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The Langlands Correspondence for Function Fields
following Laurent Lafforgue

Gérard Laumon

In June 1999, Laurent Lafforgue proved the Langlands correspondence for GL.,
over a function field. His proof follows the strategy introduced by V. Drinfeld, more
than 25 years ago, in the rank 2 case. In this lecture, I explain Lafforgue’s theorem.
I also sketch some of his argmuments in the everywhere unramified case.

I would like to thank S.-T. Yau for his kind invitation to the CDM conference
and L. Lafforgue for his help during the preparation of these notes.

1. The statement

Let X be a smooth, projective and geometrically connected curve over a finite
field F, with g elements and let F' be its function field.

We denote by A = I'[', F, the topological ring of adeles of F. Here = runs
through the set of places of F', or equivalently the set | X| of closed points of X, and
F, is the completion of F" at z. For each z we denote by O, = {a € F; | z(a;) > 0}
the ring of integers of the local field F; and by deg(z) the degree of its residue field
k(z) over F,. There is a degree map

deg:A* - Z,am Z deg(z)z(az)
z€|X|

which vanishes on F'* and O*. It is well known that, for each a € A* whose degree
is non zero, the quotient F*\A* /O*a? is finite.
Let » > 1 be an integer.

We first consider the adelic group GL.(A). As usual we identify its center (the
subgroup of scalar matrices) with A*. The space of cuspidal automorphic forms

Lcusp = Lcusp(GLr(F)\ GL, (A))

is by definition the space of complex functions ¢ on GL.(A) which satisfy the
following properties:
o - v(vg) = p(g), ¥y € GL(F), Vg € GL.(A),
e - there exists a subgroup K, C K := GL,(0) =[], GL-(O) of finite index
such that @(gk) = ¢(9), Vg € GL-(A), Vk € K,
e - there exists a € A* such that deg(a) # 0 and ¢(ga) = ¢(g), Vg € GL.(4),
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e - for every non trivial partition r = r; +- - -+, defining a standard parabolic
subgroup P = MU C GL, with unipotent radical U and Levi component
M = GL,, x---x GL,,, we have

/ ¢(ug)du = 0, Yg € GL(4),
UFN\U(4)
where du is any Haar measure on U(F)\U(A).

The Hecke algebra H = C°(GL,.(A)) is the convolution algebra of locally
constant functions with compact support on GL(A). It acts on Lcysp by right
convolution.

The cuspidal automorphic representations of GL.(A) are by definition the
simple H-modules which occur as subquotients of L¢ysp. We will denote by A,
the set of (isomorphism classes of) these representations. Any 7 € A, admits a
central character wy : F*\AX — C* which is of finite order as we have wy(a) = 1
for some a € A* of non zero degree.

The Hecke algebra is the restricted tensor product of local Hecke algebras H,.
Accordingly any 7 € A, is a restricted tensor product of simple H,-modules 7.

Let ek, € H, be the characteristic function of the standard maximal compact
subgroup K, = GL.(O.;) C GL,(F;). For each # € A, the set N, of ramified
places of « is by definition the finite set of places z such that

7z * ex, = (0).

For any ¢ N, the complex vector space 7, * ex_ is an irreducible module over
the commutative algebra

ek, *Hz vex, = Clzy, 27, .., 20,27 1]5".
Therefore, it is one dimensional and its isomorphism class is completely determined
by an unordered r-tuple

(zz,1(7),. .. s 22,+(7))

of complex numbers, the so-called Hecke eigenvalues of m at z, or equivalently by
the sequence of power sums

SM(m) = 2g 1 (M) + -+ 2g0 (1), 2 1,
or by the local L factor

1

ITici (1 = 2,i(m)g =2 des(@))”

Ly(m,s) =

We fix a separable closure F of F and we denote by I’z the Galois group of F
over F. We fix some prime number £ distinct from the characteristic of F; and an
algebraic closure Q, of Q.

A (l-adic representation of I'r of rank r is a group homomorphism ¢ : I'r —
GL,(Q,) which has the following properties:

e - there exists g € GL-(Q;) and a finite extension E\ of Q; in Q, such that
909(Tr)g™" C GL(Ex) C GL(Qy),

e - gog~! : Tr = GL,(E,) is continuous for the Krull topology on I'r and
the ¢-adic topology on GL,(E)),
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e - for all but finitely many ¢ € |X|, o is unramified at z, i.e. the
restriction o, of ¢ to any decomposition subgroup D, C I'r at z is trivial
on the inertia subgrogp I, C D,, and thus factors through the quotient
D,/I; 2Ty (q) = Frobaz,, where Frob, is the geometric Frobenius element in
the Galois group I'x(z) of x(z).

