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A WELL-POSED SIMULATION MODEL FOR MULTICOMPONENT
REACTING GASES∗

JACQUES SCHNEIDER†

Abstract. We aim to present a relaxation model that can be used in real simulations of dilute
multicomponent reacting gases. The kinetic framework is the semi-classical approach with only one
variable for the internal energy modes. The relaxation times for the internal energy modes are assumed
to be smaller than the chemistry characteristic times. The strategy is the same as in [S. Brull and J.
Schneider, Commun. Math. Sci., 12, 1199–1223, 2014]. That is, a sum of operators for respectively
the mechanical and chemical processes. The mechanical operator(s) is the “natural” extension to poly-
atomic gases of the method of moment relaxations presented in [S. Brull and J. Schneider, Cont. Mech.
Thermodyn. 20(2), 63–74, 2008] [S. Brull, V. Pavan, and J. Schneider, Eur. J. Mech. (B-Fluids), 33,
74–86, 2012]. The derivation of the chemical model lies on the chemical processes at thermal equilibria.
It is shown that this BGK approach features the same properties as the Boltzmann equation: conserva-
tions and entropy production. Moreover, null entropy production states are characterized by vanishing
chemical production rates. We also study the hydrodynamic limit in the slow chemistry regime. Finally,
we show that the whole set of parameters that are used in the derivation of the model can be calculated
by softwares such as EGlib [A. Ern, V. Giovangigli, http://www.cmap.polytechnique.fr/www.eglib/ ]
or STANJAN [B. Reynolds, http://www.stanford.edu/].
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tion, hydrodynamic limit.
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1. Introduction

The Boltzmann equation for multicomponent reacting gases features many phenom-
ena that may occur at the microscopic level: elastic and nonelastic collisions, transfer of
energy between the different internal energy modes, chemical collisions, etc. An exten-
sive literature on the different Boltzmann equations, as well as mathematical modeling,
can be found in the book of Nagnibeda and Kustova [33]. Simplified models under
strong non-equilibrium assumptions rely essentially on the Chapman–Enskog expansion
in a state-to-state approach or, equivalently, under the different time scales of each phe-
nomena. Once the relative scales are set, this requires one to evaluate the corresponding
transport coefficients on one side and to write evolution equations for the densities on
the other side. For example, one can consider the evolution of the concentrations of rota-
tional quantum levels for each species. The collisions resulting in vibrational exchanges
and/or chemical reactions are then averaged on the velocity space under suitable as-
sumptions on the translational and rotational distributions (Maxwell–Boltzmann). This
results in source terms that can be evaluated by analytical methods and/or experiments
(see for example [14]).

In the present article, we will not address the strong non-equilibrium regime. The
physical framework will be that of a moderately non-equilibrium regime with slow chem-
ical reactions. The corresponding Boltzmann equation is stated in the semi-classical ap-
proach for which the internal energy states for a given species are described by a single
variable. This theory was derived by Waldmann and Trüdenbacher [37] for a nonre-
active gas mixture. Ludwig and Heil [31] would eventually include reactive collisions
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(dissociation). The generalization to dissociation and recombination, including triple
collisions, was given by Kũscer [29] and Grunfeld [25] and can also be found in classical
textbooks [16, 19]. In the present paper, we intend to derive a simplified model for
dilute polyatomic gases undergoing chemical reactions. For the Navier–Stokes system
of equations for reactive collisions, BGK [4] type relaxtion operators may bring more
information than the corresponding moment method. Notice also that those moment
equations are the “simplest” model in the hierarchy of Nagnibeda and Kustova [33].
Our aim is to construct a kinetic model based on one side on mechanical relaxation
processes and on the other side on chemical reactions near thermal equilibria. The
seminal model of Bhatnagar, Gross, and Krook must be generalized and improved in
order to keep as much information as possible coming from the non-equilibrium distri-
bution functions. We only retain some of the advances that were obtained in the case
of gas of monatomic gas mixtures, namely the works of Garsó, Santos, and Brey [24],
Andriès, Aoki, and Perthame [1], and finally Brull, Pavan, and the author [11]. The
first of these models is actually used in practical applications. The second has brought
a nice mathematical setting — positivity of its solutions, H-theorem, etc. — together
with the right collision frequencies in the case of Maxwellian molecules. The last one
proposes a systematic way to construct well-posed relaxation models based, more or
less, on the study of the linearized Boltzmann operator and on the transport coeffi-
cients of the hydrodynamic limit (Navier–Stokes equations). To our knowledge, BGK
type models addressing chemical reactions have been mainly investigated by Groppi,
Spiga, and other researchers in Parma [5, 6, 21, 22]. In the same vein, one should also
cite the works of Kremer, Pandolfi, and Soares [28]. Their framework is that of a four
component gas mixture undergoing a bimolecular reversible reaction

