatorname{Tr}_{\pi',\pi''}^{\leq p}(f_g,m)$ is a complex function of the integer m, which does not depend on the places $o, \infty \in X \setminus N_g$ and on the integer n, and which is of the form

$$\sum_{\lambda \in \Lambda} P_{\lambda}(m) \lambda^m$$

for some finite subset $\Lambda \subset \mathbb{C}^{\times}$ and some family $(P_{\lambda}(T))_{\lambda \in \Lambda}$ of polynomials in $\mathbb{C}[T]$,

• - the function $m \mapsto \operatorname{Tr}_{\pi',\pi''}^{\leq p}(f_g,m)$ is identically zero for all but finitely many pairs (π',π'') .

(Recall that

$$S_x^{(m)}(\pi) = z_{x,1}(\pi)^m + \dots + z_{x,r}(\pi)^m$$

is the m-th power sum of the Hecke eigenvalues of π at x.)

If the open substacks $\operatorname{Sht}_{\xi}^{r;\leq p}/a^{\mathbb{Z}}$ of $\operatorname{Sht}_{\xi}^{r}/a^{\mathbb{Z}}$ were stable under the action of the Hecke operators, the main theorem would easily follows from the above result and would have been proved many years ago.

5. Compactifications

Let the torus $\mathbb{G}_{\mathbf{m}}^{r-1} = \operatorname{Spec}(\mathbb{F}_q[t_1, t_1^{-1} \dots, t_{r-1}, t_{r-1}^{-1}])$ act on the standard affine space $\mathbb{A}^{r-1} = \operatorname{Spec}(\mathbb{F}_q[u_1, \dots, u_{r-1}])$ by

$$(t_1,\ldots,t_{r-1})\cdot(u_1,\ldots,u_{r-1})=(t_1u_1,\ldots,t_{r-1}u_{r-1}).$$

The quotient stack $[\mathbb{A}^{r-1}/\mathbb{G}_{\mathbb{m}}^{r-1}]$ is an Artin algebraic stack which is smooth of dimension 0. Its closed substack

$${u_1 \cdots u_{r-1} = 0} = {u_1 = 0} \cup \cdots \cup {u_{r-1} = 0} \subset [\mathbb{A}^{r-1}/\mathbb{G}_{\mathbf{m}}^{r-1}]$$

is the union of r-1 smooth divisors with normal crossings. The complementary open substack

$$\{u_1 \cdots u_{r-1} \neq 0\} = [\mathbb{G}_{\mathbf{m}}^{r-1}/\mathbb{G}_{\mathbf{m}}^{r-1}] \subset [\mathbb{A}^{r-1}/\mathbb{G}_{\mathbf{m}}^{r-1}]$$

is reduced to one point. For each partition $\mathbf{r}=(r_1+\cdots+r_s=r)$ of r (into a sum of positive integers) the intersection

$$\left[\mathbb{A}_{\mathbf{r}}^{r-1}/\mathbb{G}_{\mathbf{m}}^{r-1}\right] = \bigcap_{i \in I} \{u_i = 0\} \cap \bigcap_{i \notin I} \{u_i \neq 0\}.$$

where we have set $I = \{r_1, r_1 + r_2, \dots, r_1 + \dots + r_{s-1}\}$, is smooth of dimension 1-s. When **r** runs through the set of partitions of r the locally closed substacks $[\mathbb{A}^{r-1}_{\mathbf{r}}/\mathbb{G}^{r-1}_{\mathbf{m}}]$ form a stratification of $[\mathbb{A}^{r-1}/\mathbb{G}^{r-1}_{\mathbf{m}}]$.

Let us fix a truncation parameter p which is convex enough with respect to X. Let us also fix an integer d.

T HEOREM (Drinfeld [3] for r=2, Lafforgue [5] for $r\geq 3$). — There exists an Artin algebraic stack $\overline{\operatorname{Sht}}^{r,d;\leq p}$ and a stack morphism

$$\overline{(\infty, o, \varepsilon)} : \overline{\operatorname{Sht}}^{r,d; \leq p} \to X \times X \times [\mathbb{A}^{r-1}/\mathbb{G}_{\mathrm{m}}^{r-1}]$$

with the following properties:

- all the automorphisms groups of Sht ^{r,d; ≤p} are finite (but not necessarily unramified),
- - $\overline{(\infty, o, \varepsilon)}$ is smooth of pure relative dimension 2r-2 and

$$\overline{(\infty,o)} = \operatorname{pr}_{X\times X} \circ \overline{(\infty,o,\varepsilon)} : \overline{\operatorname{Sht}}^{r,d;\leq p} \to X\times X$$