We consider the set G, of (isomorphism classes of) irreducible ¢-adic represen-
tations o of I'r of rank r, the determinant of which is of finite order. For each
o € G, we denote by N, its finite set of ramified places. For any z ¢ N, we denote
by

(22,1(0)5- . » 22,r(0))
the unordered r-tuple of the eigenvalues of o, (Frob,), by

S0(0) = 222(0)" + -+ + 2,0(0)", R 21,

the corresponding sequence of power sums and by

1
Lm(a'a 3) = H:=1(1 — zz’i(o.)q—sdeg(:c))

the corresponding local L factor.

We fix an isomorphism @, — C. Each time the {-adic topology of @, plays
no role we will freely use this isomorphism to identify Q, with C.

M ain THEOREM (Langlands Correspondence). — There erists a unique
bijection
Ar =5 Gry e o(m),
such that, for every m € A, we have the equality of power sums
5{M(o(m) = SM(x), Vn 2 1,
or equivalently the equality of local L factors
Lz(o(m), 8) = Lo (m, s),
for all but finitely many places * ¢ Ny(z) U Ny.
For r = 1 this is a reformulation of the abelian class field theory in the function
field case. For r = 2 the theorem has been proved by Drinfeld [3]. The general case
r > 3 is due to Lafforgue [6].

For arbitrary r’s but particular 7’s, some cases of the theorem had been proved
earlier by Flicker and Kazhdan, and myself.

Remarks : (i) The uniqueness of the map A, — G, and its injectivity
(assuming its existence) had been known for a long time. They respectively follow
from the Cebotarev density theorem and from the strong multiplicity one theorem
of Piatetski-Shapiro.

(if) Let us fix an integer r. In order to prove the existence of the bijection
Ap =3 G for ' = 1,... ,r it is sufficient to prove the following weaker statement
forr'=1,...,r:

(A)p For every ' € Ay there exists a Galois representation o' (n') € G which
satisfies the equality of local L factors
Lz(a,(ﬂ.l)’ 8) = Lz (77’, 3),
for all but finitely many places £ ¢ Nz U Ngs ().
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Indeed, as was remarked by Deligne, if we have already proved the assertion
(A)p for r' = 1,...,r — 1 the Grothendieck functional equation and the converse
theorem of Hecke, Weil and Piatetski-Shapiro give for free the inverse maps

Gr = Ap, o' = 7'(0),
forr' =1,...,r.
(iii) By standard techniques of L-functions one easily gets from the main
theorem that Ny(r) = Ny, that

Ly(o(7),s) = Ly(x,s),

for all places z ¢ N, and that, for each = € N,, the restriction of o(w) to any
decomposition subgroup D, C I'r at & corresponds to 7, by the local Langlands
correspondence. . a

It is well known that the Jacquet-Shalika estimates of the Hecke eigenvalues of
cuspidal automorphic representations and the main theorem imply the Ramanujan-
Petersson conjecture:

T HEOREM (Drinfeld [2] for r = 2, Lafforgue [4], [6] for » > 3). — For every
7 € Ar and every place z ¢ N, we have
[2z,i(m)| =1, Vi=1,...,r.
]

There is a now standard strategy for constructing the map A, = G,, # — o (7).
The first step is to construct a “variety” V over F, equipped with an action of
the Hecke algebra #, so that its ¢-adic cohomology

H: (F ®F V, @l)

is a representation of the product of the Hecke algebra H and the Galois group I'p.
The second step is to compute the trace of this representation by the
Grothendieck-Lefschetz trace formula.
The last step is to compare this geometric trace formula with the Arthur-Selberg
trace formula in order to prove that the representation

@ T ® o(m)

TEA,
of # x T'r that we are looking for occurs in H?(F ®f V,Q,).

In the case we are considering there is an obstruction to the occurrence of the
above direct sum representation into any f-adic cohomology group. This strategy
has thus to be slightly modified. Following Drinfeld it is the representation

@ 1 o(n)Y @ o(m)
TEA,

of the product % x I'r x I'r, where ¢V is the contragredient representation of o,
which should occur in ¢-adic cohomology.

Lafforgue proves the Langlands correspondence by induction on r. Assuming
the Langlands correspondence A — G, for all 1 < 7' < r he constructs o () for
each m € A,.
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Let A.(K) C A, be the subset of everywhere unramified cuspidal automor-
phism representations = of GL,.(A) (N = 0). For simplicity we will only explain
in this lecture Lafforgue’s construction of o(w) for m € A.(K).

2. Drinfeld shtukas

All the schemes (or stacks) that we will consider are over Fy. We simply
denote by S x T the product over Fy of two schemes (or stacks). If k is a field
which contains Fy and S is a scheme (or a stack), we will also use the notation
k® S = Spec(k) x S. For each scheme (or stack) S we denote by Frobg its
Frobenius endomorphism (relative to F, ). For each scheme (or stack) S and each
vector bundle £ on S x X we define a new vector bundle "€ on S x X by

7€ = (Frobs x Idx)*€.

Let k be an algebraically closed field which contains F,.

