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CONVERGENCE ANALYSIS OF THE LDG METHOD FOR

SINGULARLY PERTURBED TWO-POINT BOUNDARY VALUE

PROBLEMS∗

HUIQING ZHU† , HAIYAN TIAN‡ , AND ZHIMIN ZHANG§

Abstract. In this paper the local discontinuous Galerkin method (LDG) is considered for solving
one-dimensional singularly perturbed two-point boundary value problems of convection-diffusion type
and reaction-diffusion type. Error estimates are studied on Shishkin meshes. The L2 error bounds
for the LDG approximation of the solution and its derivative are uniformly valid with respect to the
singular perturbation parameter. Numerical experiments indicate that the orders of convergence are
sharp.
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1. Introduction

The discontinuous Galerkin (DG) method was introduced in 1973 as a way of
solving the steady-state neutron transport equation [16]. Successively in 1974, Lesaint
and Raviart made the first analysis for the linear advection equation [12]. Since then
many DG methods were vigorously studied. Among these is the local discontinuous
Galerkin (LDG) method, which was proposed in [3] and [9] by separating higher order
operators into systems of first order equations so that classical DG methods can be
extended to problems with second order operators, especially for convection-diffusion
and hyperbolic equations. The state of the art of the development of these methods
and their applications can be found in [1, 2, 5, 7, 10].

In this work, we apply the LDG method to 1-D singularly perturbed problems
with Dirichlet boundary conditions:

(1) Convection-diffusion-reaction problem

−ǫu′′+au′+bu=f in I=(0,1),

u=0 on ∂I={0,1}, (1.1)

where 0<ǫ≪1 is the diffusion parameter, a=a(x)≥α>0 accounts for the convection,
and b= b(x) accounts for the reaction term. The function f =f(x) is a given source
term. We assume that a, b, and f are sufficiently smooth on I and satisfy

b−a′/2≥ c0>0, (1.2a)

or b=0, a= constant (1.2b)

where α and c0 are constants independent of ǫ and mesh size.
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(2) Reaction-diffusion problem

−ǫu′′+bu=f in I=(0,1),

u=0 on ∂I={0,1}. (1.3)

Here 0<ǫ≪β2≤ b(x) for some constant β. We assume that b is sufficiently smooth
on the domain I.

It is well-known that if the standard h-version finite element method (FEM),
or the similar central difference method, is used in regions where layers occur, then
unphysical oscillations arise. This behavior is caused by a small interval of width
O(ǫ) or O(

√
ǫ) (so-called boundary layer) in which u′′ rapidly changes. Since the

solution of the standard FEM exhibits large nonphysical oscillation, many stabiliza-
tion techniques have been suggested, including upwind, streamline-diffusion FEMs,
discontinuous Galerkin methods, and least-squares FEMs [13, 14, 17, 20]. Another
effective way for globally solving this problem is to construct a numerical scheme on a
layer adapted mesh, such as Shishkin type meshes and Bakhvalov type meshes. There
are plenty of theoretical results about FEMs and stabilized FEMs on layer adapted
meshes [6, 17, 23]. Recently, the LDG method was considered [20, 22] for numerically
solving singularly perturbed problems on layer adapted meshes. Optimal convergence
and superconvergence of the LDG solution were observed. There are few analytical
results in the literature which have reported a uniform convergence of the DG methods
for singularly perturbed problems by using layer adapted meshes (see [18, 21, 24]).

The aim of this paper is to derive L2 error estimates of the LDG approximation
to the solution and its derivative on a Shishkin mesh for problem (1.1) and problem
(1.3). Using numerical traces and interpolation operators similar to those in [8], we

prove a uniform convergence rate O((lnN/N)
k+1

) of the LDG approximation to the
solution and its derivative, when polynomials of degree no more than k are used.
This convergence rate is nearly optimal up to a factor (lnN)k+1. Here “uniform con-
vergence” means that the convergence is uniformly valid with respect to the singular
perturbation parameter ǫ. Numerical tests indicate that this convergence rate is sharp
and the logarithm factor is not removable. This convergence analysis improves the re-
sult listed in [24], where a non-uniform convergence rate was shown for the singularly
perturbed convection-diffusion problems by using the LDG method and a Shishkin
mesh with a different transition number.

An outline of the paper is as follows. In Section 2, we introduce the LDG dis-
cretization. In Section 3, we define layer adapted meshes and state our main results.
The proof of main results and related lemmas are provided in Section 4. In Section
5, numerical experiments are presented to verify the uniform convergence rates.

Notations. Throughout this article, C denotes a generic constant which might
not be the same in each appearance. It might depend on the coefficient functions a,
b, the right-hand side function f , and the polynomial degree k, but is independent of
the singular perturbation parameter ǫ, the mesh number N , and the mesh sizes h and
H.

2. The LDG discretization

In this section, we first introduce the LDG method we will use to approximate the
solutions of problem (1.1) and problem (1.3). The LDG discretization is defined uni-
formly on an arbitrary mesh, in which the convection term vanishes when discussing
the reaction-diffusion problem (1.3).
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We begin by partitioning the domain I. If 0=x0<x1<...<xN−1<xN =1, we
denote by IN ={Ij =(xj−1,xj),j=1,2, · · · ,N} a partition of domain I, and by hj =
xj−xj−1 the length of the j-th element. Define v(x±j )= limδ→0v(x±δ) as in [11].
For each element Ij ∈IN , we set its outward unit normal nIj (xj)=1 and nIj (xj−1)=

−1. We denote vj =v(xj), v
±
j =v(x±j ), Jv0K=−v+0 , JvN K=v−N , and JvjK=v−j nIj (xj)+

v+j nIj+1
(xj)=v

−
j −v+j for j=1, · · · ,N−1. VN denotes the finite dimensional space of

functions that are polynomial of degree at most k on each element. For any D⊆IN
the Sobolev seminorm on Hs(D) is defined as

|v|s,D := (v(s),v(s))
1/2
D .

Accordingly, the Sobolev norm on Hr(D) is defined as

‖v‖r,D :=

(

r
∑

s=0

|v|2s,D

)1/2

.