(which is also smooth of pure relative dimension 2r-2) is proper,

• - the restriction of (∞, o, ε) over the open substack

$$X\times X=X\times X\times [\mathbb{G}_{\mathrm{m}}^{r-1}/\mathbb{G}_{\mathrm{m}}^{r-1}]\subset X\times X\times [\mathbb{A}^{r-1}/\mathbb{G}_{\mathrm{m}}^{r-1}]$$

is nothing else than the stack morphism (∞, o) : Sht $r,d, \leq p \to X \times X$. Λ

It follows from the theorem that the Artin algebraic stack $\overline{\operatorname{Sht}}^{r,d;\leq p}$ is proper and smooth of pure dimension 2r, and that it contains the Deligne-Mumford algebraic stack $\operatorname{Sht}^{r,d;\leq p}$ as a dense open substack. The closed complementary substack is the union of r-1 divisors

$$\overline{\operatorname{Sht}}^{r,d;\,\leq p}\setminus\operatorname{Sht}^{r,d;\,\leq p}=\bigcup_{i=1}^{r-1}\overline{(\infty,o,\varepsilon)}^{-1}(\{u_i=0\}),$$

which are smooth with relative normal crossings over $X \times X$.

When \mathbf{r} runs through the set of partitions of r the locally closed substacks

$$\overline{\operatorname{Sht}}_{\mathbf{r}}^{r,d;\leq p} = \overline{(\infty,o,\varepsilon)}^{-1}([\mathbb{A}_{\mathbf{r}}^{r-1}/\mathbb{G}_{\mathbf{m}}^{r-1}])$$

which are smooth of pure relative dimension 2r-1-s over $X\times X$, form a stratification of $\overline{\operatorname{Sht}}^{r,d;\leq p}$.

For each partition $\mathbf{r}=(r_1+\cdots+r_s=r)$ of r we also consider the Deligne-Mumford algebraic stack

$$\operatorname{Sht}^{\mathbf{r}} = \operatorname{Sht}^{r_1} \times_X \operatorname{Sht}^{r_2} \times_{X,\operatorname{Frob}_X} \operatorname{Sht}^{r_3} \times_{X,\operatorname{Frob}_X} \cdots \times_{X,\operatorname{Frob}_X} \operatorname{Sht}^{r_s}$$

which classifies the families $(\widetilde{\mathcal{E}}_1, \widetilde{\mathcal{E}}_2, \dots, \widetilde{\mathcal{E}}_s)$ of shtukas of ranks r_1, \dots, r_s such that the zero o_1 of $\widetilde{\mathcal{E}}_1$ is equal to the pole ∞_2 of $\widetilde{\mathcal{E}}_2$ and that, for $j=2,\dots,s-1$, the zero o_j of $\widetilde{\mathcal{E}}_j$ is equal to the image by the Frobenius endomorphism Frob_X of the pole ∞_{j+1} of $\widetilde{\mathcal{E}}_{j+1}$. By construction we have a smooth morphism of pure relative dimension 2r-2s

$$(\infty_1, o_1 = \infty_2, o_2 = \operatorname{Frob}_X(\infty_3), \dots, o_{s-1} = \operatorname{Frob}_X(\infty_s), o_s) : \operatorname{Sht}^{\mathbf{r}} \to X \times X^{s-1} \times X.$$

Therefore Sht^r is smooth of pure relative dimension 2r - s - 1 over $X \times X$.

For each $i = 0, 1, \dots, r$ let $\widetilde{p}(i)$ be the unique integer in the length 1 interval

$$]p(i)+\frac{i}{r}d-1,p(i)+\frac{i}{r}d].$$

We set $d_1 = \widetilde{p}(r_1)$ and we denote by $p_1 : [0, r_1] \to \mathbb{R}$ the truncation parameter which takes the values

$$p_1(i_1) = \widetilde{p}(i_1) - \frac{i_1 d_1}{r_1}, \ \forall i_1 = 1, \dots, r_1 - 1.$$

For each $j = 2, \ldots, s$ we set

$$d_j = \widetilde{p}(r_1 + \dots + r_{j-1} + r_j) - \widetilde{p}(r_1 + \dots + r_{j-1}) - 1$$

and we denote by $p_j:[0,r_j]\to\mathbb{R}$ the truncation parameter which takes the values

$$p_j(i_j) = \widetilde{p}(r_1 + \dots + r_{j-1} + i_j) - \widetilde{p}(r_1 + \dots + r_{j-1}) - 1 - \frac{i_j d_j}{r_j}, \ \forall i_j = 1, \dots, r_j - 1.$$

(The p_j 's are essentially the normalized restrictions of p to the intervals $[r_1 + \cdots + r_{j-1}, r_1 + \cdots + r_{j-1} + r_j]$'s as in the figure below.

In particular all the p_j 's are automatically convex enough with respect to X as soon as this is the case for p.)