A rank r vector bundle £ on k ® X equipped with an isomorphism 7§ — £ is
nothing else than a rank r vector bundle on X. As it has been shown by Weil the
set of isomorphism classes of rank r vector bundles on X is canonically isomorphic
to the double coset space GL,(F)\ GL,(4)/ GL.(O).

D eriniTION (Drinfeld [1]). — A (right) shtuka £ of rankr over k is o diagram
g Joo g, Jo TE
where:

o -& and &' are two locally free Orgx -Modules of rank r, or equivalently rank
r vector bundles on k® X,

® - joo and j, are two injective Orgx -linear maps,
e - the torsion Oxgx-Modules Coker(joo) and Coker(j,) are of length 1.

The supports 00,0 € X (k) of Coker(jo) and Coker(j,) are called the pole and
the zero of the shtuka.

In other words a shtuka is a double modification of a rank r vector bundle £,
5=j°°58' ¢ J,° ,5"
(an elementary upper modification j, at the point co followed by an elementary
lower modification j, at o), together with an isomorphism
TE - EN.

The rank r shtukas are the points of a Deligne-Mumford algebraic stack Sht”.

The pole and the zero of the universal shtuka define a morphism
(00,0) :Sht" - X x X

which is smooth of pure relative dimension 2r — 2.
The stack Sht” has infinitely many components (Sht™?)4¢z which are indexed
by the degree of the universal shtuka

deg(£) = deg(€) = deg(£') — 1.
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Ezample : For every integer d, the stack Sht'¢ is the fibered product

Sht' —— Bund'*®
O L
XxX — Bund*°

where Bund'? is the Artin algebraic stack of line bundles of degree don X, A is
the Abel-Jacobi morphism which maps (00, 0) € X (k) x X (k) onto the line bundle
Okex (00 — 0), and L is the Lang “isogeny” which maps £ onto £7! ®0, ¢ "L
In particular, for every integer d the stack Sht*? is of finite type and admits a
coarse moduli space which is a finite etale Galois covering of X x X. QO

But, except for r = 1 none of the components Sht™? is of finite type.

The Picard group F*\A* /O* of line bundles on X acts on the algebraic stack

Sht": a line bundle £ over X takes a rank r shtuka &£ on k¥ ® X to

L &0y ELB L @0, & &% L oo, TE = (L @0y £).

This action does not change the pole and the zero.
Any g € GL.(A) defines a Hecke correspondence
¢ = (¢1,¢2) : Sht"(g) — Sht” X x x x Sht",

where Sht"(g) is a Deligne-Mumford algebraic stack and ¢;,c; are etale rep-
resentable morphisms. This correspondence only depends on the double coset
KgK C GL,(A) and does not change the pole and the zero. If N, is the fi-
nite set of places = such that g, ¢ FXK, C GL,(F;), c1 and c; are finite over
((X \ Ng) % (X \ Np)) xxx Sht".

If a € A* is a central element in GL,(A) the corresponding Hecke operator is
nothing else that the action of the element F*aO> of the Picard group of X.

3. Truncations

From now on we fizx a € A* such that deg(a) # 0 and we assume that r > 2.

The quotient stack
rdeg(a)
Sht” /a®= J] Sht™*
d=1
has finitely many components, but is not of finite type. To study its f-adic
cohomology we will need to truncate it.

As for vector bundles on Riemann surfaces it is not difficult to define the Harder-
Narasimhan polygon of a rank r shtuka £ over an algebraically closed field £ O F;.

A subobject F of € is a pair of Opgx-submodules (F C £, F' C £') such that

e -j(F)CF and t("F) C F,

e - &/F and &'/ F' are locally free Orgx-modules of the same rank.

A subobject has a rank

rk(F) = rk(F) = rk(F")
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and, for each o € R an a-degree
deg, (F) = (1 - a) deg(F) + o deg(F).

If F and G are two subobjects of € we say that G is contained in F and we write
GC}'lfQC}'andg’C}"

Let (0) = Fo C FC C---C F, = & be a filtration by subobjects of a shtuka.
Its a-polygon is the continuous functlon

p:[0,7] > R

which vanishes at 0 and r, which is affine on the interval [rk(fj_l),rk(fj)] for
j=1,...,s, and which takes the values

p(ek(Fy) = dego (F) - ‘k(f k(%)

de ga(g)a VJ= 1: ,8— 1.

For a given o € [0,1] and a given shtuka £ the set of the a-polygons of all
the possible filtrations of £ admits a largest element pHN(€), the so-called Harder-
Narasimhan polygon of indez o of the shtuka. It is a convex function.

The o’s play a crucial role in Lafforgue’s work. But in this lecture we will
‘restrict ourself to a = 0 and simply call Harder-Narasimhan polygon the polygon

PN = pgN
We call truncation parameter any convex continuous function p : [0,7] = R>o
which vanishes at 0 and r and which is affine on each interval [i—1,¢]fori =1,... ,r.