We drop the first subscript whenever r=0, and the second one if D=IN .
Let q= ǫu′; we rewrite the problems (1.1) and (1.3) as

q= ǫu′ in I=(0,1),

−q′+au′+bu=f in I=(0,1),

u=0 on ∂I={0,1}.
(2.1)

We will search for an approximate solution (Q,U) of the LDG method in a finite-
dimensional subspace of H1(IN )×H1(IN ), VN ×VN . We consider the following prob-
lem (see [5]): Find (Q,U)∈VN ×VN , such that

(Q,w)IN
=−ǫ(U,w′)IN

+〈ǫûǫ,w〉∂IN
, (2.2a)

(Q−aU,v′)IN
−〈q̂,v〉∂IN

+〈aûc,v〉∂IN
+((b−a′)U,v)IN

=(f,v)IN
, (2.2b)

for all (w,v)∈VN ×VN . Here we have used the notations

(ϕ,ψ)IN
=
∑

Ij∈IN

(ϕ,ψ)Ij =
∑

Ij∈IN

∫

Ij

ϕ(x)ψ(x)dx,

and

〈ϕ,ψ〉∂IN
=
∑

Ij∈IN

〈ϕ,ψ〉∂Ij =
N
∑

j=1

[

ϕ−
j ψ

−
j −ϕ+

j−1ψ
+
j−1

]

.

For simplicity, we always write the above two inner products as (ϕ,φ) and 〈ϕ,ψ〉
without subscripts for any ϕ,φ∈H1(IN ).

To completely define the LDG scheme, it remains to define numerical traces at
nodal points. In this article, we take the following numerical traces:

q̂(xj)=Q
+
j −λjJUjK, forj=0,1, · · · ,N−1,

q̂(1)=Q(1−)−λNU(1−),

ûǫ(xj)=U
−
j , forj=1, · · · ,N−1,

ûǫ(0)=0; ûǫ(1)=0,

ûc(xj)=U
−
j , forj=1, · · · ,N,

ûc(0)=0,

(2.3)
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where λj ≥0 (j=0,1, · · · ,N) will be determined later. Substituting the numerical
traces (2.3) into (2.2), we have

ǫ−1(Q,w)+(U,w′)−
N−1
∑

j=1

U−
j JwjK=0,

(Q−aU,v′)+((b−a′)U,v)+(Q+
0 +λ0U

+
0 )v+0 −

N−1
∑

j=1

(Q+
j −λjJUjK)JvjK

−(Q−
N −λNU−

N )v−N +

N
∑

j=1

a−j U
−
j JvjK=(f,v). (2.4)

To describe the structure of the LDG scheme clearly, we define some bilinear forms:

a(Q,w)= ǫ−1(Q,w), (2.5a)

b1(U,w)=(U,w′)−
N−1
∑

j=1

U−
j JwjK, (2.5b)

b2(Q,v)=(Q,v′)−
N−1
∑

j=0

Q+
j JvjK−Q−

Nv
−
N , (2.5c)

c(U,v)=−(aU,v′)+((b−a′)U,v)+
N
∑

j=1

a−j U
−
j JvjK+

N
∑

j=0

λjJUjKJvjK, (2.5d)

f(v)=(f,v). (2.5e)

In this article we assume that a+j =a−j =aj for any j=0,1, · · · ,N . Using integration by
parts, we can verify that b1(v,w)=−b2(w,v). As a consequence, (2.4) can be written
into a system

a(Q,w)+b1(U,w)=0, (2.6a)

−b1(v,Q)+c(U,v)=f(v). (2.6b)

Remark 2.1. Although the auxiliary variable q := ǫu′, we actually used ǫ−1q :=u′ in
(2.6). Thus, the LDG formulation remains symmetric since ǫ appears only in a(Q,w).
It is possible to define the auxiliary variable q :=u′ or q :=

√
ǫu′. These two different

choices have no impact on the mesh and the numerical results since the generation of
the mesh depends only on the regularity of u. However, if we use them, more caution
is needed in doing theoretical analysis because there are many terms containing ǫ,
which would be mixed up easily.

The following proposition guarantees the existence and uniqueness of the numer-
ical solution defined by (2.2) and (2.3).

Proposition 2.2. If λj ≥0 (j=0,1, · · · ,N), then the LDG solution determined by
(2.2) and numerical traces (2.3) exists and is unique.

Proof. We only need to verify that Q=0, U =0 in (2.6) if f =0. Taking w=Q
and v=U , f =0 in (2.6), and adding (2.6a)and (2.6b) together we get

a(Q,Q)+c(U,U)

=ǫ−1‖Q‖2IN
−(aU,U ′)+((b−a′)U,U)+

N
∑

j=1

ajU
−
j JUjK+

N
∑

j=0

λjJUjK2

=0.

(2.7)
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By an integration by parts,

−(aU,U ′)=(aU,U ′)+(a′U,U)−
N
∑

j=1

[

aj(U
−
j )2−aj−1(U

+
j−1)

2
]

.

Solving the above equation for (aU,U ′) one has

−(aU,U ′)=
1

2
(a′U,U)− 1

2



−a0(U+
0 )2+

N−1
∑

j=1

aj
q
U2
j

y
+aN (U−

N )2



 . (2.8)

Therefore, the sum of the second term, the third term, and the fourth term of (2.7)
can be simplified as

((b−a′/2)U,U)+
1

2
a0
(

U+
0

)2− 1

2
aN
(

U−
N

)2

+

N−1
∑

j=1

aj

[

(

U−
j

)2−U−
j U

+
j − 1

2

(

U−
j

)2
+

1

2

(

U+
j

)2
]

+aN
(

U−
N

)2

=
∥

∥

∥(b−a′/2) 1
2U
∥

∥

∥

2

IN

+

N
∑

j=0

1

2
ajJUjK2.

(2.9)

By substituting (2.9) into (2.7), the left side of (2.7) becomes

a(Q,Q)+c(U,U)= ǫ−1‖Q‖IN
+
∥

∥

∥
(b−a′/2) 1

2U
∥

∥

∥

2

IN

+

N
∑

j=0

(
1

2
aj+λj)JUjK2, (2.10)

which implies that

U =0,Q=0 if (1.2a), (2.11a)

U ∈C0(I),Q=0 if (1.2b). (2.11b)

When (1.2b) holds true, using an integration by parts for (2.5b) we write (2.6a) as

ǫ−1(Q,w)−(U ′,w)−U+
0 w

+
0 +U−

Nw
−
N +

N−1
∑

j=1

JUjKw+
j =0.