M1+M2�M3+M4

with only one quantum internal energy per molecule. Thus mechanical collisions are
elastic and treated as in [1]. Those pioneering works constitute a solid basis for further
investigations despite the fact that they are unlikely to be generalized to real polyatomic
gases. A good analysis of them, as well as a perception of their drawbacks, can provide
insight about what could be done.

The aim of this article is to introduce a BGK model that goes beyond such an anal-
ysis. We do not only intend to design a well-posed simulation model (H-theorem, etc.)
but also to address physical simulations of multicomponent reacting gases. We adopt
the strategy that was introduced in [10] and employ a sum of BGK models that fea-
tures the natural distinction between nonreactive and reactive collisions. This strategy
applies especially in the case where the difference between the respective characteristic
times of each phenomena is of a sufficiently large order of magnitude. The founding idea
is to bring information from the macroscopic level to the kinetic one. In this vein, we
extend to polyatomic gases the method of moments relaxation introduced in [8, 11]. The
real novelty lies in the derivation of the chemical operators by making use of chemical
processes at thermal equilibrium. We construct for a given species i a single BGK type
model that takes into account all chemical reactions where i is either a reactant or a
product (or both).

The paper is organized as follows. We first introduce the notations and all neces-
sary materials for the rest of the paper. In particular, the semi-classical approach is
briefly described for the sake of consistency. In Section 3, we recall two formulations of
the Navier–Stokes equations for polyatomic mixtures after a short introduction on the
method of moments relaxation (MMR). In the first one, the fluxes are expressed using
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the thermodynamics of irreversible processes [32, 13, 18, 11]. It is the natural frame-
work of the MMR. Yet, our method is for the moment incomplete and is constructed
assuming that only the diffusion matrix is known (second formulation [37, 31, 20, 16]).
We then present the derivation of the mechanical operator in two steps. Some neces-
sary assumptions are proved a posteriori in the third step together with the H-theorem.
Section 4 is devoted to the chemical relaxation model. We firstly address the case of a
single reaction and secondly construct the operator for a full chain of reactions. Finally,
we prove that all physical properties are satisfied: conservation of atom mass concen-
trations, mean velocity, and total energy together with entropy production. In Section
5, we study the whole model: 1 - states corresponding to null entropy production, 2 -
hydrodynamic limit. We also summarize the steps of the whole construction. In partic-
ular, we show that the whole set of parameters that are used in the construction of the
model can be calculated by softwares such as EGlib [17] or STANJAN [36].