P roposiTiON (Lafforgue [4]). — For each truncation parameter p there ezists
o unique open substack

Sht"™ P C Sht"
such that, for any algebraically closed field k D F,, we have
Sht™ <? (k) = {€ € Sht" (k) | ™ (£) < p}.
For every integer d and every truncation parameter p the open substack
Sht™% <P = Sht™? N Sht" <P
is of finite type. O

The open substacks Sht™ <P C Sht" are obviously stable under the action of the
Picard group of X. Therefore the algebraic stack Sht” /aZ is an increasing union of
open substacks of finite type

Sht™ <P /a% C Sht™ /aZ.
But none of the open substacks Sht™ =P /aZ is stable under the action of the Hecke
correspondences.

4. Lefschetz numbers

If oo and o are two closed points in X the finite subscheme co x 0 C X x X
has exactly 6(c0,0) closed points, where §(00,0) is the greatest common divisor
of deg(oo) and deg(o). For each £ € oo X o the residue field (&) is a composed
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extension of £(co) and k(0), and its degree deg(§) over Fy is thus the least common
multiple
deg(oo) deg(o
o) = Sl
of deg(oo) and deg(o).
If £ is a closed point in X x X we denote by Shtg /a% the fiber at & of the

canonical projection Sht" /a2 — X x X. It is a smooth algebraic stack of pure
dimension 2r — 2 over the finite field «(£). We denote by

Frobg : Shtf /a® — Shtf /a®
its geometric Frobenius endomorphism relative to x(§).

Let us fix g € GL,(A). Let oo and o be two closed points in X \ Ny, let £
be a closed point in 0o x o, let n be a positive integer and let p : [0,7] = R be a
truncation parameter. We denote by

ce = (c1,6,C2,¢) Sht’é(g)/aZ — Shtg /a? X x(¢) Shtg /a®
the fiber at & of the Hecke correspondence which is defined by g.
D eriniTION The Lefschetz number
Lef(g x Frob, Shty' <F /a%)

1
zy: | Aut(y)|

where y runs through the set of (isomorphism classes of) points in Shtg(g)/ aZ such
that

is the sum

c1,6(y) = Frobg (c2¢(y)) € Sht’g <P fo? Shtg /a?,
and where Aut(y) is the finite automorphism group of the fixed point y.

We say that a truncation parameter is conver enough if, foreveryi =1,... ,7-1
the slope of p on the interval [ — 1,4 is much bigger than the slope of p on the
interval [i,4 + 1].

Using Drinfeld’s adelic description of shtukas, the particular case of the
fundamental lemma proved by Drinfeld and the Arthur-Selberg trace formula,
Lafforgue has shown:

. — If deg(o0) and deg(o) are large enough with respect to g and if p is convez
enough with respect to g, the average Lefschetz number

1 r; <p
oo )EegxoLef(g x Frobg, Shtg' =7 /aZ).

is equal to the spectral ezpression

T Tralfp)gtr oo sC T ) g ) oy

TEA(K)

wr(a)=1
o) nu(oo,0
+ YT ey T Uy nioo, )5S ) (eI
1$1"<T €A II(K)
1<r''<r

where
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e - f, the characteristic function of KgK C GL,(A) and Tr.(f,) is the trace
of the operator 7(f,),

o -m— ’Itf,’f,r,, (fg,m) is a complex function of the integer m, which does not
depend on the places 0,00 € X \ N, and on the integer n, and which is of

the form

> PA(m)A™

AEA
for some finite subset A C C* and some family (P5(T})rea of polynomials
in C[T},

e - the function m — Trf,’,’,,,, (fg,m) is identically zero for all but finitely many
pairs (7', 7"’).
(Recall that
S (1) = 2, 1 ()™ + -+ + 25 o (W)™

is the m-th power sum of the Hecke eigenvalues of 7 at z.) 0O

If the open substacks Sht,’ <P JZ of Sht; /a? were stable under the action of
the Hecke operators, the main theorem would easily follows from the above result
and would have been proved many years ago.

5. Compactifications

Let the torus GI! = Spec(F, [t1,t7" ... ,tr—1,¢.2,]) act on the standard affine
space A"~ = Spec(F, [u1,... ,ur-1]) by
(t15-- - ytpe1) - (U1, e e s Upe1) = (B1ULy oo s Er1Up1).
The quotient stack [A™~1/G.!] is an Artin algebraic stack which is smooth of
dimension 0. Its closed substack
{ur+ -ur—y =0} = {u; =0} U--- U {ur—; =0} C [A""} /G !

is the union of r — 1 smooth divisors with normal crossings. The complementary
open substack

{ur -+ ur_y # 0} = [GIIY/GLY) € [A™ /GITY

is reduced to one point. For each partitionr = (r; +---+ 7, =) of r (into a sum
of positive integers) the intersection

(A7 /G5 = ({us = 0} 1 (us # 0}.
iel igl
where we have set I = {ry,r1 +ra,...,71 + -+ + 75_1}, is smooth of dimension

1 — 5. When r runs through the set of partitions of r the locally closed substacks
[AT~1 /GL] form a stratification of [A™Y/Gr!].