It follows from (2.11b) that (U ′,w)=0 for all w∈VN , which implies that U is a piece-
wise constant function on I by taking w=U ′. This, together with the implementation
of (2.11b), proves that U =0. The existence and uniqueness of the LDG solution fol-
low as a consequence.

Define the compact form of our LDG discretization as

A(φ,ψ;w,v)=a(φ,w)+b1(ψ,w)+b2(φ,v)+c(ψ,v), (2.12)

for any (φ,ψ), (w,v)∈VN ×VN . Based on (2.10), the compact form (2.12) introduces
a norm

|(w,v)|2A :=A(w,v;w,v)= ǫ−1‖w‖2IN
+
∥

∥

∥(b−a′/2) 1
2 v
∥

∥

∥

2

IN

+

N
∑

j=0

(
1

2
aj+λj)JvjK2 (2.13)
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for any (w,v)∈VN ×VN .
By the consistency of the numerical traces, it is straightforward to verify the

orthogonality

A(q−Q,u−U ;w,v)=0 (2.14)

for any (w,v)∈VN ×VN .

3. Shishkin meshes and main results

We begin this section by defining our layer adapted meshes, i.e., Shishkin meshes.
Then we state our main results of the LDG method on Shishkin meshes. The proofs
will be provided in Section 4.

Shishkin meshes type 1: For convection-diffusion problem (1.1).

The exact solution of (1.1) admits a decomposition of the form

u= ū+uǫ,

where the component functions have the regularity [15, 23]

|ū(j)(x)|≤C and |u(j)ǫ (x)|≤Cǫ−je−α(1−x)/ǫ (3.1)

for all x in I and j=0,1, · · · ,k+2. Consequently, the decomposition of q is in the
form q= q̄+qǫ= ǫū

′+ǫu′ǫ with regularity

∣

∣

∣
q̄(j)(x)

∣

∣

∣
≤Cǫ,

∣

∣

∣
q(j)ǫ (x)

∣

∣

∣
≤Cǫ−je−α(1−x)/ǫ (3.2)

for any x in I and j=0,1, · · · ,k+1.
We now define a Shishkin mesh that is appropriate for the problem (1.1). Let

N ≥2 be a multiple of 2. Define the transition point number

τ =min

{

1

2
,
k+1

α
ǫ lnN

}

(3.3)

and set

H=2
1−τ
N

and h=2
τ

N
.

The nodes of the mesh IN are defined recursively by setting x0=0 and

xj =

{

xj−1+H, for j=1,2, . . . ,N/2,

xj−1+h, for j=N/2+1,N/2+2, . . . ,N.

Since the mesh IN is piecewise uniform we define

IR=
N/2
⋃

j=1

Ij and IBL=
N
⋃

j=N/2+1

Ij .

Clearly, IR is a uniform discretization of the interval (0,1−τ) of meshsize H, and IBL
is that of the interval (1−τ,1) of meshsize h.
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Shishkin meshes type 2: For reaction-diffusion problem (1.3).
The exact solution of the (1.3) admits a decomposition of the form

u= ū+uǫ,1+uǫ,2,

where the component functions have the regularity [15, 23]
∣

∣

∣
ū(j)(x)

∣

∣

∣
≤C,

∣

∣

∣
u
(j)
ǫ,1(x)

∣

∣

∣
≤Cǫ−j/2e−βx/

√
ǫ,

∣

∣

∣u
(j)
ǫ,2(x)

∣

∣

∣≤Cǫ−j/2e−β(1−x)/
√
ǫ

(3.4)

for any x in I and j=0,1, · · · ,k+2. The components of q= q̄+qǫ,1+qǫ,2= ǫū
′+ǫu′ǫ,1+

ǫu′ǫ,2 satisfy

∥

∥

∥
q̄(i)
∥

∥

∥

∞,I
≤Cǫ,

∣

∣

∣
q
(j)
ǫ,1(x)

∣

∣

∣
≤Cǫ−(j−1)/2e−βx/

√
ǫ,

∣

∣

∣q
(j)
ǫ,2(x)

∣

∣

∣≤Cǫ−(j−1)/2e−β(1−x)/
√
ǫ

(3.5)

for any x in I and j=0,1, · · · ,k+1.
We now define a Shishkin mesh that is appropriate for the problem (1.3). Let

N ≥4 be a multiple of 4. Let

τ =min

{

1

4
,
k+1

β

√
ǫ lnN

}

(3.6)

and set

H=2
(1−2τ)

N
and h=

4τ

N
.

The nodes of the mesh IN are defined recursively by setting x0=0 and

xj =











xj−1+h, for j=1,2, . . . ,N/4,

xj−1+H, for j=N/4+1, . . . ,3N/4,

xj−1+h, for j=3N/4+1, . . . ,N.

Since the mesh IN is piecewise uniform we define

IR=
3N/4
⋃

j=N/4+1

Ij and IBL=I \IR.

Clearly, IR is a uniform discretization of the interval (τ,1−τ) of meshsize H, and IBL
is that of the interval (0,τ)∪(1−τ,1) of meshsize h.

For the two types of Shishkin meshes, let us note that 1/N ≤H≤2/N , and hence
there exists a constant C ∈ (1/2,1) such that H=C/N .

We are now ready to state out main results. The first theorem is about the error
estimates for the LDG solution of the convection-diffusion problem (1.1).

Theorem 3.1. If λj =0 for all j=0,1, · · · ,N−1 and λN ≥0, then there exists a
constant C independent of ǫ and N such that

√
ǫ
∥

∥u′−ǫ−1Q
∥

∥+
∥

∥

∥(b−a′) 1
2 (u−U)

∥

∥

∥≤C
(

lnN

N

)k+1

, (3.7)
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and

|(q−Q,u−U)|A≤C
(

lnN

N

)k+ 1
2

. (3.8)

We will make some remarks before we state next theorem.

Remark 3.2. Comparing with the LDGmethod for non-singular problems considered
in [5], we see that the error bound in (3.7) is nearly optimal up to a factor (lnN)k+1.
It has been shown in [23] that the finite element method on Shishkin meshes achieves
a superconvergence rate that is the same as (3.7).