2. Boltzmann equation and notations

2.1. Notations. We consider a set S of polyatomic gases composed of p species.
For the purpose of notation, we often use the same letter/index i to denote either a
species in S or its number in {1, · · · ,p}. Then for each species i∈S, we denote with
fi(t,x,v,I) the distribution function where t,x,v, I are respectively the time, position,
velocity, and index for the internal energy states of the ith species. Each internal energy
is denoted with EiI which includes both the Ith quantum energy state together with the
energy of formation. Macroscopic quantities are obtained, as usual, from the distribution
functions fi in the following way. The number density of the ith species is given by

ni=
∑
I∈Ωi

∫
fidv

so that its mass density per unit volume is

ρi=min
i=

∑
I∈Ωi

∫
mifidv

where mi denotes the mass of the molecules of the ith species. The hydrodynamic
velocity u is given by

ρu=
∑
i∈S
I∈Ωi

∫
mivfidv

where ρ=
∑

i∈S ρi is the total mass density. We may also define the total density
n=

∑
i∈Sn

i which is often used when there are no chemical reactions. The internal
energy E per unit volume is given by

1

2
ρu2+E=

∑
i∈S
I∈Ωi

∫
(
1

2
miv

2+EiI)fi(t,x,v,EiI)dv. (2.1)

The kinetic entropy Skin per unit volume is defined by

Skin(f)=−kB
∑
i∈S
I∈Ωi

∫
fi
(
log(βiIfi)−1

)
dv
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where the statistical weight βiI is given by

βiI =
h3P

aiIm3
i

.

Here hP is the Planck constant and aiI is the degeneracy of the Ith quantum energy
shell of the ith species. Let us point out that Skin corresponds to the physical kinetic
entropy, contrary to the mathematical entropy H which is often used for mathematical
convenience and is of the opposite sign.

2.2. Boltzmann equation. In this section, we briefly recall the reactive ki-
netic Boltzmann equations in the semi-classical approach. The non reactive Boltzmann
equation for polyatomic gas mixtures that we consider is obtained in a semiclassical
approach. It was derived by Waldmann and Trüdenbacher [37] and can be found in
different textbooks [16, 19], etc. The chemical source terms were derived by Ludwig
and Heil [31] and generalized by different authors [29, 25] and can be found again in
the above textbooks. This operator will not be detailed because it is required in the
present work. The Boltzmann equation without external forces reads as

∂tfi+v.∇xfi=Si(f)+Ci(f), i∈S, (2.2)

where Si(f) is the nonreactive, or scattering, source term and Ci(f) is the reactive, or
chemistry, source term.

The nonreactive collision term. This term reads as

Si(f)=
∑
j∈S

∑
I′∈Ωi
J∈Ωj
J′∈Ωj

∫ (
f ′if

′
j

aiIajJ
aiI′ajJ′

−fifj
)
W IJI′J ′

ij dvjdv
′
idv

′
j (2.3)

where I and J are the indices for the internal energy states of the ith and jth species
before collision and I ′ and J ′ are the corresponding numbers after collision. The symbols
f ′i and f

′
j are the classical notations for the distribution functions after collisions, that is

f ′i =fi(t,x,v
′
i,I
′) and f ′j =fj(t,x,v

′
j ,J

′). FinallyW IJI′J ′
ij is the transition probability for

for the above collisions. In the case where collisions are possible, the following condition
on reversible collisions holds:

W IJI′J ′
ij aiIajJ =W

I′J ′IJ
ij aiI′ajJ′ . (2.4)

Finally, we recall that other formulations involving cross sections, and thus angular
deviation in the integral, are possible (see e.g [34, 23]).

The chemistry collision term. For a given species i∈S, the chemical process
is composed by an arbitrary number of elementary reactions. Those reactions occur
at the microscopic level collisions between two molecules. Collisions involving more
molecules are, in principle, very unlikely to occur. However, triple reactive collisions
may be considered in an abstract kinetic framework and will be considered here. All
chemical reactions are of the form∑

k∈Fr

Mk�
∑
l∈Br

Ml, r∈R (2.5)

where Fr and Br are respectively the indices for the reactant and product species.
Correspondingly, the stoichiometric coefficients of the ith species in this reaction are
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respectively denoted by νfir and νbir, and we set νir=ν
b
ir−νfir. We also denote with Sr

the set of reactants, products, or both in the reaction r. Finally, the reactive source
term in (2.2) reads as

Ci(f)=
∑
r∈R

Cr
i (f) (2.6)

where Cr
i (f) is the term corresponding to the chemical reaction r for the species i.