Let us fix a truncation parameter p which is convex enough with respect to X.
Let us also fix an integer d.

T HEOREM (Drinfeld [3] for r = 2, Lafforgue [5] for r > 3). — There ezists an
Artin algebraic stack Sht "% =" and a stack morphism
(00,0,6) : SBE "5 5 X x X x [A™1/GL7Y)
with the following properties:
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e - all the automorphisms groups of Sht ridisp

unramified),

are finite (but not necessarily

e - (00,0,€) is smooth of pure relative dimension 2r — 2 and

e <p

(00,0) = pryy x ©(c0,0,€) : Sht - XxX

(which is also smooth of pure relative dimension 2r — 2) is proper,
e - the restriction ofm over the open substack
XxX=XxXx[G'/G']cX x X x [A™ /G 1)
is nothing else than the stack morphism (00,0) : Sht™%<P 5 X x X. A

It follows from the theorem that the Artin algebraic stack Sht nhSP g proper
and smooth of pure dimension 2r, and that it contains the Deligne-Mumford
algebraic stack Sht™% <P as a dense open substack. The closed complementary
substack is the union of r — 1 divisors
s d; <p

r—1
\Shtr’d SP = U 00, 0, 5) ({ut = 0})7

=1

Sht

which are smooth with relative normal crossings over X x X.
When r runs through the set of partitions of r the locally closed substacks

r,d; <p

She, =P = (o0,0,0) (ALY /G7Y)
which are smooth of pure relative dimension 2r — 1 — s over X x X, form a
stratification of Skt "% =7,

For each partition r = (r; + --- + 7, = 1) of r we also consider the Deligne-
Mumford algebraic stack

Sht™ = Sht™ x x Sht™ X X,Frobx Sht™ X X Frobx *** X X,Frobx Sht™

which classifies l:he families (51, 52, et ,gs) of~shtukas of ranks ry,...,7s such that
the zero 01 of £ is equal to the pole ooz of & and that, for j = 2,...,s — 1, the
zero o; of &; is equal to the image by the Frobenius endomorphism Frobx of the

pole 0041 of gj+1- By construction we have a smooth morphism of pure relative
dimension 2r — 2s

(001,01 = 002,02 = Frobx(003), ... ,0s-1 = Frobx(cos),05) : Sht™ = X x X*"1x X.

Therefore Sht* is smooth of pure relative dimension 2r — s — 1 over X x X.
For each i =0,1,...,r let p(2) be the unique integer in the length 1 interval

IpG) + L~ 1,56) + Ld).

We set di = p(r1) and we denote by p; : [0,71] = R the truncation parameter
which takes the values

. e i1d .
pl(zl) =p(z1) - ']7'_—11, V’tl = 1,... ,T1 — 1.
For each j =2,...,s we set

dj =ﬁ(1‘1+'“+7‘,~_1 +Tj)—f)'(7'1+"'+’l'j-1)—1
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and we denote by p; : [0,7;] = R the truncation parameter which takes the values

, ~ , ~ ijd; .
pi(;) =p(ri+---+rjoy +i;) =plri+---+71jm1) — 1 - —f—r—_—’—, Vi;=1,...,r; =1
j
(The p;’s are essentially the normalized restrictions of p to the intervals [r; +---+

Tj—1,T1 + -+ +Tj—1 + r;]’s as in the figure below.

In particular all the p;’s are automatically convex enough with respect to X as
soon as this is the case for p.)
We define an open substack

Sht™% <P c Sht"

by requiring that, for j = 1,...,s, the degree of the shtuka g‘J is equal to d; and
its Harder-Narasimhan polygon pfN(€;) is bounded above by p;.

P rorosiTioN (Lafforgue [5]). — For each non trivial partition r of r there
ezists a canonical morphism of stacks

—r,d; < N .

She 4SSy <p
which is the composition of a gerb whose structural group is finite, flat and radicial,
and of a radicial representable morphism. A

Lafforgue calls iterated shtukas the points in Sﬂr’d; =P o each iterated shtuka
is associated a partition r = (ry,...,75) of r and a family of “small” shtukas of
ranks 7y,...,7s. Their zeros and poles 0; = 002,00 = Frobx(003),...,05—1 =
Frobx (cos) are the degenerators of the iterated shtuka. The pole 0o, and the zero
01 are the pole and the zero of the iterated shtuka.