Remark 3.3. Error bounds in (3.7) and (3.8) are uniformly valid in terms of the
singular perturbation parameter ǫ since they are independent of ǫ. It was point out
in [21] that the the central point of global error estimates for singularly perturbed
problems is the ǫ independence. The author also gave a brief review of many results
in the literature, which have norms of the exact solution appearing in error bounds.

Remark 3.4. The LDG method was considered for solving singularly perturbed
convection-diffusion problem with Cauchy boundary conditions in [21]. The boundary
conditions were taken such that the problem can be separated into two first-order dif-
ferential equations. Then a uniform convergence rate

√
ǫ(lnN/N)k+1 was established

under the L2-norm for a first-order differential equation. However, this technique
cannot be applied to Dirichlet boundary conditions.

Our next result is the error estimate for the LDG solution of the reaction-diffusion
problem (1.3).

Theorem 3.5. If λj =0 for all j=0,1, · · · ,N−1 and λN ≥0, then there exists a
constant C independent of ǫ and N such that

√
ǫ
∥

∥u′−ǫ−1Q
∥

∥+‖u−U‖≤C
[

4
√
ǫ

(

lnN

N

)k+1

+
1

Nk+1

]

,

|(q−Q,u−U)|A≤C
(

lnN

N

)k+ 1
2

.

(3.9)

Moreover, if uR∈VN , then we have

√
ǫ
∥

∥u′−ǫ−1Q
∥

∥+‖u−U‖≤C
[

4
√
ǫ

(

lnN

N

)k+1

+
1

Nk+ 3
2

]

. (3.10)

Remark 3.6. Note that in [23], the finite element method on Shishkin meshes was
also applied to the reaction-diffusion problem and achieved the same convergence
rate, where the error was measured by a discrete ǫ-weighted norm. As a corollary, a
convergence rate of the error at mesh points was proved, although it is not optimal. In
Theorem 3.1 and Theorem 3.5, the convergence rates are established for the L2-norm.
The pointwise error estimate of the LDG approximation for both problems (1.1) and
(1.3) is an ongoing work.

Remark 3.7. If the parameters {λj}N0 take different values, then the convergence
rates may be inferior to those in Theorem 3.1 and Theorem 3.5, as shown at the end
of Section 4.4.
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Remark 3.8. The factor 4
√
ǫ is from the interpolation error estimates of uǫ and qǫ.

This factor cannot be removed by adjusting the transition number of the Shishkin
mesh. However, it may not be observed in the numerical experiments when ū is not
in the finite element space since the other term Nk+1 of (3.9) will be dominated if
ǫ≪1. These results are the same as Theorem 2.2 [23], where the error of the FEM
solution was bounded in a discrete energy norm.

Remark 3.9. The analysis of this work could be extended to the Bakhvalov type
meshes. The difficulty of the extension is in the interpolation error estimates. So
far there is no theoretical result in the literature about the uniform convergence of
discontinuous Galerkin methods on Bakhvalov type meshes.

4. Proofs

This section is devoted to the proof of the main results stated in Section 3. A
detailed proof for Theorem 3.1 is given. Since the proof of Theorem 3.5 is very similar,
we only sketch its proof in Section 4.2.

4.1. Proof of Theorem 3.1. To provide a detailed proof for Theorem 3.1, we
proceed in several steps. First, we define projection type interpolants and introduce
some approximation properties. In Step 2 we prove some interpolation error estimates.
Step 3 is the main step in which we estimate the errors between the interpolations
and the numerical solutions. Finally, in Step 4, we combine the estimates of Step 2
and Step 3 to prove Theorem 3.1.

Step 1: Interpolations. We use polynomial interpolation of degree k≥0. Let I=
(a+,a−) be an arbitrary interval and Pk(I) the space of polynomials of degree no
more than k on I.

For v∈C(I), we define the projection π±v∈Pk(I) by using the following two
conditions:

π±v(a±)=v(a±),

∫

I

[v(x)−π±v(x)]p′(x)dx=0

for any p(x)∈Pk(I). Define the interpolation of u and q as

Iu|Ij =π
−u|Ij , Iq|Ij =π

+q|Ij (4.1)

for any j=1,2, · · · ,N . Let ξu :=u−Iu, ηu := Iu−U , eu :=u−U , ξq := q−Iq, ηq :=
Iq−Q, and eq := q−Q. As a consequence, we have eu= ξu+ηu, eq = ξq+ηq.

In the following proof, we will estimate (ξq,ξu) and (ηq,ηu) separately. To esti-
mate the interpolation errors ξu and ξq, we need two preliminary lemmas and some
frequently used inequalities. The first lemma was proven in [19].

Lemma 4.1. (Lemma 3.7, [19]) For any v∈C(I), the interpolation operators π±

satisfy

∥

∥π±v
∥

∥

2

I
≤C

(

‖v‖2I + |v(a±)|2
)

(4.2)

on the reference element I=(a+,a−).

The second lemma gives elementwise error bounds of the interpolation (see [4]).
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Lemma 4.2. (Lemma 3.3, [4]) If IN is an arbitrary decomposition of the domain I
and u is the exact solution of problem (1.1) (or problem (1.3)), then there exists a
constant C such that

∣

∣ξu(x
+
j )
∣

∣≤Chs−
1
2

j ‖u‖s,Ij , j=0,1, · · · ,N−1, (4.3a)
∣

∣ξq(x
−
j )
∣

∣≤Chs−
1
2

j ‖q‖s,Ij , j=1,2, · · · ,N, (4.3b)

‖ξu‖Ij ≤Ch
s
j‖u‖s,Ij , (4.3c)

‖ξq‖Ij ≤Chsj‖q‖s,Ij , (4.3d)

for any Ij ∈IN (j=1,2, · · · ,N) and s=0,1, · · · ,k+1.

Two frequently used inequalities:

N/2−1
∑

i=0

He−2α(1−xi)/ǫ≤
∫ 1−τ

0

e−2α(1−x)/ǫdx≤CǫN−2(k+1), (4.4a)

e−2α(1−xN/2)/ǫ= e−2ατ/ǫ≤CN−2(k+1), (4.4b)

where we used the value of the transition point number (3.3).

Step 2: The estimation of (ξq,ξu).