2.3. Collisional invariants of the non-reactive collision operator. This
space is of particular interest in the case of slow chemical reaction. It is spanned by the
following list of vectors:⎛

⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠ , · · · ,

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
m1vx
m2vx

...
mnvx

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
m1vy
m2vy

...
mnvy

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
m1vz
m2vz
...

mnvz

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1
2m1v

2+E1I
1
2m2v

2+E2I

...
1
2mnv

2+EnI

⎞
⎟⎟⎟⎠ .

This space is of dimension p+4, and the above list of functions is denotedψψψl, l∈ [1,p+4].

Definition 2.1. The space of collisional invariants of the non reactive collision terms
is

K=Span{ ψψψl, l=1, . . . ,n+4 }. (2.7)

The momentum invariants ψψψp+ν , ν=1,2,3, and the energy invariant ψψψp+4 are also
collisional invariants for the reactive collision operator C. But this is not the case for
the species type invariants ψl, l=1, · · · ,p, and one must rather consider conservation of
atom mass concentrations. However, the description of those invariants is not required
in our work as will be shown later on.

2.4. Entropy production and Maxwellian distributions. The entropy
source term can be split into

vkin=vS+vC

where vS is the nonreactive contribution

vS =−kB
∑
i∈S
I∈Ωi

∫
Si(f)log(βiIfi)dvi

and vC is the reactive contribution

vC =−kB
∑
i∈S
I∈Ωi

∫
Ci(f)log(βiIfi)dvi.

Each quantity is nonnegative and thus yields a generalization of the celebrated H-
theorem. In particular, one can specify the form of the distribution functions for which
vS =0 or equivalently Si(f)=0 for all i by using (2.4) and the specification of the space
of collisional invariants K. We denote with M=(M1, ...,Mp) the set of those functions
with

Mi=
1

βiI

ni
Qi

exp

{
− mi

2kBT
(vi−v)2− EiI

kBT

}
(2.8)
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where Qi is the full partition function of the species i per unit volume. This function is
the product of the partition function for internal energy

Qint
i =

∑
I∈Ωi

aiI exp
(
− EiI

kBT

)
(2.9)

with

Qtr
i =

(
2πmikBT

h2P

)3/2

.

2.5. The linearized non reactive source term. For any list of functions
Ψ=(ψ1, · · · ,ψp) and Φ=(φ1, · · · ,φp), we introduce the dot product

〈Ψ,Φ〉=
i=p∑
i=1

∫
R3

ψiφiMidv.

This definition extends to lists of tensors by applying tensor contraction. Next we
denote with LS := (LS,1, · · · ,LS,p) the linearized operator of the non-reactive source term.
Without entering too much into detail, LS satisfies the properties

Ker(LS)=K, (2.10)

LS is continuous, invertible and self adjoint negative on K
⊥. (2.11)

A mathematical proof for monoatomic mixtures can be found in [3].

3. A relaxation operator for mechanical processes
In this section, we extend the BGKmodel derived in [11] to polyatomic gas mixtures.

This approach was developed in different steps which are presented here.

1. In the simple case of a monoatomic gas, the collision term reads Q(f,f)=
Q+(f,f)−ν(f)f where ν(f) is the collision frequency. In particular, when ν
does not depend on f (Maxwellian molecules), the above form is very close to
a BGK model R(f)=ν (G−f). The comparison between Q+(f,f) and R(f)
not only suggests that one consider G as a relaxation function (the classical
BGK model [4]) but as an approximation of Q+(f,f). This founding idea was
presented in [35] as a Galerkin method where G is defined via a maximization
problem under constraints. More precisely, G is the nonnegative function that
is the maximum of the entropy of all functions whose moments are equal to
those of Q+(f,f). The number of moments is chosen arbitrarily.