For each partition r of r we set

—r; < =—nd; < —r; < a=ndi <
Sht, =" = [] Sht, = ¢ Sht" =" = [ St ="
dezZ dezZ
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and

Shtr; <p - H Shtr’d; <r .
deZ

These algebraic stacks are naturally equipped with an action of the Picard group
F*\A* /O* of X. In particular we may form the algebraic stack

e rdeg(a)_rd.<
Sht"=f /af= [] Sht"“>’
d=1

which is a smooth compactification of Sht™ <P /aZ over X x X. It is stratified by

the locally closed substacks Sht, ' <P /a% which are “homeomorphic” to the Deligne-
Mumford algebraic stacks Sht™ <7 /qZ.

6. r-negligible Galois representations

In this section and the next one we will forget the action of the Hecke operators
and concentrate on the Galois action on the £-adic cohomology of the shtuka moduli
varieties.

We denote by E the fraction field of F @ F' (the field of rational functions on the
surface X x X). We fix an algebraic closure E of E and an embedding ?@E F—E

over the embedding F ® F — E, where F, is the algebraic closure of F, in F.

We have thus defined a geometric point § : Spec(E) = X x X over the generic
point § = Spec(E) of X x X. The images of § by the two canonical projections
of X x X booth factors through the geometric point 7 : Spec(F) — X over the
generic point 7 of X.

The Grothendieck fundamental group m(X,7) is the quotient of I'r =
Gal(F/F) which classifies the finite extensions of F in F which are unramified
everywhere. It admits as quotient the Galois group Gal(F,/F,).

Similarly the Grothendieck fundamental group 71 (X x X,8) is a quotient of
the Galois group Gal(E/E) and admits Gal(F,/F,) as quotient.

L eMMA The homomorphism
m(X x X,8) = m(X,7) x m(X,7),

which is induced by the two canonical projections of X x X, is injective. Its image
is the group of pairs of elements v',y" € m(X,7) which have the same images in
the quotient Gal(F,/F,). A

In particular, any irreducible ¢-adic representation of m; (X x X, ) is a direct
factor of a semi-simple f-adic representation of the form

A® (' © ")
where ) is an £-adic character of m; (X x X,d) which factors through the quotient
Gal(F,/F,) = Z, and where ¢’ and 0" are two irreducible ¢-adic representations of
m1(X,7) with determinants of finite order. We may identify A to an f-adic unit (its
value at the geometric Frobenius element) and we may view the tensor product by
A as a generalized Tate twist.
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We will simply call virtual m (X x X,8)-module a formal linear combination
>, Mp[p] where p runs through the set of (isomorphism classes of) irreducible ¢-

adic representations of m1; (X x X, ) and where the m,’s are rational numbers which
are equal to 0 for all but finitely many p’s. We say that p occurs in 3°, my[p] if its

multiplicity m, is non zero. The trace of 3°, m,[p] is the function

rPpr mplp] * 7l'1(X X Xag) - @Za 0 e Zmp Tr(p(’y))

p
Any graded ¢-adic representation H* of 71 (X x X,3) defines a virtual m (X x

X, 8)-module
[H]=3"> (-1)"msl]
p v

where m} is the number of times that p occurs in any Jordan-Holder filtration of
H”.

— A (-adic representation of m (X x X,0) is said r-negligible if all its
irreducible subquotients are direct factors of £-adic representations of the form
A® (o' © 0") as above, where o' and o are both of dimension <r —1.

A wvirtual m (X x X,d)-module is said r-negligible if any p which occurs in it
is r-negligible.

We now fix a truncation<parameter which is convex enough with respect to X.
We denote by Sht? =4 'Sﬁgr' = and Sht? <P the fibers at the geometric point 3 of the

morphisms (00, 0), (00,0) and (001,0s), and we consider their ¢-adic cohomologies
H(r; < p) = H; (Sht7'=? /a%,Qy),

T <P

H'(r; <p) = H*(Shtz =" /a%,Qy),
Hy(r; < p) = H*((Bt7 ="\ Sht7 <7)/a%, Q)

and _
H:(r; < p) = HZ(ShtF <7 /a2, Q).
It follows from the results of the previous section that:

e - the natural continuous actions of the Galois group Gal(E/E) on these
£-adic cohomologies factor through the fundamental group m (X x X, 6),

e - there is a long exact sequence

- HY(r; <p) = H (r; <p) > Hy(r; <p) » B (r; <p) = -+

and a spectral sequence

E}= @ H{x<p) = HyP(r<p)
r=(T1,mr s To+2)
The virtual 7; (X x X, 8)-module
[HZ(r; < p)]
is thus equal to the virtual m; (X x X, )-module
(H(r; <p)] - Y _[H:(r; < p)]
r

where r runs through the set of non trivial partitions of r.
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7. The induction

Lafforgue proves the main theorem and the following proposition by a simulta-
neous induction on r.

P roprosiTiON (Lafforgue [6]). — For any truncation parameter p which
is convezr gnough with respect to X, the {-adic representations HY(r; < p) of
m (X x X,0) is (r + 1)-negligible for every integer v.