We define an open substack

$$\operatorname{Sht}^{\mathbf{r},d;\,\leq p}\subset\operatorname{Sht}^{\mathbf{r}}$$

by requiring that, for $j=1,\ldots,s$, the degree of the shtuka $\widetilde{\mathcal{E}}_j$ is equal to d_j and its Harder-Narasimhan polygon $p^{\mathrm{HN}}(\widetilde{\mathcal{E}}_j)$ is bounded above by p_j .

P ROPOSITION (Lafforgue [5]). — For each non trivial partition ${\bf r}$ of r there exists a canonical morphism of stacks

$$\overline{\operatorname{Sht}}_{\mathbf{r}}^{r,d;\leq p} \to \operatorname{Sht}^{\mathbf{r},d;\leq p}$$

which is the composition of a gerb whose structural group is finite, flat and radicial, and of a radicial representable morphism. Λ

Lafforgue calls iterated shtukas the points in $\overline{\operatorname{Sht}}^{r,d,\leq p}$. To each iterated shtuka is associated a partition $\mathbf{r}=(r_1,\ldots,r_s)$ of r and a family of "small" shtukas of ranks r_1,\ldots,r_s . Their zeros and poles $o_1=\infty_2,o_2=\operatorname{Frob}_X(\infty_3),\ldots,o_{s-1}=\operatorname{Frob}_X(\infty_s)$ are the degenerators of the iterated shtuka. The pole ∞_s and the zero o_1 are the pole and the zero of the iterated shtuka.

For each partition \mathbf{r} of r we set

$$\overline{\operatorname{Sht}}^{\,r;\,\leq p}_{\mathbf{r}} = \coprod_{d \in \mathbb{Z}} \overline{\operatorname{Sht}}^{\,r,d;\,\leq p}_{\mathbf{r}} \subset \overline{\operatorname{Sht}}^{\,r;\,\leq p} = \coprod_{d \in \mathbb{Z}} \overline{\operatorname{Sht}}^{\,r,d;\,\leq p}$$

and

$$\operatorname{Sht}^{\mathbf{r};\,\leq p} = \coprod_{d\in \mathbb{Z}} \operatorname{Sht}^{\mathbf{r},d;\,\leq p}.$$

These algebraic stacks are naturally equipped with an action of the Picard group $F^{\times}\backslash \mathbb{A}^{\times}/\mathcal{O}^{\times}$ of X. In particular we may form the algebraic stack

$$\overline{\operatorname{Sht}}^{r; \leq p} / a^{\mathbb{Z}} = \coprod_{d=1}^{r \operatorname{deg}(a)} \overline{\operatorname{Sht}}^{r, d; \leq p}$$

which is a smooth compactification of $\operatorname{Sht}^{r;\leq p}/a^{\mathbb{Z}}$ over $X\times X$. It is stratified by the locally closed substacks $\overline{\operatorname{Sht}}^{r;\leq p}_{\mathbf{r}}/a^{\mathbb{Z}}$ which are "homeomorphic" to the Deligne-Mumford algebraic stacks $\operatorname{Sht}^{r;\leq p}/a^{\mathbb{Z}}$.

6. r-negligible Galois representations

In this section and the next one we will forget the action of the Hecke operators and concentrate on the Galois action on the ℓ -adic cohomology of the shtuka moduli varieties.

We denote by E the fraction field of $F\otimes F$ (the field of rational functions on the surface $X\times X$). We fix an algebraic closure \overline{E} of E and an embedding $\overline{F}\otimes_{\overline{\mathbb{F}}_q}\overline{F}\hookrightarrow \overline{E}$ over the embedding $F\otimes F\hookrightarrow E$, where $\overline{\mathbb{F}}_q$ is the algebraic closure of \mathbb{F}_q in \overline{F} .

We have thus defined a geometric point $\overline{\delta}: \operatorname{Spec}(\overline{E}) \to X \times X$ over the generic point $\delta = \operatorname{Spec}(E)$ of $X \times X$. The images of $\overline{\delta}$ by the two canonical projections of $X \times X$ booth factors through the geometric point $\overline{\eta}: \operatorname{Spec}(\overline{F}) \to X$ over the generic point η of X.

The Grothendieck fundamental group $\pi_1(X,\overline{\eta})$ is the quotient of $\Gamma_F = \operatorname{Gal}(\overline{F}/F)$ which classifies the finite extensions of F in \overline{F} which are unramified everywhere. It admits as quotient the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$.

Similarly the Grothendieck fundamental group $\pi_1(X \times X, \overline{\delta})$ is a quotient of the Galois group $\operatorname{Gal}(\overline{E}/E)$ and admits $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ as quotient.

L EMMA The homomorphism

$$\pi_1(X \times X, \overline{\delta}) \to \pi_1(X, \overline{\eta}) \times \pi_1(X, \overline{\eta}),$$

which is induced by the two canonical projections of $X \times X$, is injective. Its image is the group of pairs of elements $\gamma', \gamma'' \in \pi_1(X, \overline{\eta})$ which have the same images in the quotient $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$.

