On the *p*-part of the Birch–Swinnerton-Dyer formula for multiplicative primes*

Francesc Castella

Let E/\mathbf{Q} be a semistable elliptic curve of analytic rank one, and let p>3 be a prime for which E[p] is irreducible. In this note, following a slight modification of the methods of [JSW17], we use Iwasawa theory to establish the p-part of the Birch and Swinnerton-Dyer formula for E. In particular, we extend the main result of loc.cit. to primes of multiplicative reduction.

1. Introduction

Let E/\mathbf{Q} be a semistable elliptic curve of conductor N, and let L(E,s) be the Hasse–Weil L-function of E. By the celebrated work of Wiles [Wil95] and Taylor–Wiles [TW95], L(E,s) is known to admit analytic continuation to the entire complex plane, and to satisfy a functional equation relating its values at s and 2-s. The purpose of this note is to prove the following result towards the Birch and Swinnerton-Dyer formula for E.

Theorem A. Let E/\mathbf{Q} be a semistable elliptic curve of conductor N with $\operatorname{ord}_{s=1}L(E,s)=1$, and let p>3 be a prime such that the mod p Galois representation

$$\bar{\rho}_{E,p}: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow \operatorname{Aut}_{\mathbf{F}_p}(E[p])$$

is irreducible. If $p \mid N$, assume in addition that E[p] is ramified at some prime $q \neq p$. Then

$$\operatorname{ord}_p\left(\frac{L'(E,1)}{\operatorname{Reg}(E/\mathbf{Q})\cdot\Omega_E}\right) = \operatorname{ord}_p\left(\#\operatorname{III}(E/\mathbf{Q})\prod_{\ell\mid N}c_\ell(E/\mathbf{Q})\right),$$

where

^{*}This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 682152).

- Reg (E/\mathbf{Q}) is the discriminant of the Néron-Tate height pairing on $E(\mathbf{Q}) \otimes \mathbf{R}$;
- Ω_E is the real Néron period of E;
- $\coprod(E/\mathbf{Q})$ is the Tate-Shafarevich group of E; and
- $c_{\ell}(E/\mathbf{Q})$ is the Tamagawa number of E at the prime ℓ .

In other words, the p-part of the Birch and Swinnerton-Dyer formula holds for E.

When p is a prime of good reduction for E, Theorem A (in the stated level of generality) was first established by Jetchev–Skinner–Wan [JSW17]. (One should note that [JSW17, Thm. 1.2.1] also allows p=3 provided E has good supersingular reduction at p, the assumption $a_3(E)=0$ having been removed in a recent work by Sprung [Spr16, Cor. 1.3]; cf. [CÇSS17, Thm. C].) Earlier results in the p-ordinary case were obtained by W. Zhang [Zha14, Thm. 10.2] and by Berti–Bertolini–Venerucci [BBV16, Thm. A]. For primes $p \mid N$, some particular cases of Theorem A were first proved by Skinner–Zhang (see [SZ14, Thm. 1.1]) under further hypotheses on N and, in the case of split multiplicative reduction, on the L-invariant of E. Thus the main novelty in Theorem A is for primes $p \mid N$.

Similarly as in [JSW17], our proof of Theorem A uses anticyclotomic Iwasawa theory. In order to clarify the relation between the arguments in loc.cit. and the arguments in this paper, let us recall that the proof of [JSW17, Thm. 1.2.1] (for primes $p \nmid N$) is naturally divided into two steps:

1. Exact lower bound on the predicted $\#\mathrm{III}(E/\mathbf{Q})[p^{\infty}]$. For this part of the argument, in [JSW17] one chooses a suitable imaginary quadratic field $K_1 = \mathbf{Q}(\sqrt{D_1})$ with $L(E^{D_1}, 1) \neq 0$; combined with the hypothesis that E has analytic rank one, it follows that $E(K_1)$ has rank one and that $\#\mathrm{III}(E/K_1) < \infty$ by the work of Gross-Zagier and Kolyvagin. The lower bound

$$\operatorname{ord}_{p}(\# \coprod (E/K_{1})[p^{\infty}]) \geqslant 2 \cdot \operatorname{ord}_{p}([E(K_{1}) : \mathbf{Z}.P_{K_{1}}])$$

$$- \sum_{\substack{w \mid N^{+} \\ w \text{ split}}} \operatorname{ord}_{p}(c_{w}(E/K_{1})),$$

where $P_{K_1} \in E(K_1)$ is a Heegner point, $c_w(E/K_1)$ is the Tamagawa number of E/K_1 at w, and N^+ is the product of the prime factors of N that are either split or ramified in K_1 , is then established by combining:

(1.a) A Mazur control theorem proved "à la Greenberg" [Gre99] for an anticyclotomic Selmer group $X_{\rm ac}(E[p^{\infty}])$ attached to E/K_1 ([JSW17, Thm. 3.3.1]);

(1.b) The proof by Xin Wan [Wan14a], [Wan14b] of one of the divisibilities predicted by the Iwasawa–Greenberg Main Conjecture for $X_{\rm ac}(E[p^{\infty}])$, namely the divisibility

$$Ch_{\Lambda}(X_{\mathrm{ac}}(E[p^{\infty}]))\Lambda_{R_0} \subseteq (L_p(f))$$

where $f = \sum_{n=1}^{\infty} a_n q^n$ is the weight 2 newform associated with E, Λ_{R_0} is a scalar extension of the anticyclotomic Iwasawa algebra Λ for K_1 , and $L_p(f) \in \Lambda_{R_0}$ is an anticyclotomic p-adic L-function;

(1.c) The "p-adic Waldspurger formula" of Bertolini–Darmon–Prasanna [BDP13] (as extended by Brooks [HB15] to indefinite Shimura curves):

$$L_p(f, \mathbb{1}) = (1 - a_p p^{-1} + p^{-1})^2 \cdot (\log_{\omega_p} P_{K_1})^2$$

relating the value of $L_p(f)$ at the trivial character to the formal group logarithm of the Heegner point P_{K_1} .

When combined with the known p-part of the Birch–Swinnerton-Dyer formula for the quadratic twist E^{D_1}/\mathbf{Q} (being of analytic rank zero, this follows from [SU14] and [Wan14c]), inequality (1.1) easily yields the exact lower bound for $\#\mathrm{III}(E/\mathbf{Q})[p^{\infty}]$ predicted by the BSD conjecture.

2. Exact upper bound on the predicted $\# \mathrm{III}(E/\mathbf{Q})[p^{\infty}]$. For the second part of the argument, in [JSW17] one chooses an imaginary quadratic field $K_2 = \mathbf{Q}(\sqrt{D_2})$ (in general different from K_1) with $L(E^{D_2}, 1) \neq 0$. Crucially, K_2 is chosen so that the associated N^+ (the product of the prime factors of N that are either split or ramified in K_2) is as small as possible in a certain sense; this ensures optimality of the upper bound provided by Kolyvagin's methods:

(1.2)
$$\operatorname{ord}_{p}(\# \coprod (E/K_{2})[p^{\infty}]) \leq 2 \cdot \operatorname{ord}([E(K_{2}) : \mathbf{Z}.P_{K_{2}}]),$$

where $P_{K_2} \in E(K_2)$ is a Heegner point coming from a parametrization of E by a Shimura curve attached to an indefinite quaternion algebra (which is nonsplit unless N is prime). Combined with the general Gross–Zagier formula [YZZ13] and the p-part of the Birch and Swinnerton-Dyer formula for E^{D_2}/\mathbf{Q} , inequality (1.2) then yields the predicted optimal upper bound for $\#\mathrm{III}(E/\mathbf{Q})[p^{\infty}]$.

Our proof of Theorem A dispenses with part (2) of the above argument; in particular, it only requires the use of classical modular parametrizations

of E. Indeed, if K is an imaginary quadratic field satisfying the following hypotheses relative to the square-free integer N:

- every prime factor of N is either split or ramified in K;
- there is at least one prime $q \mid N$ nonsplit in K;
- p splits in K,

in [Cas17c] (for good ordinary p) and [CW17] (for good supersingular p) we have completed under mild hypotheses the proof of the Iwasawa–Greenberg main conjecture for the associated $X_{ac}(E[p^{\infty}])$:

$$(1.3) Ch_{\Lambda}(X_{\rm ac}(E[p^{\infty}]))\Lambda_{R_0} = (L_p(f)).$$

With this result in hand, a simplified form (since $N^- = 1$ here) of the arguments from [JSW17] in part (1) above lead to an *equality* in (1.1) taking $K_1 = K$, and so to the predicted order of $\coprod (E/\mathbb{Q})[p^{\infty}]$ when $p \nmid N$.