Lemma 4.3. Suppose that u is the solution of the convection-diffusion problem (1.1)
satisfying regularity (3.1)-(3.2). There exists a constant C such that

ǫ−1/2‖ξq‖IN
+‖ξu‖IN

≤C
(

lnN

N

)k+1

, (4.5a)

∣

∣ξq(1
−)
∣

∣≤C
(

lnN

N

)k+1

, (4.5b)





N
∑

j=0

J(ξu)jK2




1
2

≤C
(

lnN

N

)k+ 1
2

. (4.5c)

Proof. To prove (4.5a), we estimate each component of the decomposition
u= ū+uǫ and q= q̄+qǫ. (3.1)-(3.2) state that the (k+1)-th derivatives of the regular
part ū and ǫ−1q̄ have constant upper bounds. Using (4.3c)-(4.3d) we have

‖ξq̄‖IN
≤C(HN+1+hk+1)|q̄|Hk+1(I)≤CǫN−(k+1),

‖ξū‖IN
≤C(HN+1+hk+1)|ū|Hk+1(I)≤CN−(k+1).

(4.6)

Next, we shall estimate the other components ξuǫ
and ξqǫ on IR and IBL separately.

Applying (4.3c)-(4.3d) to each element of IBL and using the regularity (3.1)-(3.2) one
obtains

‖ξqǫ‖IBL
+‖ξuǫ

‖IBL
≤Chk+1

(

|qǫ|Hk+1(IBL)+ |uǫ|Hk+1(IBL)

)

≤Chk+1

[∫ 1

1−τ

ǫ−2(k+1)e
−2α(1−x)

ǫ dx

]

1
2

≤C
√
ǫ

(

lnN

N

)k+1

,

(4.7)
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where we used the fact that IBL is an uniform discretization of the domain (1−τ,1)
of meshsize h.

Consider the estimation on IR. By triangle inequality we get ‖ξqǫ‖IR
≤‖qǫ‖IR

+
‖Iqǫ‖IR

. The first term is estimated by combining (4.3d) and (3.2),

‖qǫ‖IR
≤C

(∫ 1−τ

0

e−2α(1−x)/ǫdx

)

1
2

≤C
√
ǫN−(k+1). (4.8)

Here we used (3.3). Applying (4.2), the scaling argument, and (4.4a) to the second
term yields

‖Iqǫ‖IR
≤C



‖qǫ‖2IR
+H

N/2−1
∑

i=0

|qǫ(xi)|2




1
2

≤C



ǫN−2(k+1)+H

N/2−1
∑

i=0

e−2α(1−xi)/ǫ





1
2

≤
√
ǫN−(k+1).

(4.9)

Combining (4.8) with (4.9) establishes the error estimate of ξq on IR. Like the above
proof, it can be shown that ξu is bounded by

‖ξuǫ
‖IR

≤2
(

‖uǫ‖2IR
+‖Iuǫ‖2IR

)
1
2 ≤C

√

ǫ+1/NN−(k+1). (4.10)

The result (4.5a) immediately follows from the combination of (4.6)-(4.10).

Next, we consider the interpolation error at nodal points. Using (4.3b) we have
∣

∣ξq(1
−)
∣

∣≤Chk+ 1
2 |q|k+1,IN ≤Chk+ 1

2 ǫ−(k+1)h
1
2 ≤C (lnN/N)

k+1
.

In view of (4.1), J(ξu)jK2=(ξu)
+
j for all j=0,1, · · · ,N−1 and J(ξu)N K2=0. By (4.3a)

and (3.1),

N−1
∑

j=N/2

[

(ξu)
+
j

]2≤Ch2k+1|u|2k+1,IBL
≤C(lnN/N)2k+1. (4.11)

Using the decomposition of u and triangle inequality one has

N/2−1
∑

j=0

[

(ξu)
+
j

]2≤
N/2−1
∑

j=0

[

(ξū)
+
j

]2
+

N/2−1
∑

j=0

(uǫ)
2
j +

N/2−1
∑

j=0

[

(Iuǫ)
+
j

]2
. (4.12)

Applying (4.3a) and (3.1) yields an upper bound CN−(2k+1) for the first term of
(4.12). By (3.1) and (4.4a), the second term is bounded by CǫN−(2k+1). To estimate
the third term of (4.12), we need the trace inequality

(Iuǫ)
+
j =−

∫ xj+1

xj

(Iuǫ)
′dx≤CH 1

2 ‖(Iuǫ)′‖Ij ≤CH− 1
2 ‖Iuǫ‖Ij (4.13)

for j=0,1, · · · ,xN/2−1. Here we have used the inverse inequality to prove the last
step. By (4.13) and (4.2), we get

N/2−1
∑

j=0

[

(Iuǫ)
+
j

]2≤CH−1‖Iuǫ‖2IR
≤CH−1



‖uǫ‖2IR
+H

N/2
∑

j=0

(uǫ)
2
j




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which, by (3.1) and (4.4), is bounded by C(ǫ+1/N)N−(2k+1). Combining error
bounds of the three terms of (4.12), together with (4.11), yields (4.5c).

Step 3: The boundedness of A(ξq,ξu;w,v).

Lemma 4.4. If λN ≥0, λj =0 for j=0,1, · · · ,N−1, then there exists a constant C
such that

A(ξq,ξu;w,v)≤C
(

lnN

N

)k+1

|(w,v)|A (4.14)

for any (w,v)∈VN ×VN .

Proof. By the definition of the bilinear form A (2.12), we have

A(ξq,ξu;w,v)=a(ξq,w)+b1(ξu,w)+b2(ξq,v)+c(ξu,v)

=S1+S2+S3+S4.

We estimate S1-S4 individually. First, using Schwarz’s inequality and (4.5a) one
obtains

S1≤ ǫ−1‖ξq‖IN
‖w‖IN

≤C
(

lnN

N

)k+1

ǫ−1/2‖w‖IN
≤C

(

lnN

N

)k+1

|(w,v)|A . (4.15)

The definition of the interpolation operator (4.1) implies (ξu,w
′)=(ξq,v

′)=0, (ξu)
−
j =

0 for j=1,2, · · · ,N and (ξq)
+
j =0 for j=0,1, · · · ,N−1. Therefore,

S2=(ξu,w
′)+

N−1
∑

j=1

(ξu)
−
j J(w)jK=0, (4.16)

S3=(ξq,v
′)−

N−1
∑

j=0

(ξq)
+
j J(v)jK−ξq(1−)v(1−)=−ξq(1−)v(1−).