From now on we thus assume that the main theorem in rank < r is already
proved and that, for every truncation parameter p which is convex enough with
respect to X, every positive integer 7' < r and every integer v the m;(X x X, d)-
module HY(r'; < p) is r-negligible. \

Let p be a truncation parameter which is convex enough with respect to X
and let r = (ry,...,7s) be a partition of . Then it follows from the structure
of the stratum Sht™ <P and the Kiinneth formula that, for each integer v the ¢-
adic representation HY (r; < p) of m (X x X, 8) is r-negligible. In fact the virtual
m (X x X, 8)-module [HZ(r; < p)] is a linear combination of virtual modules of the
form

[0 ® H (F, 8, X*~1, 05210} ® 0}4,)) ® (0] © 02)] = Z ma[A® (0} © o]

where p and X are {-adic characters of Gal(F/F, ), where ¢ and o} are irreducible
{-adic representations of dimension < r; of 71(X,7) with determinants of finite
order, and where the m)’s are integers which are all zero except for finitely many
A’s.

Therefore the induction hypothesis and the spectral expression for the average
Lefschetz number

1

n r; <p Z
Y] 7, Z Lef(Frobg, Sht{ <7 /a¥).

o0 X0o
(9 = 1) given in Section 4 imply that:

P ropPosITION (i) For each integer v the kernel and the cokernel of the canonical
homomorphism

HY(r;<p)—>H (r; <p)
and the virtual m; (X x X, §)-module
(H(r; < p)] - [H; (r; < p)]

are r-negligible.

(ii) There exists a virtual m (X x X, d)-module [H, cusp(Ts < p)] such that
the difference .

(s < 2)] — 7 S [(Frob x 1dx)" H: (75 < 7))

n=1
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is r-negligible, and such that, for each pair (c0,0) of distinct closed points in X,
each closed point ¢ € 0o x 0 and each positive integer n we have
Z q(r—l)n deg(g)sgo_"dd:g"‘( oeoj )(W)Sgn%%)(ﬂ').

TEA-(K)
wx(a)=1

Tr(a;,,. (r; <p)) (Frobg) =

A
Taking into account the purity of the cohomology groups H (r; < p), which
follows from the Weil conjecture proved by Deligne, Lafforgue deduces by L-function
arguments:
COROLLARY
. — (i) All the irreducible £-adic representations of m (X x X,8) which occur
in [Heysp(r; < p)] occur with a positive multiplicity and are pure of weight 2r — 2.
Moreover none of them is r-negligible.
(ii) The £-adic representations HY (r; < p), v # 2r —2, of m (X x X, 8) and
the virtual (X x X,8)-module

* 1 = n * r—
[Hewsp(rs <)) = 3 D _[(Frob x 1dx)* HZ~(r; < p)]

n=1
are all r-negligible. A

Now it is also easy to deduce from Drinfeld’s study of the horocycles on Sht”
and the induction hypothesis that:

L emmaA For every truncation parameters p < ¢ which are convex enough with
respect to X the kernel and the cokernel of the canonical homomorphism

HZ2(r; <p) » HX*(r; < q)

are r-negligible. A

Therefore the direct limit

HZr=%(r) = lim HZ""?(r; < p) = HZ"~*(Sht} /a?),
)

which is an infinite dimensional representation of m; (X x X,3), has the following
property:

. — There ezists a unique finite filtration

F*=(0)=FCcF' CF*C- CF* P c...C FT = H*(r))
such that: '

e - for any non negative integer u such that 2u+ 1 < T, F?u+1/F2 s the

sum of all the finite dimensional £-adic subrepresentations of H2"~2(r)/F?
which are r-negligible,

e - for any non negative integer u such that 2u +2 < T, F2u+2 |F2u+l s the
sum of all the finite dimensional £-adic subrepresentations of H2™~2(r)/F2ut!
which do not admit any r-negligible subquotient,

o - if p a truncation parameter which is conver enough with respect to X and
if we denote by F*(< p) the filtration on H* ~2(r; < p) which is induced by
F* then, for any non negative integer u the embedding

F2u+2(_<_ p)/F2u+1(S p) o F‘2u+2/F2u+1
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is an isomorphism. A

We have thus proved:
P roposiTiON The direct sum
H2'r—2 = @ F2u+2/F2u+1

cusp
u>0

is a finite dimensional ¢-adic representation of 7 (X x X, 8) and, for any truncation
parameter which is convex enough with respect to X we have the equality of virtual
71(X x X, 6)-modules

[Heup(r; < 9)] = [HaG):

8. A fixed point formula

Let us now consider again the action of the Hecke operators. They act on
H2=%(r) = H2~%(Sht} /a®) and they necessarily stabilize the above canonical
filtration F'*. Therefore they also act on the finite dimensional ¢-adic representation
HZ52 of m(X x X,8).