To treat the primes $p \mid N$ of multiplicative reduction for E (which, as already noted, is the only new content of Theorem A), we use Hida theory. Indeed, if a_p is the U_p -eigenvalue of f for such p, we know that $a_p \in \{\pm 1\}$, so in particular f is ordinary at p. Let $\mathbf{f} \in \mathbb{I}[[q]]$ be the Hida family associated with f, where \mathbb{I} is a certain finite flat extension of the one-variable Iwasawa algebra. In Section 4, we deduce from [Cas17c] and [Wan14a] a proof of a two-variable analog of the Iwasawa–Greenberg main conjecture (1.3) over the Hida family:

$$Ch_{\Lambda_{\mathbb{I}}}(X_{\mathrm{ac}}(A_{\mathbf{f}}))\Lambda_{\mathbb{I},R_{0}}=(L_{p}(\mathbf{f})),$$

where $L_p(\mathbf{f}) \in \Lambda_{\mathbb{I},R_0}$ is the two-variable anticyclotomic p-adic L-function introduced in [Cas17b]. By construction, $L_p(\mathbf{f})$ specializes to $L_p(f)$ in weight 2, and by a control theorem for the Hida variable, the characteristic ideal of $X_{\rm ac}(A_{\mathbf{f}})$ similarly specializes to $Ch_{\Lambda}(X_{\rm ac}(E[p^{\infty}]))$, yielding a proof of the Iwasawa–Greenberg main conjecture (1.3) in the multiplicative reduction case. Combined with the anticyclotomic control theorem of (1.a) and the generalization (contained in [Cas17a]) of the p-adic Waldspurger formula in (1.c) to multiplicative primes:

$$L_p(f, 1) = (1 - a_p p^{-1})^2 \cdot (\log_{\omega_E} P_K)^2,$$

we arrive at the predicted formula for $\# \coprod (E/\mathbf{Q})[p^{\infty}]$ just as in the good reduction case.

Acknowledgements

As will be clear to the reader, this note borrows many ideas and arguments from [JSW17]. It is a pleasure to thank Chris Skinner for several useful conversations.

2. Selmer groups

2.1. Definitions

Let E/\mathbf{Q} be a semistable elliptic curve of conductor N, and let $p \ge 5$ be a prime such that the mod p Galois representations

$$\bar{\rho}_{E,p}: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow \operatorname{Aut}_{\mathbf{F}_p}(E[p])$$

is irreducible. Let $T = T_p(E)$ be the *p*-adic Tate module of E, and set $V = T \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$.

Let K be an imaginary quadratic field in which $p = \mathfrak{p}\overline{\mathfrak{p}}$ splits, and for every place w of K define the anticyclotomic local condition $H^1_{\mathrm{ac}}(K_w, V) \subseteq H^1(K_w, V)$ by

$$H_{\mathrm{ac}}^{1}(K_{w},V) := \begin{cases} H^{1}(K_{\overline{\mathfrak{p}}},V) & \text{if } w = \overline{\mathfrak{p}}; \\ 0 & \text{if } w = \mathfrak{p}; \\ H_{\mathrm{ur}}^{1}(K_{w},V) & \text{if } w \nmid p, \end{cases}$$

where $H^1_{\mathrm{ur}}(K_w, V) := \ker\{H^1(K_w, V) \to H^1(I_w, V)\}$ is the unramified part of cohomology.

Definition 2.1. The anticyclotomic Selmer group for E is

$$H^1_{\mathrm{ac}}(K, E[p^\infty]) := \ker \bigg\{ H^1(K, E[p^\infty]) \longrightarrow \prod_w \frac{H^1(K_w, E[p^\infty])}{H^1_{\mathrm{ac}}(K_w, E[p^\infty])} \bigg\},$$

where $H^1_{\mathrm{ac}}(K_w, E[p^{\infty}]) \subseteq H^1(K_w, E[p^{\infty}])$ is the image of $H^1_{\mathrm{ac}}(K_w, V)$ under the natural map $H^1(K_w, V) \to H^1(K_w, V/T) \simeq H^1(K_w, E[p^{\infty}])$.

Let $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ be the Galois group of the anticyclotomic \mathbf{Z}_p -extension of K, and let $\Lambda = \mathbf{Z}_p[[\Gamma]]$ be the anticyclotomic Iwasawa algebra. Consider the Λ -module

$$M:=T\otimes_{\mathbf{Z}_p}\Lambda^*,$$

where $\Lambda^* = \operatorname{Hom}_{\operatorname{cont}}(\Lambda, \mathbf{Q}_p/\mathbf{Z}_p)$ is the Pontrjagin dual of $\Lambda^{\operatorname{ac}}$. Letting $\rho_{E,p}$ denote the natural action of $G_K := \operatorname{Gal}(\overline{\mathbf{Q}}/K)$ on T, the G_K -action on M is given by $\rho_{E,p} \otimes \Psi^{-1}$, where Ψ is the composite character $G_K \twoheadrightarrow \Gamma \hookrightarrow \Lambda^{\times}$.

Definition 2.2. The anticyclotomic Selmer group for E over $K_{\infty}^{\rm ac}/K$ is defined by

$$\mathrm{Sel}_{\mathfrak{p}}(K_{\infty}, E[p^{\infty}]) := \ker \bigg\{ H^{1}(K, M) \longrightarrow H^{1}(K_{\mathfrak{p}}, M) \oplus \prod_{w \nmid p} H^{1}(K_{w}, M) \bigg\}.$$

More generally, for any given finite set Σ of places $w \nmid p$ of K, define the " Σ -imprimitive" Selmer group $\operatorname{Sel}_{\mathfrak{p}}^{\Sigma}(K_{\infty}, E[p^{\infty}])$ by dropping the summands $H^{1}(K_{w}, M)$ for the places $w \in \Sigma$ in the above definition. Set

$$X_{\mathrm{ac}}^{\Sigma}(E[p^{\infty}]) := \mathrm{Hom}_{\mathbf{Z}_p}(\mathrm{Sel}_{\mathfrak{p}}^{\Sigma}(K_{\infty}, E[p^{\infty}]), \mathbf{Q}_p/\mathbf{Z}_p),$$

which is easily shown to be a finitely generated Λ -module.

2.2. Control theorems

Let E, p, and K be an in the preceding section, and let N^+ denote the product of the prime factors of N which are split in K.

Anticyclotomic Control Theorem. Denote by \hat{E} the formal group of E, and let

$$\log_{\omega_E} : E(\mathbf{Q}_p) \longrightarrow \mathbf{Z}_p$$

the formal group logarithm attached to a fixed invariant differential ω_E on \hat{E} . Letting $\gamma \in \Gamma$ be a fixed topological generator, we identify the one-variable power series ring $\mathbf{Z}_p[[T]]$ with the Iwasawa algebra $\Lambda = \mathbf{Z}_p[[\Gamma]]$ by sending $1 + T \mapsto \gamma$.

Theorem 2.3. Let Σ be any set of places of K not dividing p, and assume that $\operatorname{rank}_{\mathbf{Z}}(E(K)) = 1$ and that $\# \coprod (E/K)[p^{\infty}] < \infty$. Then $X_{\operatorname{ac}}^{\Sigma}(E[p^{\infty}])$ is Λ -torsion, and letting $f_{\operatorname{ac}}^{\Sigma}(T) \in \Lambda$ be a generator of $\operatorname{Ch}_{\Lambda}(X_{\operatorname{ac}}^{\Sigma}(E[p^{\infty}]))$, we have

$$\#\mathbf{Z}_{p}/f_{\mathrm{ac}}^{\Sigma}(0) = \#\mathrm{III}(E/K)[p^{\infty}] \cdot \left(\frac{\#\mathbf{Z}_{p}/((1-a_{p}p^{-1}+\varepsilon_{p})\log_{\omega_{E}}P)}{[E(K)\otimes\mathbf{Z}_{p}:\mathbf{Z}_{p}.P]}\right)^{2}$$
$$\times \prod_{\substack{w|N^{+}\\w\notin\Sigma}} c_{w}(E/K)_{p} \cdot \prod_{w\in\Sigma} \#H^{1}(K_{w},E[p^{\infty}]),$$

where $\varepsilon_p = p^{-1}$ if $p \nmid N$ and $\varepsilon_p = 0$ otherwise, $P \in E(K)$ is any point of infinite order, and $c_w(E/K)_p$ is the p-part of the Tamagawa number of E/K at w.

Proof. As we are going to show, this follows easily from the "Anticyclotomic Control Theorem" established in [JSW17, §3.3]. The hypotheses imply that $\operatorname{corank}_{\mathbf{Z}_p} \operatorname{Sel}(K, E[p^{\infty}]) = 1$ and that the natural map

$$E(K) \otimes \mathbf{Q}_p/\mathbf{Z}_p \longrightarrow E(K_w) \otimes \mathbf{Q}_p/\mathbf{Z}_p$$

is surjective for all $w \mid p$. By [JSW17, Prop. 3.2.1] it follows that $H^1_{ac}(K, E[p^{\infty}])$ is finite with

$$(2.1) #H1ac(K, E[p∞]) = #III(E/K)[p∞] \cdot \frac{[E(Kp)/tors \otimes \mathbf{Z}_p : \mathbf{Z}_p.P]^2}{[E(K) \otimes \mathbf{Z}_p : \mathbf{Z}_p.P]^2},$$

where $E(K_{\mathfrak{p}})_{/\text{tors}} := E(K_{\mathfrak{p}})/E(K_{\mathfrak{p}})_{\text{tors}}$ is the quotient $E(K_{\mathfrak{p}})$ by its maximal torsion submodule, and $P \in E(K)$ is any point of infinite order. If $p \nmid N$, then

(2.2)
$$[E(K_{\mathfrak{p}})_{/\text{tors}} \otimes \mathbf{Z}_p : \mathbf{Z}_p.P] = \frac{\#\mathbf{Z}_p/((\frac{1-a_p+p}{p})\log_{\omega_E} P)}{\#H^0(K_{\mathfrak{p}}, E[p^{\infty}])}$$

as shown in [JSW17, §3.5], and substituting (2.2) into (2.1) we arrive at

$$#H_{ac}^{1}(K, E[p^{\infty}])$$

$$= #III(E/K)[p^{\infty}] \cdot \left(\frac{\#\mathbf{Z}_{p}/((\frac{1-a_{p}+p}{p})\log_{\omega_{E}}P)}{[E(K) \otimes \mathbf{Z}_{n} : \mathbf{Z}_{n}.P] \cdot \#H^{0}(K_{n}, E[p^{\infty}])}\right)^{2},$$

from where the result follows immediately by [JSW17, Thm. 3.3.1].