Using error estimate (4.5b) and the definition of the norm (2.13) we get

S3≤C
∣

∣ξq(1
−)
∣

∣ |(w,v)|A≤C
(

lnN

N

)k+1

|(w,v)|A. (4.17)

Consider S4. Let ā be a piecewise constant function defined by ā|Ij =
1

hj

∫

Ij

a(x)dx for

all j=1,2, · · · ,N . Therefore, (ξu, āv
′)=0 and ‖a− ā‖L∞(Ij)≤Chj‖a‖W 1

∞(Ij) for any

j=1,2, · · · ,N . Like the proof of S2, we use the facts (ξu)
−
j =0 for j=1,2, · · · ,N and

(ξq)
+
j =0 for j=0,1, · · · ,N−1 to obtain

S4=(ξu,(a− ā)v′)−(ξu,(b−a′)v)+
N
∑

j=0

λjJ(ξu)jKJ(v)jK.

Consider the first two terms of S4. If (1.2b) holds true, instantly we have (ξu,(a−
ā)v′)+(ξu,(b−a′)v)=0. Otherwise, if (1.2a), by Schwarz’s inequality, the approxi-
mation property of ā and inverse inequality we obtain

(ξu,(a− ā)v′)≤C
N
∑

j=1

hj‖a‖W 1
∞(Ij)

1

hj
‖ξu‖Ij‖v‖Ij ≤C‖ξu‖IN

∥

∥

∥

√

b−a′/2v
∥

∥

∥

IN

.
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It is straightforward to prove that the second term of S4 is also bounded

by C‖ξu‖IN

∥

∥

∥

√

b−a′/2v
∥

∥

∥

IN

. Here the constant C depends on b, a′, and

c0. By (2.13) and Schwarz’s inequality, the third term of S4 is controlled by
(

N
∑

j=0

λjJ(ξu)jK
)1/2(

N
∑

j=0

λjJvjK
)1/2

. Since

(

N
∑

j=0

λjJvjK
)1/2

and
∥

∥

∥

√

b−a′/2v
∥

∥

∥

IN

are

parts of the |(w,v)|A, we use (4.5) to prove

S4≤















C
(

lnN
N

)k+1 |(w,v)|A, if λN ≥0; λj =0, j=0,1, · · · ,N−1;

C
(

lnN
N

)k+ 1
2 |(w,v)|A, if λj =O(1), j=0,1, · · · ,N ;

C
(

lnN
N

)k |(w,v)|A if λj =O( ǫ
h ), j=0,1, · · · ,N.

Collecting the estimates of S1-S4 establishes the estimate (4.14).

Step 4: Proof of Theorem 3.1.

Proof. If we set (w,v)=(ηq,ηu) in the compact form A(ηq,ηu;w,v), it follows
directly by using the definition of the norm (2.13) and the orthogonality property
(2.14) that

|(ηq,ηu)|2A=A(ηq,ηu;ηq,ηu)

=A(−ξq,−ξu;ηq,ηu)+A(eq,eu;ηq,ηu)

=A(−ξq,−ξu;ηq,ηu)
=−A(ξq,ξu;ηq,ηu).

Therefore, the combination of Lemma 4.3 and Lemma 4.4 produces the error estimate

|(ηq,ηu)|A≤C
(

lnN

N

)k+1

(4.18)

for convection-diffusion problem (1.1). Combining (4.18), (4.5a), and (4.5c) we obtain
(3.7) and (3.8).

4.2. Proof of Theorem 3.5. Since the proof of Theorem 3.5 is similar to
the proof of Theorem 3.1, we only provide the outline of the proof. Like Section 4.1,
we proceed in several steps.

Step 1: The estimation of (ξq,ξu). We use the same interpolations as in Section 4.1.
The interpolation error bounds for the reaction-diffusion are derived in a similar way.
The proof is done by straightforward calculation which is analogous to the proof of
Lemma 4.3.

Lemma 4.5. Suppose that u is the solution of the reaction-diffusion problem (1.3)
satisfying regularity (3.4)-(3.5). There exists a constant C such that

ǫ−1/2‖ξq‖IN
+‖ξu‖IN

≤C
[

4
√
ǫ

(

lnN

N

)k+1

+
1

Nk+1

]

, (4.19a)





N
∑

j=0

J(ξu)jK2




1
2

≤C
(

lnN

N

)k+ 1
2

, (4.19b)

∣

∣ξq(1
−)
∣

∣≤C
√
ǫ

(

lnN

N

)k+1

. (4.19c)
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Moreover, if the regular part of the solution ū∈VN , there exists a constant C such
that

ǫ−1/2‖ξq‖IN
+‖ξu‖IN

≤C
[

4
√
ǫ

(

lnN

N

)k+1

+
1

Nk+ 3
2

]

, (4.20)

Proof. Like the proof of Lemma 4.3, we estimate each component of u and q
using similar arguments.

(1) Consider ‖ξq‖IN
and ‖ξu‖IN

on IN . The analysis is based on the regularities
(3.5)-(3.4). Firstly, we have

‖ξū‖IN
≤CN−(k+1),

∥

∥ξuǫ,1

∥

∥

IN
≤
∥

∥ξuǫ,1

∥

∥

(0,τ)
+
∥

∥ξuǫ,1

∥

∥

(τ,1−τ)
+
∥

∥ξuǫ,1

∥

∥

(1−τ,1)
.

(4.21)

From the scaling arguments, (4.2), (4.3c), and (4.3d), we obtain

∥

∥ξuǫ,1

∥

∥

2

(0,τ)
≤Ch2(k+1)‖uǫ,1‖2(0,τ)

≤C
(√

ǫ lnN

N

)2(k+1)

ǫ−(k+1)

∫ τ

0

e
− 2βx

√
ǫ dx≤C

√
ǫ

(

lnN

N

)2(k+1)

,

∥

∥ξuǫ,1

∥

∥

2

(1−τ,1)
≤Ch2(k+1)‖uǫ,1‖(1−τ,1)

≤C
(√

ǫ lnN

N

)2(k+1)

ǫ−(k+1)

∫ 1

1−τ

e
− 2βx

√
ǫ dx≤C

(√
ǫ lnN

N

)2(k+1)

,

∥

∥ξuǫ,1

∥

∥

2

(τ,1−τ)
≤C ‖uǫ,1‖2(τ,1−τ)+C

3N/4
∑

i=N/4+1

H |uǫ,1(xi)|2

≤C
∫ 1−τ

τ

e
− 2βx

√
ǫ dx≤C

√
ǫ
(

e
− 2β(1−τ)

√
ǫ −e−

2βτ
√

ǫ

)

≤C
√
ǫN−2(k+1).