In particular, any irreducible ℓ -adic representation of $\pi_1(X\times X,\overline{\delta})$ is a direct factor of a semi-simple ℓ -adic representation of the form

$$\lambda \otimes (\sigma' \; \boldsymbol{\Theta} \; \sigma'')$$

where λ is an ℓ -adic character of $\pi_1(X \times X, \overline{\delta})$ which factors through the quotient $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \cong \widehat{\mathbb{Z}}$, and where σ' and σ'' are two irreducible ℓ -adic representations of $\pi_1(X, \overline{\eta})$ with determinants of finite order. We may identify λ to an ℓ -adic unit (its value at the geometric Frobenius element) and we may view the tensor product by λ as a generalized Tate twist.

We will simply call virtual $\pi_1(X \times X, \overline{\delta})$ -module a formal linear combination $\sum_{\rho} m_{\rho}[\rho]$ where ρ runs through the set of (isomorphism classes of) irreducible ℓ -adic representations of $\pi_1(X \times X, \overline{\delta})$ and where the m_{ρ} 's are rational numbers which are equal to 0 for all but finitely many ρ 's. We say that ρ occurs in $\sum_{\rho} m_{\rho}[\rho]$ if its multiplicity m_{ρ} is non zero. The trace of $\sum_{\rho} m_{\rho}[\rho]$ is the function

$$\operatorname{Tr}_{\sum_{\rho} m_{\rho}[\rho]} : \pi_{1}(X \times X, \overline{\delta}) \to \overline{\mathbb{Q}}_{\ell}, \ \gamma \mapsto \sum_{\rho} m_{\rho} \operatorname{Tr}(\rho(\gamma)).$$

Any graded ℓ -adic representation H^* of $\pi_1(X \times X, \overline{\delta})$ defines a virtual $\pi_1(X \times X, \overline{\delta})$ -module

$$[H^*] = \sum_{\rho} \sum_{\nu} (-1)^{\nu} m_{\rho}^{\nu}[\rho]$$

where m_{ρ}^{ν} is the number of times that ρ occurs in any Jordan-Hölder filtration of H^{ν}

. — A ℓ -adic representation of $\pi_1(X \times X, \overline{\delta})$ is said r-negligible if all its irreducible subquotients are direct factors of ℓ -adic representations of the form $\lambda \otimes (\sigma' \Theta \sigma'')$ as above, where σ' and σ'' are both of dimension $\leq r - 1$.

A virtual $\pi_1(X \times X, \overline{\delta})$ -module is said r-negligible if any ρ which occurs in it is r-negligible.

We now fix a truncation parameter which is convex enough with respect to X. We denote by $\operatorname{Sht}_{\overline{\delta}}^{r; \leq p}, \overline{\operatorname{Sht}_{\overline{\delta}}^{r; \leq p}}$ and $\operatorname{Sht}_{\overline{\delta}}^{r; \leq p}$ the fibers at the geometric point $\overline{\delta}$ of the morphisms $(\infty, o), (\infty, o)$ and (∞_1, o_s) , and we consider their ℓ -adic cohomologies

$$\begin{split} H_{\mathrm{c}}^*(r; \leq p) &= H_{\mathrm{c}}^*(\mathrm{Sht}_{\overline{\delta}}^{r; \leq p} / a^{\mathbb{Z}}, \overline{\mathbb{Q}}_{\ell}), \\ \overline{H}^*(r; \leq p) &= H^*(\overline{\mathrm{Sht}}_{\overline{\delta}}^{r; \leq p} / a^{\mathbb{Z}}, \overline{\mathbb{Q}}_{\ell}), \\ H_{\partial}^*(r; \leq p) &= H^*((\overline{\mathrm{Sht}}_{\overline{\delta}}^{r; \leq p} \setminus \mathrm{Sht}_{\overline{\delta}}^{r; \leq p}) / a^{\mathbb{Z}}, \overline{\mathbb{Q}}_{\ell}) \end{split}$$

and

$$H_{\mathbf{c}}^{*}(\mathbf{r}; \leq p) = H_{\mathbf{c}}^{*}(\operatorname{Sht}_{\overline{\delta}}^{\mathbf{r}; \leq p} / a^{\mathbb{Z}}, \overline{\mathbb{Q}}_{\ell}).$$

It follows from the results of the previous section that:

- - the natural continuous actions of the Galois group $\operatorname{Gal}(\overline{E}/E)$ on these ℓ -adic cohomologies factor through the fundamental group $\pi_1(X \times X, \overline{\delta})$,
- - there is a long exact sequence

$$\cdots \to H^{\nu}_{\mathbf{c}}(r; \leq p) \to \overline{H}^{\nu}(r; \leq p) \to H^{\nu}_{\partial}(r; \leq p) \to H^{\nu+1}_{\mathbf{c}}(r; \leq p) \to \cdots$$

and a spectral sequence

$$E_1^{s,\nu} = \bigoplus_{\mathbf{r} = (r_1, \dots, r_{s+2})} H_{\mathbf{c}}^{\nu}(\mathbf{r}; \leq p) \Rightarrow H_{\partial}^{\nu+s}(r; \leq p).$$

The virtual $\pi_1(X \times X, \overline{\delta})$ -module

$$[H_{\rm c}^*(r;\leq p)]$$

is thus equal to the virtual $\pi_1(X \times X, \overline{\delta})$ -module

$$[\overline{H}^*(r; \leq p)] - \sum_{\mathbf{r}} [H_{\mathbf{c}}^*(\mathbf{r}; \leq p)]$$

where \mathbf{r} runs through the set of non trivial partitions of r.

7. The induction

Lafforgue proves the main theorem and the following proposition by a simultaneous induction on r.

P ROPOSITION (Lafforgue [6]). — For any truncation parameter p which is convex enough with respect to X, the ℓ -adic representations $H_c^{\nu}(r; \leq p)$ of $\pi_1(X \times X, \overline{\delta})$ is (r+1)-negligible for every integer ν .

From now on we thus assume that the main theorem in rank < r is already proved and that, for every truncation parameter p which is convex enough with respect to X, every positive integer r' < r and every integer ν the $\pi_1(X \times X, \overline{\delta})$ -module $H_c^{\nu}(r'; \leq p)$ is r-negligible.

Let p be a truncation parameter which is convex enough with respect to X and let $\mathbf{r}=(r_1,\ldots,r_s)$ be a partition of r. Then it follows from the structure of the stratum $\mathrm{Sht}^{\mathbf{r};\,\leq p}$ and the Künneth formula that, for each integer ν the ℓ -adic representation $H^{\nu}_{\mathbf{c}}(\mathbf{r};\,\leq p)$ of $\pi_1(X\times X,\overline{\delta})$ is r-negligible. In fact the virtual $\pi_1(X\times X,\overline{\delta})$ -module $[H^*_{\mathbf{c}}(\mathbf{r};\,\leq p)]$ is a linear combination of virtual modules of the form

$$\left[\mu \otimes H^*_{\mathbf{c}} \left(\overline{\mathbb{F}}_q \otimes_{\mathbb{F}_q} X^{s-1}, \Theta_{j=1}^{s-1}(\sigma_j'' \otimes \sigma_{j+1}')\right) \otimes (\sigma_1' \ \Theta \ \sigma_s'')\right] = \sum_{\lambda} m_{\lambda} \left[\lambda \otimes (\sigma_1' \ \Theta \ \sigma_s'')\right]$$

where μ and λ are ℓ -adic characters of $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$, where σ'_j and σ''_j are irreducible ℓ -adic representations of dimension $\leq r_j$ of $\pi_1(X,\overline{\eta})$ with determinants of finite order, and where the m_{λ} 's are integers which are all zero except for finitely many λ 's.

Therefore the induction hypothesis and the spectral expression for the average Lefschetz number

$$\frac{1}{\delta(\infty,o)} \sum_{\xi \in \infty \times o} \operatorname{Lef}(\operatorname{Frob}_{\xi}^{n},\operatorname{Sht}_{\xi}^{r; \leq p}/a^{\mathbb{Z}}).$$

(g = 1) given in Section 4 imply that:

P roposition (i) For each integer ν the kernel and the cokernel of the canonical homomorphism

$$H^{\nu}_{\rm c}(r;\,\leq p) \to \overline{H}^{\,\nu}(r;\,\leq p)$$

and the virtual $\pi_1(X \times X, \overline{\delta})$ -module

$$[\overline{H}^*(r; \leq p)] - [H_{\mathbf{c}}^*(r; \leq p)]$$

are r-negligible.

(ii) There exists a virtual $\pi_1(X \times X, \overline{\delta})$ -module $[H^*_{\text{cusp}}(r; \leq p)]$ such that the difference

$$[H^*_{\mathrm{cusp}}(r; \leq p)] - \frac{1}{r!} \sum_{n=1}^{r!} [(\mathrm{Frob}_X^n \times \mathrm{Id}_X)^* H^*_{\mathrm{c}}(r; \leq p)]$$

is r-negligible, and such that, for each pair (∞, o) of distinct closed points in X, each closed point $\xi \in \infty \times o$ and each positive integer n we have

$$\mathrm{Tr}_{[H^{\bullet}_{\mathrm{cusp}}(r;\leq p)]}(\mathrm{Frob}_{\xi}^{n}) = \sum_{\substack{\pi \in \mathcal{A}_{r}(K) \\ \omega_{\pi}(a) = 1}} q^{(r-1)n\deg(\xi)} S_{\infty}^{\left(-n\frac{\deg(\xi)}{\deg(\infty)}\right)}(\pi) S_{o}^{\left(n\frac{\deg(\xi)}{\deg(o)}\right)}(\pi).$$