Suppose now that $p \mid N$. Let $\tilde{E}_{ns}(\mathbf{F}_p)$ be the group on nonsingular points on the reduction of E modulo p, let $E_0(K_{\mathfrak{p}})$ be the inverse image of $\tilde{E}_{ns}(\mathbf{F}_p)$ under the reduction map, and let $E_1(K_{\mathfrak{p}})$ be defined by the exactness of the sequence

$$(2.3) 0 \longrightarrow E_1(K_{\mathfrak{p}}) \longrightarrow E_0(K_{\mathfrak{p}}) \longrightarrow \tilde{E}_{\rm ns}(\mathbf{F}_p) \longrightarrow 0.$$

The formal group logarithm defines an injective homomorphism

$$\log_{\omega_E}: E(K_{\mathfrak{p}})_{/\mathrm{tor}} \otimes \mathbf{Z}_p \longrightarrow \mathbf{Z}_p$$

mapping $E_1(K_{\mathfrak{p}})$ isomorphically onto $p\mathbf{Z}_p$, and hence we see that

$$[E(K_{\mathfrak{p}})_{/\text{tors}} \otimes \mathbf{Z}_{p} : \mathbf{Z}_{p}.P] = \frac{\#\mathbf{Z}_{p}/(\log_{\omega_{E}} P)}{\#\mathbf{Z}_{p}/(\log_{\omega_{E}} (E(K_{\mathfrak{p}})_{/\text{tors}} \otimes \mathbf{Z}_{p}))}$$

$$= \frac{\#\mathbf{Z}_{p}/(\log_{\omega_{E}} P) \cdot \#(E(K_{\mathfrak{p}})/E_{1}(K_{\mathfrak{p}}) \otimes \mathbf{Z}_{p})}{\#\mathbf{Z}_{p}/p\mathbf{Z} \cdot \#(E(K_{\mathfrak{p}})_{\text{tors}} \otimes \mathbf{Z}_{p})}$$

$$= [E(K_{\mathfrak{p}}) : E_{0}(K_{\mathfrak{p}})]_{p} \cdot \frac{\#\mathbf{Z}_{p}/(\log_{\omega_{E}} P) \cdot \#(E_{0}(K_{\mathfrak{p}})/E_{1}(K_{\mathfrak{p}}) \otimes \mathbf{Z}_{p})}{\#\mathbf{Z}_{p}/p\mathbf{Z}_{p} \cdot \#(E(K_{\mathfrak{p}})_{\text{tors}} \otimes \mathbf{Z}_{p})},$$

where in the second equality $[E(K_{\mathfrak{p}}): E_0(K_{\mathfrak{p}})]_p$ denotes the *p*-part of the index $[E(K_{\mathfrak{p}}): E_0(K_{\mathfrak{p}})]$. By (2.3), we have

$$E_0(K_{\mathfrak{p}})/E_1(K_{\mathfrak{p}})\otimes \mathbf{Z}_p\simeq \tilde{E}_{\mathrm{ns}}(\mathbf{F}_p)\otimes \mathbf{Z}_p,$$

which is trivial by e.g. [Sil94, Prop. 5.1] (and p > 2). Since clearly $E(K_{\mathfrak{p}})_{\text{tors}} \otimes \mathbf{Z}_p = H^0(K_{\mathfrak{p}}, E[p^{\infty}])$, we thus conclude that

$$(2.4) \quad [E(K_{\mathfrak{p}})_{/\text{tors}} \otimes \mathbf{Z}_p : \mathbf{Z}_p.P] = [E(K_{\mathfrak{p}}) : E_0(K_{\mathfrak{p}})]_p \cdot \frac{\#\mathbf{Z}/(\frac{1}{p}\log_{\omega_E}P)}{\#H^0(K_{\mathfrak{p}}, E[p^{\infty}])},$$

and substituting (2.4) into (2.1) we arrive at

$$\begin{split} &\#H^1_{\mathrm{ac}}(K, E[p^\infty]) \\ &= \#\mathrm{III}(E/K)[p^\infty] \cdot \left(\frac{[E(K_{\mathfrak{p}}) : E_0(K_{\mathfrak{p}})]_p \cdot \#\mathbf{Z}_p/(\frac{1}{p}\log_{\omega_E}P)}{[E(K) \otimes \mathbf{Z}_p : \mathbf{Z}_p.P] \cdot \#H^0(K_{\mathfrak{p}}, E[p^\infty])}\right)^2. \end{split}$$

Plugging this formula for $\#H^1_{\rm ac}(K, E[p^{\infty}])$ into [JSW17, Thm. 3.3.1] yields the equality

$$(2.5) \begin{array}{l} \# \mathbf{Z}_{p} / f_{\mathrm{ac}}^{\Sigma}(0) \\ = \# \mathrm{III}(E/K)[p^{\infty}] \cdot \left(\frac{\# \mathbf{Z}_{p} / (\frac{1}{p} \log_{\omega_{E}} P)}{[E(K) \otimes \mathbf{Z}_{p} : \mathbf{Z}_{p} . P]}\right)^{2} \cdot [E(K_{\mathfrak{p}}) : E_{0}(K_{\mathfrak{p}})]_{p}^{2} \\ \times \prod_{\substack{w \in S \setminus \Sigma \\ w \text{in split}}} \# H_{\mathrm{ur}}^{1}(K_{w}, E[p^{\infty}]) \cdot \prod_{\substack{w \in \Sigma}} \# H^{1}(K_{w}, E[p^{\infty}]), \end{array}$$

where S is any finite set of places of K containing Σ and the primes above N. Now, if $w \mid p$, then

(2.6)
$$[E(K_{\mathfrak{p}}) : E_0(K_{\mathfrak{p}})]_p = c_w(E/K)_p$$

by definition, while if $w \nmid p$, then

(2.7)
$$#H^1_{ur}(K_w, E[p^\infty]) = c_w(E/K)_p$$

by [SZ14, Lem. 9.1]. Since $c_w(E/K)_p = 1$ unless $w \mid N$, substituting (2.6) and (2.7) into (2.5), the proof of Theorem 2.3 follows.

Control Theorem for Greenberg Selmer groups. Let $\Lambda_W = \mathbf{Z}_p[[W]]$ be the one-variable power series ring in the indeterminate W. Let M be an integer prime to p, let χ be a Dirichlet character modulo pM, and let

$$\mathbf{f} = \sum_{n=1}^{\infty} \mathbf{a}_n q^n \in \mathbb{I}[[q]]$$

be an ordinary \mathbb{I} -adic cusp eigenform of tame level M and character χ (as defined in [SU14, §3.3.9]) defined over a local reduced finite integral extension \mathbb{I}/Λ_W .

Let $\mathcal{X}^a_{\mathbb{I}}$ the set of continuous \mathbf{Z}_p -algebra homomorphisms $\phi: \mathbb{I} \to \overline{\mathbf{Q}}_p$ whose composition with the structural map $\Lambda_W \to \mathbb{I}$ is given by $\phi(1+W) = (1+p)^{k_{\phi}-2}$ for some integer $k_{\phi} \in \mathbf{Z}_{\geqslant 2}$ called the weight of ϕ . Then for all $\phi \in \mathcal{X}^a_{\mathbb{I}}$ we have

$$\mathbf{f}_{\phi} = \sum_{n=1}^{\infty} \phi(\mathbf{a}_n) q^n \in S_{k_{\phi}}(\Gamma_0(pM), \chi \omega^{2-k_{\phi}}),$$

where ω is the Teichmüller character. We shall only need consider the case where χ is the trivial character, in which case for all $\phi \in \mathcal{X}^a_{\mathbb{I}}$ of weight $k_{\phi} \equiv 2 \pmod{p-1}$, either

- (1) \mathbf{f}_{ϕ} is a newform on $\Gamma_0(pM)$; or
- (2) \mathbf{f}_{ϕ} is the *p*-stabilization of a *p*-ordinary newform on $\Gamma_0(M)$.

As is well-known, for weights $k_{\phi} > 2$ only case (2) is possible, but for $k_{\phi} = 2$ both cases occur.