2. Unfortunately, this idea cannot be generalized to any type of interaction poten-
tials. Then, the second idea consists of considering the formal linearized form of
R(f) in such a way that its eigenvalues are more or less those of the linearized
operator of Q(f,f). This leads one to set constraints such as

∫
R(f)mi(v)dv=−λi

∫
fmi(v)dv, i=1, ...,N

where (1/λi)i,(mi(v))i are more ore less equivalent to the eigenvalues and eigen-
vectors of the linearized operator of Q(f,f). With those constraints at hand,
one can perform a Chapman–Enskog under suitable assumptions. The corre-
sponding Navier–Stokes equations are then compared with those obtained from
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the Boltzmann equation. Then a proper choice of (λi,mi(v))i allows one to
match the first system of equations with the second. In a previous publica-
tion [8, 9], we were able to reinterpret classical relaxation models such as the
ESBGK model [26] and its generalization to polyatomic molecules [2].

3. Yet, this new interpretation becomes a systematic method for constructing
relaxation models. This was applied with success in the case of monoatomic
gas mixtures [11].

In our method, the formulation of the fluxes is very important. The mass and heat
fluxes are written as

Ji=−
∑j=p

j=1Lij∇
( gj
T

)−Li,p+1∇
(− 1

T

)
,

Jq=−
∑j=p

j=1Lp+1,j∇
( gj
T

)−Lp+1,p+1∇
(− 1

T

) (3.1)

where (gi)i are the specific Gibbs free energies per species. Finally the momentum flux
is

Ju=−α∇·uI−ηD(u) (3.2)

where α is the volume viscosity and η is the shear viscosity. We denote with D(u) the
classical Reynolds tensor

D(u)=
[
∇xu+(∇xu)

T
]
− 1

3
(∇x ·u) I. (3.3)

This formualtion was derived from the thermodynamics of irreversible processes (TIP)
by Meixner [32] and from the Boltzmann equation for monatomic gas mixtures by
Chapman and Cowling [13] and De Groot and Mazur [18]. We quickly describe in
an appendix the derivation of the coefficients from the kinetic theory of polyatomic
gas mixtures (see Remark A.2 in Appendix A.4). Yet, another formulation of the above
fluxes is more suited to real applications since it is written in terms of phenomenological
forces:

Ji=−
∑p

j=1ρ
iDij

∇pj

p −ρiθi∇T
T , ∀i∈{1;4},

Jq=−λ̂∇T −p
∑4

i=1θi
∇pi

p +
∑4

i=1hiJi.
(3.4)

Here, D=(Dij)ij is the diffusion matrix, (θi)i are the thermal diffusion coefficients and

λ̂ is the partial thermal conductivity. This formulation was derived from a kinetic theory
of polyatomic gas mixtures by Waldmann and Trudenbacher [37]. Rigorous derivation
of these equations was then given by Ludwig and Heil [31] and later on by different
authors (see e.g [13, 20, 16, 19]). The set of coefficients in the two formulations are
related by algebraic relations that were found by Kurochkin, Makarenko, and Tirskii
[27]. In our approach, if the above coefficients are approximated by some formulae or
algorithms (see e.g [16]), the Onsager matrix L=(Li,j)i,j=1,···,p+1 obtained from those
relations must be symmetric nonnegative, α nonnegative, and η positive.

3.1. The mechanical operator. It will have the form

RM (f)=M
(
MM − f

)
(3.5)
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where M is a mechanical relaxation frequency and MM =(MM
1 , ...,MM

p ) is the set of
relaxation functions. We impose constraints on this operator such that the Chapman–
Enskog expansion of the kinetic equations

∂tf
ε
i +v.∇xf

ε
i =

1

ε
RM

i (fεi ), i∈S, (3.6)

coincides with that of the Boltzmann equation (2.2) (without chemical terms). To this
end, we set

M
∑
j∈S

J∈Ωj

∫
R3

(MM
j −fj

)
wr,j =−λr

∑
j∈S

J∈Ωj

∫
R3

fjwr,j . (3.7)