Λ

Taking into account the purity of the cohomology groups $\overline{H}^*(r; \leq p)$, which follows from the Weil conjecture proved by Deligne, Lafforgue deduces by L-function arguments:

COROLLARY

- . (i) All the irreducible ℓ -adic representations of $\pi_1(X \times X, \overline{\delta})$ which occur in $[H^*_{\text{cusp}}(r; \leq p)]$ occur with a positive multiplicity and are pure of weight 2r-2. Moreover none of them is r-negligible.
- (ii) The ℓ -adic representations $H^{\nu}_{c}(r; \leq p)$, $\nu \neq 2r-2$, of $\pi_{1}(X \times X, \overline{\delta})$ and the virtual $\pi_{1}(X \times X, \overline{\delta})$ -module

$$[H^*_{\mathrm{cusp}}(r;\leq p)] - \frac{1}{r!} \sum_{n=1}^{r!} [(\mathrm{Frob}_X^n \times \mathrm{Id}_X)^* H_{\mathrm{c}}^{2r-2}(r;\leq p)]$$

are all r-negligible.

Λ

Now it is also easy to deduce from Drinfeld's study of the horocycles on Sht^r and the induction hypothesis that:

L emma For every truncation parameters $p \leq q$ which are convex enough with respect to X the kernel and the cokernel of the canonical homomorphism

$$H_c^{2r-2}(r; \leq p) \to H_c^{2r-2}(r; \leq q)$$

are r-negligible.

Λ

Therefore the direct limit

$$H_{\operatorname{c}}^{2r-2}(r) = \varinjlim_{p} H_{\operatorname{c}}^{2r-2}(r; \leq p) = H_{\operatorname{c}}^{2r-2}(\operatorname{Sht}_{\overline{\delta}}^{r}/a^{\mathbb{Z}}),$$

which is an infinite dimensional representation of $\pi_1(X \times X, \overline{\delta})$, has the following property:

. — There exists a unique finite filtration

$$F^{\bullet} = ((0) = F^{0} \subset F^{1} \subsetneq F^{2} \subsetneq \cdots \subsetneq F^{2u+1} \subsetneq F^{2u} \subsetneq \cdots \subsetneq F^{T} = H_{c}^{2r-2}(r))$$

such that:

- - for any non negative integer u such that $2u+1 \leq T$, F^{2u+1}/F^{2u} is the sum of all the finite dimensional ℓ -adic subrepresentations of $H_{\rm c}^{2r-2}(r)/F^{2u}$ which are r-negligible,
- - for any non negative integer u such that $2u + 2 \le T$, F^{2u+2}/F^{2u+1} is the sum of all the finite dimensional ℓ -adic subrepresentations of $H_c^{2r-2}(r)/F^{2u+1}$ which do not admit any r-negligible subquotient,
- - if p a truncation parameter which is convex enough with respect to X and if we denote by $F^{\bullet}(\leq p)$ the filtration on $H_c^{2r-2}(r; \leq p)$ which is induced by F^{\bullet} then, for any non negative integer u the embedding

$$F^{2u+2}(\leq p)/F^{2u+1}(\leq p) \hookrightarrow F^{2u+2}/F^{2u+1}$$

is an isomorphism.

Λ

We have thus proved:

P ROPOSITION The direct sum

$$H_{\text{cusp}}^{2r-2} = \bigoplus_{u>0} F^{2u+2}/F^{2u+1}$$

is a finite dimensional ℓ -adic representation of $\pi_1(X \times X, \overline{\delta})$ and, for any truncation parameter which is convex enough with respect to X we have the equality of virtual $\pi_1(X \times X, \overline{\delta})$ -modules

$$[H_{\text{cusp}}^*(r; \leq p)] = [H_{\text{cusp}}^{2r-2}].$$

Λ

8. A fixed point formula

Let us now consider again the action of the Hecke operators. They act on $H_{\rm c}^{2r-2}(r)=H_{\rm c}^{2r-2}({\rm Sht}_{\overline{\delta}}^r/a^{\overline{\delta}})$ and they necessarily stabilize the above canonical filtration F^{\bullet} . Therefore they also act on the finite dimensional ℓ -adic representation $H_{\rm cusp}^{2r-2}$ of $\pi_1(X\times X,\overline{\delta})$.