Let $k_{\mathbb{I}}$ be the residue field of \mathbb{I} , and assume that the residual Galois representation

$$\bar{\rho}_{\mathbf{f}}: G_{\mathbf{Q}} := \mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow \mathrm{GL}_2(k_{\mathbb{I}})$$

attached to **f** is irreducible. Then there exists a free \mathbb{I} -module $T_{\mathbf{f}}$ of rank two equipped with a continuous \mathbb{I} -linear action of $G_{\mathbf{Q}}$ such that, for all $\phi \in \mathcal{X}^a_{\mathbb{I}}$, there is a canonical $G_{\mathbf{Q}}$ -isomorphism

$$T_{\mathbf{f}} \otimes_{\mathbb{I}} \phi(\mathbb{I}) \simeq T_{\mathbf{f}_{\phi}},$$

where $T_{\mathbf{f}_{\phi}}$ is a $G_{\mathbf{Q}}$ -stable lattice in the Galois representation $V_{\mathbf{f}_{\phi}}$ associated with \mathbf{f}_{ϕ} . (Here, $T_{\mathbf{f}}$ corresponds to the Galois representation $M(\mathbf{f})^*$ in [KLZ17, Def. 7.2.5]; in particular, for $k_{\phi} \equiv 2 \pmod{p-1}$ we have $\det(V_{\mathbf{f}_{\phi}}) = \epsilon^{k_{\phi}-1}$, where $\epsilon : G_{\mathbf{Q}} \to \mathbf{Z}_{p}^{\times}$ is the p-adic cyclotomic character.)

Let $\Lambda_{\mathbb{I}} := \mathbb{I}[[\Gamma]]$ be the anticyclotomic Iwasawa algebra over \mathbb{I} , and consider the $\Lambda_{\mathbb{I}}$ -module

$$M_{\mathbf{f}} := T_{\mathbf{f}} \otimes_{\mathbb{I}} \Lambda_{\mathbb{I}}^*,$$

where $\Lambda_{\mathbb{I}}^* = \operatorname{Hom}_{\operatorname{cont}}(\Lambda_{\mathbb{I}}, \mathbf{Q}_p/\mathbf{Z}_p)$ is the Pontrjagin dual of $\Lambda_{\mathbb{I}}$. This is equipped with a natural G_K -action defined similarly as for the Λ -module $M = T \otimes_{\mathbf{Z}_p} \Lambda^*$ introduced in §2.1.

Definition 2.4. The Greenberg Selmer group of E over K_{∞}/K is

$$\mathfrak{Sel}_{\mathrm{Gr}}(K_{\infty},E[p^{\infty}]):=\mathrm{ker}\bigg\{H^{1}(K,M)\longrightarrow H^{1}(I_{\mathfrak{p}},M)\oplus \prod_{w\nmid p}H^{1}(I_{w},M)\bigg\}.$$

The Greenberg Selmer group $\mathfrak{Sel}_{Gr}(K_{\infty}, A_{\mathbf{f}})$ for \mathbf{f} over K_{∞}/K , where $A_{\mathbf{f}} := T_{\mathbf{f}} \otimes_{\mathbb{I}} \mathbb{I}^*$, is defined by replacing M by $M_{\mathbf{f}}$ in the above definition.

Similarly as for the Selmer groups introduced in §2.1, for any given finite set Σ of places $w \nmid p$ of K, the Σ -imprimitive Selmer groups $\mathfrak{Sel}_{\mathrm{Gr}}^{\Sigma}(K_{\infty}, E[p^{\infty}])$ and $\mathfrak{Sel}_{\mathrm{Gr}}^{\Sigma}(K_{\infty}, A_{\mathbf{f}})$ are defined by dropping the summands $H^1(I_w, M)$ and $H^1(I_w, M_{\mathbf{f}})$ for the places $w \in \Sigma$ in the above definition. Let

$$X_{\mathrm{Gr}}^{\Sigma}(E[p^{\infty}]) := \mathrm{Hom}_{\mathrm{cont}}(\mathfrak{Sel}_{\mathrm{Gr}}^{\Sigma}(K_{\infty}, E[p^{\infty}]), \mathbf{Q}_{p}/\mathbf{Z}_{p})$$

be the Pontrjagin dual of $\mathfrak{Sel}_{\mathrm{Gr}}^{\Sigma}(K_{\infty}, E[p^{\infty}])$, and define $X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})$ similarly. We will have use for the following comparison between the Selmer groups $\mathfrak{Sel}_{\mathrm{Gr}}(K_{\infty}, E[p^{\infty}])$ and $\mathrm{Sel}_{\mathfrak{p}}(K_{\infty}, E[p^{\infty}])$. Note that directly from the definition we have an exact sequence

$$(2.8) \quad 0 \longrightarrow \mathrm{Sel}_{\mathfrak{p}}(K_{\infty}, E[p^{\infty}]) \longrightarrow \mathfrak{Sel}_{\mathrm{Gr}}(K_{\infty}, E[p^{\infty}]) \longrightarrow \mathcal{H}^{\mathrm{ur}}_{\mathfrak{p}} \oplus \prod_{w \nmid p} \mathcal{H}^{\mathrm{ur}}_{w},$$

where

$$\mathcal{H}_v^{\mathrm{ur}} := \ker\{H^1(K_v, M) \longrightarrow H^1(I_v, M)\}$$

is the set of unramified cocycles.

For a torsion Λ -module X, let $\lambda(X)$ (resp. $\mu(X)$) denote the λ -invariant (resp. μ -invariant) of a generator of $Ch_{\Lambda}(X)$.

Proposition 2.5. Assume that $X_{Gr}^{\Sigma}(E[p^{\infty}])$ is Λ -torsion. Then $X_{ac}^{\Sigma}(E[p^{\infty}])$ is Λ -torsion, and we have the relations

$$\lambda(X^{\Sigma}_{\mathrm{Gr}}(E[p^{\infty}])) = \lambda(X^{\Sigma}_{\mathrm{ac}}(E[p^{\infty}]))$$

and

$$\mu(X_{\mathrm{Gr}}^{\Sigma}(E[p^{\infty}])) = \mu(X_{\mathrm{ac}}^{\Sigma}(E[p^{\infty}])) + \sum_{\substack{w \text{ nonsplit} \\ w \notin \Sigma}} \mathrm{ord}_p(c_w(E/K)).$$

Proof. Since $X_{\rm ac}^{\Sigma}(E[p^{\infty}])$ is a quotient of $X_{\rm Gr}^{\Sigma}(E[p^{\infty}])$, the first claim of the proposition is clear. Consider the exact sequence (2.8) (or rather its variant for Σ-imprimitive Selmer groups). For primes $v \nmid p$ which are split in K, it is easy to see that the restriction map $H^1(K_v, M) \to H^1(I_v, M)$ is injective (see [PW11, Rem. 3.1]), and so $\mathcal{H}_v^{\rm ur}$ vanishes. Since $M^{I_p} = \{0\}$, the term $\mathcal{H}_{\rm n}^{\rm ur}$ also vanishes, and the aforementioned exact sequence thus reduces to

$$(2.9) \quad 0 \longrightarrow \mathrm{Sel}_{\mathfrak{p}}^{\Sigma}(K_{\infty}, E[p^{\infty}]) \longrightarrow \mathfrak{Sel}_{\mathrm{Gr}}^{\Sigma}(K_{\infty}, E[p^{\infty}]) \longrightarrow \prod_{\substack{w \text{ nonsplit} \\ w \notin \Sigma}} \mathcal{H}_{w}^{\mathrm{ur}}.$$

Now, a straightforward modification of the argument in [PW11, Lem. 3.4] shows that

$$\mathcal{H}_w^{\mathrm{ur}} \simeq (\mathbf{Z}_p/p^{t_E(w)}\mathbf{Z}_p) \otimes \Lambda^*,$$

where $t_E(w) := \operatorname{ord}_p(c_w(E/K))$ is the *p*-exponent of the Tamagawa number of E at w, and Λ^* is the Pontrjagin dual of Λ . In particular, $\mathcal{H}_w^{\operatorname{ur}}$ is Λ -torsion, with $\lambda(\mathcal{H}_w^{\operatorname{ur}}) = 0$ and $\mu(\mathcal{H}_w^{\operatorname{ur}}) = \operatorname{ord}_p(c_w(E/K))$. Since the rightmost arrow in (2.9) is surjective by [PW11, Prop. A.2], the result follows.

For the rest of this section, assume that E has ordinary reduction at p, so that the associated newform $f \in S_2(\Gamma_0(N))$ is p-ordinary. Let $\mathbf{f} \in \mathbb{I}[[q]]$ be the Hida family associated with f, let $\wp \subseteq \mathbb{I}$ be the kernel of the arithmetic map $\phi \in \mathcal{X}^a_{\mathbb{I}}$ such that \mathbf{f}_{ϕ} is either f itself (if $p \mid N$) or the ordinary p-stabilization of f (if $p \nmid N$), and set $\widetilde{\wp} := \wp \Lambda_{\mathbb{I}} \subseteq \Lambda_{\mathbb{I}}$. Since we assume that $\overline{\rho}_{E,p}$ is irreducible, so is $\overline{\rho}_{\mathbf{f}}$.