To finish the induction on r, at least for the everywhere unramified represen-
tations, Lafforgue proves:

— For each g € GL.(A), each pair (o0, 0) of distinct closed points in X \ Ny,
each closed point £ € oo x o and each positive integer n we have the equality of
traces

- deg(€ nde 3
Trgsza(g X Frob) = 3 Tra(fy)qmese(® s{ 88 ) ) 5 (586 .

mEAA(K)

wr(a)=1
C ororLary For each m € A,.(K) such that wr(a) = 1 there exists an
everywhere unramified Galois representation o(m) € G, such that Lg(m,s) =
L, (o(m),s) for all but finitely many places z. A

Remark : In fact, we have L,(m,s) = Lz(o(w), s) for all places z, and we have
the equality of virtual modules over Hg x m (X x X, 6)

[HZZ = D [ O (m)Y @)~
r€A(K)
wx(a)=1
where Hg = ex *H xex is the commutative algebra of K-biinvariant functions with
‘compact support on GL,.(A) and 7¥ = 7 * ex is the one dimensional H x-module
associated with the everywhere unramified H-module . A

The proof of the proposition is based on the following variant of a conjecture
of Deligne on the Grothendieck-Lefschetz trace formula, in the way it has been
formulated and proved by Pink ([8]).

Let & D F, be a finite field and k be an algebraic closure of k. We simply
denote _
H*(S) = H"(k ®x S,Qy)
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the ¢-adic cohomology of a separated scheme of finite type S over k. The Galois
group Gal(k/k) acts on H*(S) and we denote by Frob, the endomorphism of H*(S)
which is induced by the geometric Frobenius element in Gal(k/«).

Let S be a proper and smooth scheme of pure dimension d over k and U C S
be a dense open subset. We denote by Frobgs : S — S the Frobenius endomorphism
with respect to k, and by Froby : U — U its restriction to U

Let cy = (cui,cuz2) : V = U x, U be a finite morphism. We assume that
cyy iV = U is etale, so that V is also smooth of pure relative dimension d over .
For any positive integer n we consider the Lefschetz number

Lef(cy x Froby) = |{t € V | c1(t) = Froby(e2(t))}H-

If U = S this Lefschetz number admits a well known cohomological interpre-
tation. The generalized codimension d cycle ¢y : V = U x, U has a cohomology
class [cy] € H?4(U x, U)(d). Moreover, by Poincaré duality any class z in

2d 2d
H*(U x, U)(d) = D H'(U) &5, H**7*(U)(d) = P H'(U) ®g, (H'V))"
=0 =0

may be viewed as an endomorphism of H*(U).
. — If U = S then, for any positive integer n we have the Lefschetz trace
formula

Lef(cU X Frob?,) = TI.'H~(5)([CU] X Frobz).
A

If U ¢ S we may extend cy to a finite morphism ¢ = (¢1,¢2) : T — S %, S by
normalizing S xS in V. The k-scheme T is normal, proper and of pure dimension
d. The morphism ¢; : T — S is generically finite and proper, but it is not necessarily
finite.

We view c as a geometric correspondence on S. Its fixed point set is the closed
subset

Fix(c) = {t € T | c1(t) = c2(2)}
of T'. More generally, for each non negative integer n we set

Fix(c x Frob%) = {t € T | c1(t) = Frob%(cz(2))} € T.

D eriNiTION We say that the correspondence c stabilizes U C S in a neigh-
borhood of its fixed points if there exists an open subset W C T containing
Unso Fix(c x Frobg) such that

c(cTHUYNW) C U.

. — Let us assume that U is the complementary open subset in S of a divisor
with normal crossings which is the union of a finite family (S;)ica of smooth
divisors. For each I C A let us set _

Sr=()S5:
i€l
(By hypothesis Sy is proper and smooth of dimension d — |I| over k.)

Then, if c stabilizes U C S in a neighborhood of its fized points there ezist a
positive integer ng and cohomology classes

zr € H¥ID(S; %, $7)(d - - 7)), VO£ I C A,
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such that, for any integer n > ng we have the Lefschetz trace formula

Lef(cy x Frobyy) = Trg(s)([c] x Frob?) + Y (=) Trg. (s, (21 x Frob}).

Ica
I#0

Moreover, if (S,U,c) varies in an algebraic family which satisfies the obvious
relative variant of the above hypotheses, the integer no and the cohomology classes
z1 can be chosen in a uniform way. A

The hypotheses of the theorem are satisfied by the Hecke correspondences.
More precisely let us fix g € GL.(A) and let { be a “general enough” closed point
in X x X. Let us take

S =Shty =" ja? D U = St} < /a®

and
V = c; 1 (Sht{ =P /a% x ¢y Sht{'=? /%) C Shtg(g)/a”.
T HEOREM (Drinfeld [3] for » = 2; Lafforgue [6] for r > 3). — The
correspondence T — S X, S which is obtained by normalizing S xS in V stabilizes
U C S in a neighborhood of its fized points. A
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