To finish the induction on r, at least for the everywhere unramified representations, Lafforgue proves:

. — For each $g \in GL_r(\mathbb{A})$, each pair (∞, o) of distinct closed points in $X \setminus N_g$, each closed point $\xi \in \infty \times o$ and each positive integer n we have the equality of traces

$$\operatorname{Tr}_{H^{2r-2}_{\operatorname{cusp}}}(g \times \operatorname{Frob}_{\xi}^{n}) = \sum_{\substack{\pi \in \mathcal{A}_{r}(K) \\ \text{of } (g) = 1}} \operatorname{Tr}_{\pi}(f_{g}) q^{(r-1)n \operatorname{deg}(\xi)} S_{\infty}^{\left(-n \frac{\operatorname{deg}(\xi)}{\operatorname{deg}(\infty)}\right)}(\pi) S_{o}^{\left(n \frac{\operatorname{deg}(\xi)}{\operatorname{deg}(o)}\right)}(\pi).$$

C orollary For each $\pi \in \mathcal{A}_r(K)$ such that $\omega_\pi(a) = 1$ there exists an everywhere unramified Galois representation $\sigma(\pi) \in \mathcal{G}_r$ such that $L_x(\pi,s) = L_x(\sigma(\pi),s)$ for all but finitely many places x.

Remark: In fact, we have $L_x(\pi, s) = L_x(\sigma(\pi), s)$ for all places x, and we have the equality of virtual modules over $\mathcal{H}_K \times \pi_1(X \times X, \overline{\delta})$

$$[H_{\text{cusp}}^{2r-2}] = \sum_{\substack{\pi \in \mathcal{A}_r(K) \\ \omega_{\pi}(a) = 1}} [\pi^K \Theta (\sigma(\pi)^{\vee} \Theta \sigma(\pi))(1-r)].$$

where $\mathcal{H}_K = e_K * \mathcal{H} * e_K$ is the commutative algebra of K-biinvariant functions with compact support on $\mathrm{GL}_r(\mathbb{A})$ and $\pi^K = \pi * e_K$ is the one dimensional \mathcal{H}_K -module associated with the everywhere unramified \mathcal{H} -module π .

The proof of the proposition is based on the following variant of a conjecture of Deligne on the Grothendieck-Lefschetz trace formula, in the way it has been formulated and proved by Pink ([8]).

Let $\kappa\supset \mathbb{F}_q$ be a finite field and k be an algebraic closure of $\kappa.$ We simply denote

$$H^*(S) = H^*(k \otimes_{\kappa} S, \overline{\mathbb{Q}}_{\ell})$$

the ℓ -adic cohomology of a separated scheme of finite type S over κ . The Galois group $\operatorname{Gal}(k/\kappa)$ acts on $H^*(S)$ and we denote by $\operatorname{Frob}_{\kappa}$ the endomorphism of $H^*(S)$ which is induced by the geometric Frobenius element in $\operatorname{Gal}(k/\kappa)$.

Let S be a proper and smooth scheme of pure dimension d over κ and $U \subset S$ be a dense open subset. We denote by $\operatorname{Frob}_S : S \to S$ the Frobenius endomorphism with respect to κ , and by $\operatorname{Frob}_U : U \to U$ its restriction to U

Let $c_U = (c_{U,1}, c_{U,2}) : V \to U \times_{\kappa} U$ be a finite morphism. We assume that $c_{U,1} : V \to U$ is etale, so that V is also smooth of pure relative dimension d over κ . For any positive integer n we consider the Lefschetz number

$$Lef(c_U \times Frob_U^n) = |\{t \in V \mid c_1(t) = Frob_U^n(c_2(t))\}|.$$

If U = S this Lefschetz number admits a well known cohomological interpretation. The generalized codimension d cycle $c_U : V \to U \times_{\kappa} U$ has a cohomology class $[c_U] \in H^{2d}(U \times_{\kappa} U)(d)$. Moreover, by Poincaré duality any class z in

$$H^{2d}(U\times_{\kappa}U)(d)=\bigoplus_{i=0}^{2d}H^{i}(U)\otimes_{\overline{\mathbb{Q}}_{\ell}}H^{2d-i}(U)(d)=\bigoplus_{i=0}^{2d}H^{i}(U)\otimes_{\overline{\mathbb{Q}}_{\ell}}(H^{i}(U))^{\vee}$$

may be viewed as an endomorphism of $H^*(U)$.

. — If U = S then, for any positive integer n we have the Lefschetz trace formula

$$Lef(c_U \times Frob_U^n) = Tr_{H^*(S)}([c_U] \times Frob_{\kappa}^n).$$

Λ

If $U \subsetneq S$ we may extend c_U to a finite morphism $c = (c_1, c_2) : T \to S \times_{\kappa} S$ by normalizing $S \times_{\kappa} S$ in V. The κ -scheme T is normal, proper and of pure dimension d. The morphism $c_1 : T \to S$ is generically finite and proper, but it is not necessarily finite.