Combining the above inequalities and (4.21) yields

∥

∥ξuǫ,1

∥

∥

IN
≤C 4

√
ǫ

(

lnN

N

)k+1

. (4.22)

By the symmetric regularities of uǫ,1 and uǫ,2, we use the same technique to obtain

∥

∥ξuǫ,2

∥

∥

(0,τ)
+
∥

∥ξuǫ,2

∥

∥

(1−τ,1)
≤C

(√
ǫ lnN

N

)k+1

+C 4
√
ǫ

(

lnN

N

)k+1

,

∥

∥ξuǫ,2

∥

∥

(τ,1−τ)
≤C

(∫ 1−τ

τ

e
− 2βx

√
ǫ dx

)1/2

+C
√
H |uǫ,2(1−τ)|

≤C
(

4
√
ǫ+

1√
N

)

N−(k+1),

which implies that

∥

∥ξuǫ,2

∥

∥

IN
≤C

[

4
√
ǫ

(

lnN

N

)k+1

+N−(k+ 3
2 )

]

. (4.23)
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The combination of (4.21)-(4.23) yields the upper bound of ‖ξu‖IN
:

‖ξu‖IN
≤C

[

4
√
ǫ

(

lnN

N

)k+1

+N−(k+1)

]

. (4.24)

By the decomposition of q= q̄+qǫ,1+qǫ,2= ǫū+ǫuǫ,1+ǫuǫ,2, the analogous analysis
can be applied to the estimation of q. The detailed proof is omitted. We only list the
error bounds for each component of q:

‖ξq̄‖IN
≤CǫN−(k+1),

1√
ǫ
‖ξqǫ,1‖IN

≤C
[

4
√
ǫ

(

lnN

N

)k+1

+N−(k+ 3
2 )

]

,

1√
ǫ
‖ξqǫ,2‖IN

≤C 4
√
ǫ

(

lnN

N

)k+1

.

(4.25)

Thus, the error bound of ‖ξq‖IN
follows by combining these three error estimates:

1√
ǫ
‖ξq‖IN

≤C
[

4
√
ǫ

(

lnN

N

)k+1

+N−(k+ 3
2 )

]

. (4.26)

The inequality (4.19a) follows directly from (4.24) and (4.26).

(2) The other two inequalities (4.19b) and (4.19c) can be shown by repeating the
proof of (4.5c) and (4.5b) under the assumption of (3.5) and (3.4):





N
∑

j=0

J(ξū)jK2




1
2

≤C
(

lnN

N

)k+ 1
2

,





N
∑

j=0

J(ξuǫ
)jK2





1
2

≤C
(

lnN

N

)k+ 1
2

,

∣

∣ξq̄(1
−)
∣

∣≤Cǫk+2

(

lnN

N

)k+1

,
∣

∣ξqǫ(1
−)
∣

∣≤C
√
ǫ

(

lnN

N

)k+1

.

The combination of these error bounds yields (4.19b)-(4.19c). If ū∈VN , we have ξū=
ξq̄ =0. Therefore, it is straightforward to verify (4.20) by collecting error estimates
(4.22), (4.23), and (4.25).

Step 2: The boundedness of A(ξq,ξu;w,v). Since the convection term is gone, i.e.,
a(x)=0, this step is almost the same as Step 3 of Section 4.1. The error estimations
are in the following lemma. The proof is omitted.

Lemma 4.6. If λN ≥0, λj =0 for j=0,1, · · · ,N−1, then there exists a constant C
such that

A(ξq,ξu;w,v)≤C
[

4
√
ǫ

(

lnN

N

)k+1

+
1

Nk+1

]

|(w,v)|A.

Moreover, if ū∈VN , then

A(ξq,ξu;w,v)≤C
[

4
√
ǫ

(

lnN

N

)k+1

+

(

1

N

)k+ 3
2

]

|(w,v)|A.
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Step 3: Proof of Theorem 3.5. Repeating the analysis of the error (ηq,ηu) in the
Step 4 of Section 4.1 we have

|(ηq,ηu)|A≤C
(

lnN

N

)k+1

, (4.27)

and if the regular part of the solution ū∈VN ,

|(ηq,ηu)|A≤C
[

4
√
ǫ

(

lnN

N

)k+1

+

(

1

N

)k+ 3
2

]

. (4.28)

Combining (4.27) and (4.19) we obtain (3.9). (3.10) directly follows (4.28) and (4.20).

5. Numerical results

In this section, we display numerical results to verify our theoretical results. We
consider three test problems. In order to observe the order of convergence of the error,
at each refinement of the mesh, we compute the approximate order of convergence as
follows. Define the ǫ-seminorm of the error (eq,eu) as

|(eq,eu)|ǫ := ǫ−
1
2 ‖eq‖IN

+‖eu‖IN
.

Let |(eq,eu)|Nǫ denote the error of approximation using a mesh with N elements, then

logp

(

|(eq,eu)|Nǫ
|(eq,eu)|2Nǫ

)

with base p=2(lnN/ln2N) is the approximate order of convergence. This is a re-
flection of the fact that, due to Theorem 3.1 and Theorem 3.5, we are expecting
a convergence with respect to a power of lnN/N . We display this quantity in the
columns of Table 5.1-5.3 labeled “order”.

Test Problem 1. We consider convection-diffusion problem (1.1) with a(x)= e−x,
b(x)=1 such that the exact solution u(x) is

u(x)=x
(x

2
+ǫ
)

− ( 12 +ǫ)(e
(x−1)/ǫ−e−1/ǫ)

1−e−1/ǫ
.

Let the stabilization parameter λj =0 for j=0,1, · · · ,N . From Table 5.1, we see that
the error of |(eq,eu)|ǫ indeed converges uniformly with order (lnN/N)k+1 as predicted
by Theorem 3.1. Since Theorem 3.1 states that convergence rates are independent of
the parameter ǫ, the errors for different ǫ values will be very close, which is confirmed
by numerical results in Table 5.1. The errors are plotted in Figure 5.1, in which we
denote by Ek (k=1,2,3) the L2 errors when using a piecewise polynomial space of
degree k (k=1,2,3).