Theorem 2.6. Let S_p be the places of K above p, and assume that $\Sigma \cup S_p$ contains all places of K at which T is ramified. Then there is a canonical isomorphism

$$X_{\mathrm{Gr}}^{\Sigma}(E[p^{\infty}]) \simeq X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})/\widetilde{\wp}X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}}).$$

Proof. This follows from a slight variation of the arguments proving [SU14, Prop. 3.7] (see also [Och06, Prop. 5.1]). Since $M \simeq M_{\mathbf{f}}[\widetilde{\wp}]$, by Pontrjagin duality it suffices to show that the canonical map

(2.10)
$$\operatorname{Sel}_{\operatorname{Gr}}^{\Sigma}(K_{\infty}, M_{\mathbf{f}}[\widetilde{\wp}]) \longrightarrow \operatorname{Sel}_{\operatorname{Gr}}^{\Sigma}(K_{\infty}, M_{\mathbf{f}})[\widetilde{\wp}]$$

is an isomorphism. Note that our assumption on $S := \Sigma \cup S_p$ implies that

$$(2.11) \qquad \operatorname{Sel}_{\mathfrak{p}}^{\Sigma}(K_{\infty}, M_{?}) = \ker \left\{ H^{1}(G_{K,S}, M_{?}) \xrightarrow{\operatorname{loc}_{\mathfrak{p}}} \frac{H^{1}(K_{\mathfrak{p}}, M_{?})}{H^{1}_{\operatorname{Gr}}(K_{\mathfrak{p}}, M_{?})} \right\},$$

where $M_? = M_{\mathbf{f}}[\widetilde{\wp}]$ or $M_{\mathbf{f}}, G_{K,S}$ is the Galois group of the maximal extension of K unramified outside S, and

$$H^1_{\mathrm{Gr}}(K_{\mathfrak{p}}, M_?) := \ker\{H^1(K_{\mathfrak{p}}, M_?) \longrightarrow H^1(I_{\mathfrak{p}}, M_?)\}.$$

As shown in the proof of [SU14, Prop. 3.7] (taking $A = \Lambda_{\mathbb{I}}$ and $\mathfrak{a} = \widetilde{\wp}$ in loc.cit.), we have $H^1(G_{K,S}, M_{\mathbf{f}}[\widetilde{\wp}]) = H^1(G_{K,S}, M_{\mathbf{f}})[\widetilde{\wp}]$. On the other hand, using that $G_{K_{\mathfrak{p}}}/I_{\mathfrak{p}}$ has cohomological dimension one, we immediately see that

$$H^1(K_{\mathfrak{p}}, M_?)/H^1_{\mathrm{Gr}}(K_{\mathfrak{p}}, M_?) \simeq H^1(I_{\mathfrak{p}}, M_?)^{G_{K_{\mathfrak{p}}}},$$

From the long exact sequence in $I_{\mathfrak{p}}$ -cohomology associated with $0 \to \Lambda_{\mathbb{I}}^*[\widetilde{\wp}] \to \Lambda_{\mathbb{I}}^* \to \widetilde{\wp}\Lambda_{\mathbb{I}}^* \to 0$ tensored with $T_{\mathbf{f}}$, we obtain

$$(M_{\mathbf{f}}^{I_{\mathfrak{p}}}/(T_{\mathbf{f}} \otimes_{\mathbb{I}} \widetilde{\wp} \Lambda_{\mathbb{I}}^{*})^{I_{\mathfrak{p}}})^{G_{K_{\mathfrak{p}}}} \simeq \ker\{H^{1}(I_{\mathfrak{p}}, M_{\mathbf{f}}[\widetilde{\wp}])^{G_{K_{\mathfrak{p}}}} \longrightarrow H^{1}(I_{\mathfrak{p}}, M_{\mathbf{f}})^{G_{K_{\mathfrak{p}}}}\}.$$

Since $H^0(I_{\mathfrak{p}}, M_{\mathbf{f}}) = \{0\}$, we thus have a commutative diagram

$$\begin{split} H^1(G_{K,S}, M_{\mathbf{f}}[\widetilde{\wp}]) & \xrightarrow{\mathrm{loc}_{\mathfrak{p}}} H^1(K_{\mathfrak{p}}, M_{\mathbf{f}}[\widetilde{\wp}]) / H^1_{\mathrm{Gr}}(K_{\mathfrak{p}}, M_{\mathbf{f}}[\widetilde{\wp}]) \\ \downarrow \simeq & \qquad \qquad \downarrow \\ H^1(G_{K,S}, M_{\mathbf{f}})[\widetilde{\wp}] & \xrightarrow{\mathrm{loc}_{\mathfrak{p}}} H^1(K_{\mathfrak{p}}, M_{\mathbf{f}}) / H^1_{\mathrm{Gr}}(K_{\mathfrak{p}}, M_{\mathbf{f}}) \end{split}$$

in which the right vertical map is injective. By (2.11), the result follows. \Box

3. A p-adic Waldspurger formula

Let E, p, and K be an introduced in §2.1. In this section, we assume in addition that K satisfies the following Heegner hypothesis relative to the square-free integer N:

(Heeg) every prime factor of N is either split or ramified in K.

Anticyclotomic *p*-adic *L*-function. Let $f = \sum_{n=1}^{\infty} a_n q^n \in S_2(\Gamma_0(N))$ be the newform associated with *E*. Denote by R_0 the completion of the ring of integers of the maximal unramified extension of \mathbf{Q}_p , and set

$$\Lambda_{R_0} := \Lambda \hat{\otimes}_{\mathbf{Z}_p} R_0,$$

where as before $\Lambda = \mathbf{Z}_p[[\Gamma]]$ is the anticyclotomic Iwasawa algebra.

Theorem 3.1. There exists an element $L_p(f) \in \Lambda_{R_0}$ such that if $\hat{\phi} : \Gamma \to \mathbf{C}_p^{\times}$ is the p-adic avatar of an unramified anticyclotomic Hecke character ϕ of infinity type (-n, n) with n > 0, then

$$L_p(f,\hat{\phi}) = \Gamma(n)\Gamma(n+1) \cdot (1 - a_p p^{-1}\phi(\mathfrak{p}) + \varepsilon_p \phi^2(\mathfrak{p}))^2 \cdot \Omega_p^{4n} \cdot \frac{L(f/K,\phi,1)}{\pi^{2n+1} \cdot \Omega_{\mathcal{L}}^{4n}},$$

where $\varepsilon_p = p^{-1}$ if $p \nmid N$ and $\varepsilon_p = 0$ otherwise, and $\Omega_p \in R_0^{\times}$ and $\Omega_K \in \mathbf{C}^{\times}$ are CM periods.

Proof. Let ψ be an anticyclotomic Hecke character of infinity type (1,-1) and conductor prime to p, let $\mathscr{L}_{\mathfrak{p},\psi}(f)\in\Lambda_{R_0}$ be as in [CH17, Def. 3.7], and set

$$L_p(f) := \operatorname{Tw}_{\psi^{-1}}(\mathscr{L}_{\mathfrak{p},\psi}(f)),$$

where $\operatorname{Tw}_{\psi^{-1}}:\Lambda_{R_0}\to\Lambda_{R_0}$ is the R_0 -linear isomorphism given by $\gamma\mapsto\psi^{-1}(\gamma)\gamma$ for $\gamma\in\Gamma$. If $p\nmid N$, the stated interpolation property for $L_p(f)$ is a reformulation of [CH17, Thm. 3.8]. Since the construction of $\mathscr{L}_{\mathfrak{p},\psi}(f)$ given in [CH17, §3.3] readily extends to the case $p\mid N$, with the p-adic multiplier $e_{\mathfrak{p}}(f,\phi)$ in loc.cit. reducing to $1-a_pp^{-1}\phi(\mathfrak{p})$ for unramified ϕ (see also [Cas17a, Thm. 2.10]), the result follows.

If Σ is any finite set of place of K not lying above p, we define the " Σ -imprimitive" p-adic L-function $L_p^{\Sigma}(f)$ by

(3.1)
$$L_p^{\Sigma}(f) := L_p(f) \times \prod_{w \in \Sigma} P_w(\epsilon \Psi^{-1}(\gamma_w)) \in \Lambda_{R_0},$$

where $P_w(X) := \det(1 - X \cdot \operatorname{Frob}_w | V^{I_w})$, $\epsilon : G_K \to \mathbf{Z}_p^{\times}$ is the *p*-adic cyclotomic character, $\operatorname{Frob}_w \in G_K$ is a geometric Frobenius element at w, and γ_w is the image of Frob_w in Γ .

A p-adic Waldspurger formula. Recall that the elliptic curve E is assumed to be semistable. From now on, we shall also assume that E is an optimal quotient of the new part of $J_0(N) = \text{Jac}(X_0(N))$ in the sense of $[\text{Maz}78, \S 2]$, and fix a corresponding modular parametrization

$$\pi: X_0(N) \longrightarrow E$$

sending the cusp ∞ to the origin of E. If ω_E a Néron differential on E, and $\omega_f = \sum a_n q^n \frac{dq}{q}$ is the one-form on $J_0(N)$ associated with f, then

$$\pi^*(\omega_E) = c \cdot \omega_f,$$

where $c \in \mathbf{Z}$ is the Manin constant. Since N is square-free, we have $p \nmid c$ by [Maz78, Cor. 4.1].

We will have use for the following formula for the value at the trivial character $\phi = 1$ (which lies outside the range of interpolation) of the *p*-adic *L*-function of Theorem 3.1.

Theorem 3.2. The following equality holds up to a p-adic unit:

$$L_p(f, \mathbb{1}) = (1 - a_p p^{-1} + \varepsilon_p)^2 \cdot (\log_{\omega_E} P_K)^2,$$

where $\varepsilon_p = p^{-1}$ if $p \nmid N$ and $\varepsilon_p = 0$ otherwise, and $P_K \in E(K)$ is a Heegner point.