We view c as a geometric correspondence on S. Its fixed point set is the closed subset

$$Fix(c) = \{ t \in T \mid c_1(t) = c_2(t) \}$$

of T. More generally, for each non negative integer n we set

$$\operatorname{Fix}(c \times \operatorname{Frob}_{S}^{n}) = \{ t \in T \mid c_{1}(t) = \operatorname{Frob}_{S}^{n}(c_{2}(t)) \} \subset T.$$

D effinition We say that the correspondence c stabilizes $U \subset S$ in a neighborhood of its fixed points if there exists an open subset $W \subset T$ containing $\bigcup_{n \geq 0} \operatorname{Fix}(c \times \operatorname{Frob}^n_S)$ such that

$$c_2(c_1^{-1}(U)\cap W)\subset U.$$

. — Let us assume that U is the complementary open subset in S of a divisor with normal crossings which is the union of a finite family $(S_i)_{i \in \Delta}$ of smooth divisors. For each $I \subset \Delta$ let us set

$$S_I = \bigcap_{i \in I} S_i.$$

(By hypothesis S_I is proper and smooth of dimension d - |I| over κ .)

Then, if c stabilizes $U \subset S$ in a neighborhood of its fixed points there exist a positive integer n_0 and cohomology classes

$$z_I \in H^{2(d-|I|)}(S_I \times_{\kappa} S_I)(d-|I|), \ \forall \emptyset \neq I \subset \Delta,$$

such that, for any integer $n \ge n_0$ we have the Lefschetz trace formula

$$\operatorname{Lef}(c_U \times \operatorname{Frob}_U^n) = \operatorname{Tr}_{H^{\bullet}(S)}([c] \times \operatorname{Frob}_{\kappa}^n) + \sum_{\substack{I \subset \Delta \\ I \neq \emptyset}} (-1)^{|I|} \operatorname{Tr}_{H^{\bullet}(S_I)}(z_I \times \operatorname{Frob}_{\kappa}^n).$$

Moreover, if (S, U, c) varies in an algebraic family which satisfies the obvious relative variant of the above hypotheses, the integer n_0 and the cohomology classes z_I can be chosen in a uniform way.

The hypotheses of the theorem are satisfied by the Hecke correspondences. More precisely let us fix $g \in \mathrm{GL}_r(\mathbb{A})$ and let ξ be a "general enough" closed point in $X \times X$. Let us take

$$S = \operatorname{\overline{Sht}}_{\xi}^{r;\,\leq p}/a^{\mathbb{Z}} \supset U = \operatorname{Sht}_{\xi}^{r;\,\leq p}/a^{\mathbb{Z}}$$

and

$$V = c_{\xi}^{-1}(\operatorname{Sht}_{\xi}^{r;\,\leq p}/a^{\mathbb{Z}} \times_{\kappa(\xi)} \operatorname{Sht}_{\xi}^{r;\,\leq p}/a^{\mathbb{Z}}) \subset \operatorname{Sht}_{\xi}^{r}(g)/a^{\mathbb{Z}}.$$

T HEOREM (Drinfeld [3] for r=2; Lafforgue [6] for $r\geq 3$). — The correspondence $T\to S\times_\kappa S$ which is obtained by normalizing $S\times_\kappa S$ in V stabilizes $U\subset S$ in a neighborhood of its fixed points.

References

- 1. V.G. D RINFELD, Varieties of modules of F-sheaves, Functional Analysis and its Applications 21, (1987), 107-122.
- 2. V.G. D RINFELD, The proof of Petersson's conjecture for GL(2) over a global field of characteristic p, Functional Analysis and its Applications 22, (1988), 28-43.
- 3. V.G. D RINFELD, Cohomology of compactified manifolds of modules of *F*-sheaves of rank 2, *Journal of Soviet Mathematics* 46, (1989), 1789-1821.
- 4. L. L AFFORGUE, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson, Astérisque 243, (1997), 1-329.
- 5. L. L AFFORGUE, Une compactification des champs classifiant les chtoucas de Drinfeld, *Journal of the AMS* 11, (1998), 1001-1036.
- 6. L. L AFFORGUE, La correspondance de Langlands sur les corps de fonctions (version préliminaire), manuscript, 1999.
- 7. G. L AUMON, La correspondance de Langlands sur les corps de fonctions [d'après Laurent Lafforgue], Séminaire Bourbaki, 52ème année, 1999-2000, n° 873, Mars 2000.
- 8. R. P INK, On the calculation of local terms in the Lefschetz-Verdier trace formula and its application to a conjecture of Deligne, *Annals of Mathematics* 135, (1992), 483-525.

CNRS and Université de Paris-Sud, UMR 8628, Mathématique, Bât. 425, F-91405 Orsay Cedex, France