Test Problem 2. We consider convection-diffusion problem (1.1) with a(x)=1,
b(x)=0, and f(x)=sinπx such that the exact solution u(x) is

u(x)=
1+e−1/ǫ−2e−(1−x)/ǫ

π(1+π2ǫ2)(1−e−1/ǫ)
+
ǫπ sinπx−cosπx

π(1+π2ǫ2)
.

Let the stabilization parameter λj =0 for j=0,1, · · · ,N . The data in Table 5.2
verifies the theoretical results of Theorem 3.1. The errors are plotted in Figure 5.2.
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ǫ=10−4

k=1 k=2 k=3
N error order error order error order
32 3.86e-03 - 4.43e-04 - 5.46e-05 -
64 1.42e-03 1.96 9.89e-05 2.94 7.43e-06 3.91
128 4.87e-04 1.98 1.99e-05 2.97 8.79e-07 3.96
256 1.60e-04 1.99 3.75e-06 2.99 9.47e-08 3.98
512 5.09e-05 1.99 6.71e-07 2.99 9.53e-09 3.99

ǫ=10−8

k=1 k=2 k=3
N error order error order error order
32 3.86e-03 - 4.42e-04 - 5.46e-05 -
64 1.46e-03 1.96 9.88e-05 2.93 7.42e-06 3.91
128 4.87e-04 1.98 1.99e-05 2.97 8.79e-07 3.96
256 1.60e-04 1.99 3.75e-06 2.98 9.45e-08 3.98
512 5.09e-05 1.99 6.71e-07 2.99 9.47e-09 4.00

Table 5.1. History of convergence for |(eq ,eu)|ǫ for Test Problem 1. τ =(k+1)ǫlnN .
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Fig. 5.1. The LDG method for Test Problem 1 with k=1,2,3, ǫ=10−4,10−8.
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Fig. 5.2. The LDG method for Test Problem 2 with k=1,2,3, ǫ=10−4,10−8.
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ǫ=10−4

k=1 k=2 k=3
N error order error order error order
32 4.77e-03 - 5.51e-04 - 6.81e-05 -
64 1.77e-03 1.94 1.24e-04 2.92 9.33e-06 3.89
128 6.14e-04 1.97 2.52e-05 2.96 1.11e-06 3.95
256 2.03e-04 1.98 4.75e-06 2.98 1.20e-07 3.98
512 6.46e-05 1.99 8.52e-07 2.99 1.21e-08 3.99

ǫ=10−8

k=1 k=2 k=3
N error order error order error order
32 4.77e-03 - 5.51e-04 - 6.81e-05 -
64 1.77e-03 1.94 1.24e-04 2.92 9.33e-06 3.89
128 6.14e-04 1.97 2.52e-05 2.96 1.11e-06 3.95
256 2.03e-04 1.98 4.75e-06 2.98 1.20e-07 3.98
512 6.46e-05 1.99 8.52e-07 2.99 1.21e-08 3.98

Table 5.2. History of convergence for |(eq ,eu)|ǫ for Test Problem 2. τ =(k+1)ǫlnN .

Test Problem 3. We apply the LDG method to reaction-diffusion problem (1.3)
with b(x)=1, and f(x)=1 such that the exact solution u(x) is

u(x)=1− e−x/
√
ǫ+e(x−1)/

√
ǫ

1+e−1/
√
ǫ

.

It is clear that the regular part ū of the exact solution is in the approximation space
VN . Let the value of the stabilization parameter λj =0 for j=0,1, · · · ,N−1, and λN =
k/h. Table 5.3 indicates that the error of |(eq,eu)|ǫ converges with order (lnN/N)k+1.
Comparing errors for different values of ǫ, is is easy see the presence of the factor
4
√
ǫ. Table 5.3 also indicates that the term 4

√
ǫ(lnN/N)

k+1
in (3.10) dominates the

convergence rate of the error. The reason is that the second term N−(k+3/2) of the
error bound (3.10) is smaller than the dominating term when ū∈VN , as predicted by
Theorem 3.5. All errors of Table 5.3 are plotted in Figure 5.3.
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Fig. 5.3. The LDG method for Test Problem 3 with k=1,2,3, ǫ=10−4,10−8.
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ǫ=10−4

N E1 r1 E2 r2 E3 r3
32 5.64e-03 - 1.26e-03 - 2.93e-04 -
64 2.18e-03 1.86 3.01e-04 2.80 4.42e-05 3.71
128 7.70e-04 1.93 6.28e-05 2.91 5.48e-06 3.87
256 2.56e-04 1.97 1.20e-05 2.96 6.02e-07 3.95
512 8.15e-05 1.99 2.15e-06 2.99 6.09e-08 3.98

ǫ=10−8

N E1 r1 E2 r2 E3 r3
32 5.65e-04 - 1.26e-04 - 2.93e-05 -
64 2.18e-04 1.86 3.01e-05 2.80 4.42e-06 3.71
128 7.70e-05 1.93 6.28e-06 2.91 5.48e-07 3.87
256 2.56e-05 1.97 1.20e-06 2.96 6.02e-08 3.95
512 8.15e-06 1.99 2.15e-07 2.99 6.09e-09 3.98

Table 5.3. History of convergence for |(eq ,eu)|ǫ for Test Problem 3. τ =(k+1)
√
ǫ lnN .

6. Concluding remarks

In this paper, we present a priori error analysis of the LDG method on Shishkin
meshes for one-dimensional singularly perturbed problems of convection-diffusion type
and reaction-diffusion type. For both problems, we have proven that the orders of
convergence of the LDG approximation are almost optimal and uniform regardless
of the size of the perturbation parameter ǫ. For the reaction-diffusion problem, the
orders of convergence contain a positive power of parameter ǫ, which has no nega-
tive impact on the convergence rates. Numerical experiments verify our theoretical
finding. The analysis of the LDG method on other types of layer adapted meshes is
currently underway. For two-dimensional problems, the superconvergence of the LDG
method is discussed for the convection-diffusion problems with ǫ=1 in [8]. We will
consider the LDG approximation for two-dimensional singularly perturbed problems
in a forthcoming paper.
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