Proof. This follows from [BDP13, Thm. 5.13] and [CH17, Thm. 4.9] in the case $p \nmid N$, and [Cas17a, Thm. 2.11] in the case $p \mid N$. Indeed, in our case, the generalized Heegner cycles Δ constructed in either of these references are of the form

$$\Delta = [(A, A[\mathfrak{N}]) - (\infty)] \in J_0(N)(H),$$

where H is the Hilbert class field of K, and $(A, A[\mathfrak{N}])$ is a CM elliptic curve equipped with a cyclic N-isogeny. Letting F denote the p-adic completion of H, the aforementioned references then yield the equality

(3.3)
$$L_p(f, \mathbb{1}) = (1 - a_p p^{-1} + \varepsilon_p)^2 \cdot \left(\sum_{\sigma \in \operatorname{Gal}(H/K)} \operatorname{AJ}_F(\Delta^{\sigma})(\omega_f) \right)^2.$$

By [BK90, Ex. 3.10.1], the *p*-adic Abel–Jacobi map appearing in (3.3) is related to the formal group logarithm on $J_0(N)$ by the formula

$$AJ_F(\Delta)(\omega_f) = \log_{\omega_f}(\Delta),$$

and by (3.2) we have the equalities up to a p-adic unit:

$$\log_{\omega_f}(\Delta) = \log_{\pi^*(\omega_E)}(\pi(\Delta)) = \log_{\omega_E}(\pi(\Delta))$$

Thus, taking $P_K := \sum_{\sigma \in Gal(H/K)} \pi(\Delta^{\sigma}) \in E(K)$, the result follows. \square

4. Main conjectures

Let M be a square-free integer prime to p, and let $\mathbf{f} \in \mathbb{I}[[q]]$ be an ordinary \mathbb{I} -adic cusp eigenform of tame level M as in Section 2, with associated residual representation $\bar{\rho}_{\mathbf{f}}$. Letting $D_p \subseteq G_{\mathbf{Q}}$ be a fixed decomposition group at p, we say that $\bar{\rho}_{\mathbf{f}}$ is p-distinguished if the semisimplication of $\bar{\rho}_{\mathbf{f}}|_{D_p}$ is the direct sum of two distinct characters.

Let K be an imaginary quadratic field in which $p = \mathfrak{p}\overline{\mathfrak{p}}$ splits, and which satisfies hypothesis (Heeg) from Section 3 relative to M.

For the next statement, note that for any eigenform f defined over a finite extension L/\mathbf{Q}_p with associated Galois representation V_f , we may define the Selmer group $X_{\mathrm{Gr}}^{\Sigma}(A_f)$ as in §2.2, replacing $T = T_p E$ by a fixed $G_{\mathbf{Q}}$ -stable \mathcal{O}_L -lattice in V_f , and setting $A_f := V_f/T_f$.

Theorem 4.1. Let $f \in S_2(\Gamma_0(M))$ be a p-ordinary newform of level M, with $p \nmid M$, and let $\bar{\rho}_f$ be the associated residual representation. Assume that:

- M is square-free;
- ρ̄_f is ramified at every prime q | M which is nonsplit in K, and there
 is at least one such prime;
- $\bar{\rho}_f|_{G_K}$ is irreducible.

If Σ is any finite set of primes not lying above p, then $X_{\mathrm{Gr}}^{\Sigma}(A_f)$ is Λ -torsion, and

$$Ch_{\Lambda}(X_{\mathrm{Gr}}^{\Sigma}(A_f))\Lambda_{R_0}=(L_p^{\Sigma}(f)),$$

where $L_p^{\Sigma}(f)$ is as in (3.1).

Proof. As in the proof of [JSW17, Thm. 6.1.6], the result for an arbitrary finite set Σ follows immediately from the case $\Sigma = \emptyset$, which is the content of [Cas17c, Thm. 3.4]. (In [Cas17c] it is assumed that f has rational Fourier coefficients but the extension of the aforementioned result to the setting considered here is immediate.)

Recall that $\Lambda_{\mathbb{I}}$ denotes the anticyclotomic Iwasawa algebra over \mathbb{I} , and set $\Lambda_{\mathbb{I},R_0} := \Lambda_{\mathbb{I}} \hat{\otimes}_{\mathbf{Z}_p} R_0$. For any $\phi \in \mathcal{X}^a_{\mathbb{I}}$, set $\widetilde{\wp}_{\phi} := \ker(\phi) \Lambda_{\mathbb{I},R_0}$.

Theorem 4.2. Let Σ be a finite set of places of K not above p. Letting M be the tame level of \mathbf{f} , assume that:

- *M* is square-free;
- \(\bar{\rho}_{\foldsymbol{f}}\) is ramified at every prime q \(| M \) which is nonsplit in K, and there is at least one such prime;
- $\bar{\rho}_{\mathbf{f}}|_{G_K}$ is irreducible;
- $\bar{\rho}_{\mathbf{f}}$ is p-distinguished.

Then $X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})$ is $\Lambda_{\mathbb{I}}$ -torsion, and

$$Ch_{\Lambda_{\mathbb{I}}}(X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}}))\Lambda_{\mathbb{I},R_{0}}=(L_{p}^{\Sigma}(\mathbf{f})),$$

where $L_p^{\Sigma}(\mathbf{f}) \in \Lambda_{\mathbb{I},R_0}$ is such that

(4.1)
$$L_p^{\Sigma}(\mathbf{f}) \bmod \widetilde{\wp}_{\phi} = L_p^{\Sigma}(\mathbf{f}_{\phi})$$

for all $\phi \in \mathcal{X}_{\mathbb{I}}^a$.

Proof. Let $\mathscr{L}_{\mathfrak{p},\boldsymbol{\xi}}(\mathbf{f}) \in \Lambda_{\mathbb{I},R_0}$ be the two-variable anticyclotomic p-adic L-function constructed in [Cas17b, §2.6], and set

$$L_p(\mathbf{f}) := \mathrm{Tw}_{\boldsymbol{\xi}^{-1}}(\mathscr{L}_{\mathfrak{p},\boldsymbol{\xi}}(\mathbf{f})),$$

where $\boldsymbol{\xi}$ is the \mathbb{I} -adic character constructed in loc.cit. from a Hecke character λ of infinity type (1,0) and conductor prime to p, and $\operatorname{Tw}_{\boldsymbol{\xi}^{-1}}:\Lambda_{\mathbb{I},R_0}\to\Lambda_{\mathbb{I},R_0}$ is the R_0 -linear isomorphism given by $\gamma\mapsto\boldsymbol{\xi}^{-1}(\gamma)\gamma$ for $\gamma\in\Gamma$. Viewing λ as a character on \mathbb{A}_K^{\times} , let λ^{τ} denote the composition of λ with the action of complex conjugation on \mathbb{A}_K^{\times} . If the character ψ appearing in the proof of Theorem 3.1 is taken to be $\psi=\lambda/\lambda^{\tau}$, the proof of [Cas17b, Thm. 2.11] shows that $L_p(\mathbf{f})$ reduces to $L_p(\mathbf{f}_{\phi})$ modulo $\widetilde{\wp}_{\phi}$ for all $\phi\in\mathcal{X}_{\mathbb{I}}^a$. Similarly as in (3.1), if for any Σ as above we set

$$L_p^{\Sigma}(\mathbf{f}) := L_p(\mathbf{f}) \times \prod_{w \in \Sigma} P_{\mathbf{f}, w}(\epsilon \Psi^{-1}(\gamma_w)) \in \Lambda_{\mathbb{I}, R_0},$$

where $P_{\mathbf{f},w}(X) := \det(1 - X \cdot \operatorname{Frob}_w | (T_{\mathbf{f}} \otimes_{\mathbb{I}} F_{\mathbb{I}})^{I_w})$, with $F_{\mathbb{I}}$ the fraction field of \mathbb{I} , the specialization property (4.1) thus follows.

Let $\phi \in \mathcal{X}_{\mathbb{I}}^a$ be such that \mathbf{f}_{ϕ} is the *p*-stabilization of a *p*-ordinary newform $f \in S_2(\Gamma_0(M))$. By Theorem 4.2, the associated $X_{\mathrm{Gr}}^{\Sigma}(A_f)$ is Λ -torsion, and we have

$$(4.2) Ch_{\Lambda}(X_{Gr}^{\Sigma}(A_f))\Lambda_{R_0} = (L_n^{\Sigma}(f)).$$

In particular, by Theorem 2.6 (with A_f in place of $E[p^{\infty}]$) it follows that $X_{\text{Gr}}^{\Sigma}(A_f)$ is $\Lambda_{\mathbb{I}}$ -torsion. On the other hand, from [Wan14a, Thm. 1.1] we have the divisibility

$$(4.3) Ch_{\Lambda_{\mathbb{I}}}(X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}}))\Lambda_{\mathbb{I},R_{0}} \subseteq (\mathcal{L}_{p}^{\Sigma}(\mathbf{f})^{-})$$

in $\Lambda_{\mathbb{I},R_0}$, where $\mathcal{L}_p^{\Sigma}(\mathbf{f})^-$ is the projection onto $\Lambda_{\mathbb{I},R_0}$ of the *p*-adic *L*-function constructed in [Wan14a, §7.4]. Since a straightforward extension of the calculations in [JSW17, §5.3] shows that

(4.4)
$$(\mathcal{L}_p^{\Sigma}(\mathbf{f})^-) = (L_p^{\Sigma}(\mathbf{f}))$$

as ideals in $\Lambda_{\mathbb{I},R_0}$, the result follows from an application of [SU14, Lem. 3.2] using (4.2), (4.3), and (4.4). (Note that the possible powers of p in [JSW17, Cor. 5.3.1] only arise when there are primes $q \mid M$ inert in K, but these are excluded by our hypothesis (Heeg) relative to M.)

In order to deduce from Theorem 4.2 the anticyclotomic main conjecture for arithmetic specializations of \mathbf{f} (especially in the cases where the conductor of \mathbf{f}_{ϕ} is divisible by p, which are not covered by Theorem 4.1), we will require the following technical result.

Lemma 4.3. Let $X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})_{\mathrm{null}}$ be the largest pseudo-null $\Lambda_{\mathbb{I}}$ -submodule of $X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})$, let $\wp \subseteq \mathbb{I}$ be a height one prime, and let $\widetilde{\wp} := \wp \Lambda_{\mathbb{I}}$. With hypotheses as in Theorem 4.2, the quotient

$$X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})_{\mathrm{null}}/\widetilde{\wp}X_{\mathrm{Gr}}^{\Sigma}(A_{\mathbf{f}})_{\mathrm{null}}$$

is a pseudo-null $\Lambda_{\mathbb{I}}/\widetilde{\wp}$ -module.

Proof. Using (2.11) as in the proof of Theorem 2.6 and considering the obvious commutative diagram obtained by applying the map given by multiplication by $\widetilde{\wp}$, the proof of [Och06, Lem. 7.2] carries through with only small changes. (Note that the argument in *loc.cit.* requires knowing that $X_{\rm ac}^{\Sigma}(M_{\mathbf{f}}[\widetilde{\wp}])$ is $\Lambda_{\mathbb{I}}/\widetilde{\wp}$ -torsion, but this follows immediately from Theorem 4.2 and the isomorphism of Theorem 2.6.)

For the next result, let E/\mathbf{Q} be a semistable elliptic curve of conductor N, and assume that K satisfies hypothesis (Heeg) relative to N, and that $p = \mathfrak{p}\overline{\mathfrak{p}}$ splits in K.

Theorem 4.4. Assume that $\bar{\rho}_{E,p}: G_{\mathbf{Q}} \to \operatorname{Aut}_{\mathbf{F}_p}(E[p]) \simeq \operatorname{GL}_2(\mathbf{F}_p)$ is irreducible and ramified at every prime $q \mid N$ which is nonsplit in K, and assume

that there is at least one such prime. Then $Ch_{\Lambda}(X_{ac}(E[p^{\infty}]))$ is Λ -torsion and

$$Ch_{\Lambda}(X_{\mathrm{ac}}(E[p^{\infty}]))\Lambda_{R_0}=(L_p(f)).$$

Proof. If E has good ordinary (resp. supersingular) supersingular reduction at p, the result follows from [Cas17c, Thm. 3.4] (resp. [CW17, Thm. 6.1]). (Note that by [Ski14, Lem. 2.8.1] the hypotheses in Theorem 4.4 imply that $\bar{\rho}_{E,p}|_{G_K}$ is irreducible.) Since the conductor of N is square-free, it remains to consider the case in which E has multiplicative reduction at p. The associated newform $f = \sum_{n=1}^{\infty} a_n q^n \in S_2(\Gamma_0(N))$ then satisfies $a_p = \pm 1$ (see e.g. [Ski16, Lem. 2.1.2]); in particular, f is p-ordinary. Let $\mathbf{f} \in \mathbb{I}[[q]]$ be the ordinary \mathbb{I} -adic cusp eigenform of tame level

$$N_0 := N/p$$

attached to f, so that $\mathbf{f}_{\phi} = f$ for some $\phi \in \mathcal{X}_{\mathbb{I}}^{a}$. Let $\wp := \ker(\phi) \subseteq \mathbb{I}$ be the associated height one prime, and set

$$\widetilde{\wp} := \wp \Lambda_{\mathbb{I}, R_0}, \quad \Lambda_{\wp, R_0} := \Lambda_{\mathbb{I}, R_0} / \widetilde{\wp}, \quad \widetilde{\wp}_0 := \widetilde{\wp} \cap \Lambda_{\mathbb{I}}, \quad \Lambda_{\wp} := \Lambda_{\mathbb{I}} / \wp_0.$$

Let Σ be a finite set of places of K not dividing p containing the primes above N_0D , where D is the discriminant of K. As shown in the proof of [JSW17, Thm. 6.1.6], it suffices to show that

$$(4.5) Ch_{\Lambda}(X_{\mathrm{ac}}^{\Sigma}(E[p^{\infty}]))\Lambda_{R_0} = (L_p^{\Sigma}(f)).$$

Since **f** specializes f, which has weight 2 and trivial nebentypus, the residual representation $\bar{\rho}_{\mathbf{f}} \simeq \bar{\rho}_{E,p}$ is automatically p-distinguished (see [KLZ17, Rem. 7.2.7]). Thus our assumptions imply that the hypotheses in Theorem 4.2 are satisfied, which combined with Theorem 2.6 show that $X_{\mathrm{Gr}}^{\Sigma}(E[p^{\infty}])$ is Λ -torsion. Moreover, letting \mathfrak{l} be any height one prime of Λ_{\wp,R_0} and setting $\mathfrak{l}_0 := \mathfrak{l} \cap \Lambda_\wp$, by Theorem 2.6 we have

$$(4.6) \ \operatorname{length}_{(\Lambda_{\wp})_{\mathfrak{l}_0}}(X_{\operatorname{Gr}}^{\Sigma}(E[p^{\infty}])_{\mathfrak{l}_0}) = \operatorname{length}_{(\Lambda_{\wp})_{\mathfrak{l}_0}}((X_{\operatorname{Gr}}^{\Sigma}(A_{\mathbf{f}})/\widetilde{\wp}_0 X_{\operatorname{Gr}}^{\Sigma}(A_{\mathbf{f}}))_{\mathfrak{l}_0}).$$

On the other hand, if $\widetilde{\mathfrak{l}} \subseteq \Lambda_{\mathbb{I},R_0}$ is a height one prime mapping to \mathfrak{l} under the specialization map $\Lambda_{\mathbb{I},R_0} \to \Lambda_{\wp,R_0}$ and we set $\widetilde{\mathfrak{l}}_0 := \widetilde{\mathfrak{l}} \cap \Lambda_{\mathbb{I}}$, by Theorem 4.2 we have

$$(4.7) \qquad \operatorname{length}_{(\Lambda_{\overline{\mathfrak{l}}})_{\overline{\mathfrak{l}}_{0}}}(X_{\operatorname{Gr}}^{\Sigma}(A_{\mathbf{f}})_{\overline{\mathfrak{l}}_{0}}) = \operatorname{ord}_{\overline{\mathfrak{l}}}(L_{p}^{\Sigma}(\mathbf{f}) \bmod \widetilde{\wp}) = \operatorname{ord}_{\overline{\mathfrak{l}}}(L_{p}^{\Sigma}(f)).$$

Since Lemma 4.3 implies the equality

$$\operatorname{length}_{(\Lambda_{\wp})_{\mathfrak{l}_0}}((X^{\Sigma}_{\operatorname{Gr}}(A_{\mathbf{f}})/\widetilde{\wp}_0X^{\Sigma}_{\operatorname{Gr}}(A_{\mathbf{f}}))_{\mathfrak{l}_0}) = \operatorname{length}_{(\Lambda_{\tilde{\mathfrak{l}}})_{\tilde{\mathfrak{l}}_0}}(X^{\Sigma}_{\operatorname{Gr}}(A_{\mathbf{f}})_{\tilde{\mathfrak{l}}_0}),$$

combining (4.6) and (4.7) we conclude that

$$\operatorname{length}_{(\Lambda_\wp)_{\mathfrak{l}_0}}(X^\Sigma_{\operatorname{Gr}}(E[p^\infty])_{\mathfrak{l}_0}) = \operatorname{ord}_{\mathfrak{l}}(L^\Sigma_p(f))$$

for every height one prime \mathfrak{l} of Λ_{\wp,R_0} , and so

(4.8)
$$Ch_{\Lambda}(X_{Gr}^{\Sigma}(E[p^{\infty}]))\Lambda_{R_0} = (L_p^{\Sigma}(f)).$$

Finally, since our hypothesis on $\bar{\rho}_{E,p}$ implies that $c_w(E/K)$ is a p-adic unit for every prime w which is nonsplit in K (see e.g. [PW11, Def. 3.3]), we have $Ch_{\Lambda}(X_{\mathrm{Gr}}^{\Sigma}(E[p^{\infty}])) = Ch_{\Lambda}(X_{\mathrm{ac}}^{\Sigma}(E[p^{\infty}]))$ by Proposition 2.5. Thus (4.8) reduces to (4.5), and the proof of Theorem 4.4 follows.

5. Proof of Theorem A

Let E/\mathbf{Q} be a semistable elliptic curve of conductor N as in the statement of Theorem A; in particular, we note that there exists a prime $q \neq p$ such that E[p] is ramified at q. Indeed, if $p \mid N$ this follows by hypothesis, while if $p \nmid N$ the existence of such q follows from Ribet's level lowering theorem [Rib90, Thm 1.1], as explained in the first paragraph of [JSW17, §7.4].

Proof of Theorem A. Choose an imaginary quadratic field $K = \mathbf{Q}(\sqrt{D})$ of discriminant D < 0 such that

- q is ramified in K;
- every prime factor $\ell \neq q$ of N splits in K;
- p splits in K;
- $L(E^D, 1) \neq 0$.

(Of course, when $p \mid N$ the third condition is redundant.) By Theorem 4.4 and Proposition 3.2 we have the equalities

(5.1)
$$\#\mathbf{Z}_p/f_{ac}(0) = \#\mathbf{Z}_p/L_p(f, \mathbb{1}) = (\#\mathbf{Z}_p/(1 - a_p p^{-1} + \varepsilon_p) \log_{\omega_E} P_K)^2$$
,

where $\varepsilon_p = p^{-1}$ if $p \nmid N$ and $\varepsilon_p = 0$ otherwise, and $P_K \in E(K)$ is a Heegner point. Since we assume that $\operatorname{ord}_{s=1}L(E,s) = 1$, the nonvanishing of $L(E^D,1)$ implies that $\operatorname{ord}_{s=1}L(E/K,s) = 1$, and so P_K has infinite order, $\operatorname{rank}_{\mathbf{Z}}(E(K)) = 1$ and $\#\operatorname{III}(E/K) < \infty$ by the work of Gross-Zagier and

Kolyvagin. This verifies the hypotheses in Theorem 2.3, which (taking $\Sigma = \emptyset$ and $P = P_K$) yields a formula for $\# \mathbf{Z}_p/f_{\rm ac}(0)$ that combined with (5.1) immediately leads to

(5.2)
$$\operatorname{ord}_{p}(\# \coprod (E/K)[p^{\infty}]) = 2 \cdot \operatorname{ord}_{p}([E(K) : \mathbf{Z}.P_{K}]) - \sum_{w \mid N^{+}} \operatorname{ord}_{p}(c_{w}(E/K)),$$

where N^+ is the product of the prime factors of N which are split in K. Since E[p] is ramified at q, we have $\operatorname{ord}_p(c_w(E/K)) = 0$ for every $w \mid q$ (see e.g. [Zha14, Lem. 6.3] and the discussion right after it), and since $N^+ = N/q$ by our choice of K, we see that (5.2) can be rewritten as

(5.3)
$$\operatorname{ord}_{p}(\# \coprod (E/K)[p^{\infty}]) = 2 \cdot \operatorname{ord}_{p}([E(K) : \mathbf{Z}.P_{K}]) - \sum_{w|N} \operatorname{ord}_{p}(c_{w}(E/K)).$$

On the other hand, as in [JSW17, Eqn. (7.4.c)], the Gross–Zagier formula in our case [GZ86], [YZZ13] (as refined in [CST14]) can be rewritten as the equality

$$\frac{L'(E,1)}{\Omega_E \cdot \mathrm{Reg}(E/\mathbf{Q})} \cdot \frac{L(E^D,1)}{\Omega_{E^D}} = [E(K): \mathbf{Z}.P_K]^2$$

up to a p-adic unit, which combined with (5.3) and the immediate relation

$$\sum_{w|N} c_w(E/K)_p = \sum_{\ell|N} c_\ell(E/\mathbf{Q})_p + \sum_{\ell|N} c_\ell(E^D/\mathbf{Q})_p$$

(see [SZ14, Cor. 7.2]) leads to the equality

$$\operatorname{ord}_{p}(\# \coprod (E/K)[p^{\infty}])$$

$$= \operatorname{ord}_{p}\left(\frac{L'(E,1)}{\Omega_{E} \cdot \operatorname{Reg}(E/\mathbf{Q}) \prod_{\ell \mid N} c_{\ell}(E/\mathbf{Q})} \cdot \frac{L(E^{D},1)}{\Omega_{E^{D}} \prod_{\ell \mid N} c_{\ell}(E^{D}/\mathbf{Q})}\right).$$

Finally, since $L(E^D,1) \neq 0$, by the known p-part of the Birch–Swinnerton-Dyer formula in analytic rank zero (as recalled in [JSW17, Thm. 7.2.1]) and the isomorphism $\mathrm{III}(E/K)[p^\infty] \simeq \mathrm{III}(E/\mathbf{Q})[p^\infty] \oplus \mathrm{III}(E^D/\mathbf{Q})[p^\infty]$ we arrive at

¹This uses a period relation coming from [SZ14, Lem. 9.6], which assumes that (D, pN) = 1, but the same argument applies replacing D by D/(D, pN) in the last paragraph of the proof of their result.

$$\operatorname{ord}_p(\# \operatorname{III}(E/\mathbf{Q})[p^{\infty}]) = \operatorname{ord}_p\left(\frac{L'(E,1)}{\Omega_E \cdot \operatorname{Reg}(E/\mathbf{Q}) \prod_{\ell \mid N} c_{\ell}(E/\mathbf{Q})}\right),$$

concluding the proof of the theorem.

References

- [BBV16] Andrea Berti, Massimo Bertolini, and Rodolfo Venerucci, Congruences between modular forms and the Birch and Swinnerton-Dyer conjecture, Elliptic curves, modular forms and Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 1–31. MR3629647
- [BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J. 162 (2013), no. 6, 1033–1148. MR3053566
- [BK90] Spencer Bloch and Kazuya Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR1086888 (92g:11063)
- [Cas17a] Francesc Castella, On the exceptional specializations of big Heegner points, J. Inst. Math. Jussieu, to appear (2017).
- [Cas17b] _____, On the p-adic variation of Heegner points, J. Inst. Math. Jussieu, to appear (2017).
- [Cas17c] _____, p-adic heights of Heegner points and Beilinson-Flach classes, J. Lond. Math. Soc. (2) **96** (2017), no. 1, 156–180. MR3687944
- [CÇSS17] Francesc Castella, Mirela Çiperiani, Christopher Skinner, and Florian Sprung, On two-variable main conjectures for modular forms at non-ordinary primes, preprint (2017).
- [CH17] Francesc Castella and Ming-Lun Hsieh, Heegner cycles and p-adic L-functions, Math. Ann., to appear (2017).
- [CST14] Li Cai, Jie Shu, and Ye Tian, Explicit Gross-Zagier and Wald-spurger formulae, Algebra Number Theory 8 (2014), no. 10, 2523–2572. MR3298547
- [CW17] Francesc Castella and Xin Wan, Perrin-Riou's main conjecture for elliptic curves at supersingular primes, preprint (2017).

- [Gre99] Ralph Greenberg, *Iwasawa theory for elliptic curves*, Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51–144. MR1754686
- [GZ86] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225–320. MR833192 (87j:11057)
- [HB15] Ernest Hunter Brooks, Shimura curves and special values of padic L-functions, Int. Math. Res. Not. IMRN (2015), no. 12, 4177– 4241. MR3356751
- [JSW17] Dimitar Jetchev, Christopher Skinner, and Xin Wan, The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math. 5 (2017), no. 3, 369–434. MR3684675
- [KLZ17] Guido Kings, David Loeffler, and Sarah Zerbes, Rankin–Eisenstein classes and explicit reciprocity laws, Camb. J. Math. 5 (2017), no. 2, 1–122.
- [Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR482230
- [Och06] Tadashi Ochiai, On the two-variable Iwasawa main conjecture, Compos. Math. **142** (2006), no. 5, 1157–1200. MR2264660 (2007i:11146)
- [PW11] Robert Pollack and Tom Weston, On anticyclotomic μ -invariants of modular forms, Compos. Math. **147** (2011), no. 5, 1353–1381. MR2834724 (2012k:11174)
- [Rib90] K. A. Ribet, On modular representations of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$ arising from modular forms, Invent. Math. **100** (1990), no. 2, 431–476. MR1047143 (91g:11066)
- [Sil94] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR1312368
- [Ski14] Christopher Skinner, A converse to a theorem of Gross, Zagier, and Kolyvagin, preprint (2014).
- [Ski16] _____, Multiplicative reduction and the cyclotomic main conjecture for GL₂, Pacific J. Math. 283 (2016), no. 1, 171–200. MR3513846

- [Spr16] Florian Sprung, The Iwasawa Main Conjecture for elliptic curves at odd supersingular primes, preprint (2016).
- [SU14] Christopher Skinner and Eric Urban, The Iwasawa Main Conjectures for GL_2 , Invent. Math. 195 (2014), no. 1, 1–277. MR3148103
- [SZ14] Christopher Skinner and Wei Zhang, *Indivisibility of Heegner* points in the multiplicative case, preprint (2014).
- [TW95] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) **141** (1995), no. 3, 553–572. MR1333036 (96d:11072)
- [Wan14a] Xin Wan, Iwasawa main conjecture for Rankin–Selberg p-adic L-functions, preprint (2014).
- [Wan14b] _____, Iwasawa main conjecture for Rankin-Selberg p-adic L-functions: non-ordinary case, preprint (2014).
- [Wan14c] ______, Iwasawa main conjecture for supersingular elliptic curves, preprint (2014).
- [Wil95] Andrew Wiles, *Modular elliptic curves and Fermat's last theorem*, Ann. of Math. (2) **141** (1995), no. 3, 443–551. MR1333035 (96d:11071)
- [YZZ13] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, 2013. MR3237437
- [Zha14] Wei Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 (2014), no. 2, 191–253. MR3295917

Francesc Castella Department of Mathematics Princeton University Fine Hall, Washington Road Princeton, NJ 08544 USA

E-mail address: fcabello@math.princeton.edu

RECEIVED APRIL 21, 2017