Up to now, we were only able to construct an operator based on the matrix L=
(Lij)i,j=1,...,p. It is not our purpose to go beyond this result but just to extend it
to the case of polyatomic molecules. Note that the symmetric nonnegative matrix L is
related to the symmetric nonnegative diffusion matrix D=(Dij)i,j=1,...,p by the formula
[27]

Dij =
RρLij

ρiρjm̄
, i,j∈S, (3.8)

where R is the perfect gas constant and m̄ is the mean molar mass of the mixture:

m̄=
Nρ∑4
i=1

ρi

mi

(N is the Avogadro number). We are now going to briefly recall and eventually modify
the results obtained in [11] in the next sections.

3.2. Step 1: Definition of the relaxation coefficients and related mo-
ments.
Definition 3.1. Let Ci be the vector whose ith component is v−u and whose other
components are 0. Denote by PK the orthogonal projection on K and by I the identity
operator. Then we define C as the space generated by the vectors (I−PK)(Ci) ,i∈ [1,p].

The following lemma and proposition were proven in [11].
Lemma 3.2. The symmetric nonnegative matrix D∗ defined by

D∗ij :=
√
ρiρj

nkBT
Dij , i,j∈ [1,p] , (3.9)

always diagonalizes in an orthonormal basis,

D∗=WTAW.

Up to some permutation in W and A, the corresponding eigenvalues (d∗r)r are non null
for r=1, ...,p−1 and d∗n=0. Moreover, the vectors defined by

wr=

n∑
s=1

Wrs
Cs

||Cs|| , r=1, ...,p−1 (3.10)
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form an orthonormal basis of C while

wn=
∑
s

√
ρs
ρ

Cs

‖Cs‖ =±
s=n∑
s=1

Wps
Cs

‖Cs‖ =
1√
ρkBT

(ΨΨΨp+1,ΨΨΨp+2,ΨΨΨp+3)T . (3.11)

Proposition 3.3. Set

λr=d
∗
r
−1, λp=0, (3.12)

in (3.7) where (wr)r is defined as above. Then under suitable properties on the linearized
operator of R(f), the mass fluxes obtained from the Chapman–Enskog expansion of (the
rescaled) Equation (3.6) are

Ji=−
p∑

j=1

ρiDij
∇pj
p
, i∈S. (3.13)

We refer the reader to the proof given in [11]. The required conditions on RM (f) will
be further detailed and proven.

3.3. Step 2: Defining RM (f). The form of RM (f) in (3.5), together with
the constraints (3.7) and the conservation laws, imply that MM must be in the set of
functions

g∈K(f)⇔

⎧⎪⎨
⎪⎩
g≥0a.e,∀l∈ [1,n+4] ,

∑
i∈S
I∈Ωi

∫
R3Ψ

l
i (gi−fi)dv=0,

∀r∈ [1,n−1] ,
∑

i∈S
I∈Ωi

∫
R3wr,i

(
gi−

(
1− λr

�M

)
fi

)
dv=0.

(3.14)

Denote respectively with U=(u1, ...,up)T and U=(u1, ...,up)
T the mean velocities of f

and g and with N and Λ the diagonal matrices whose diagonal terms are respectively
(
√
ρ1, . . . ,

√
ρp) and (λ1, . . . ,λp). Then one can deduce from Lemma 3.2 and (3.7) that

U−U=N−1WT

(
I− 1

M
Λ

)
WN

(
U−U

)
(3.15)

where U=(u, · · · ,u)T . Now we need to prove that K(f) is non-empty. The conservation
of internal energy reads as

E=
∑
i∈S
I∈Ωi

∫ (
1

2
mi(v−u)2+EiI

)
fidv =

p∑
i=1

1

2
ρi(ui−u)2+E∗ (3.16)

=
∑
i∈S
I∈Ωi

∫ (
1

2
mi(v−u)2+EiI

)
gidv =

p∑
i=1

1

2
ρi(ui−u)2+E∗

where

E∗=
∑
i∈S
I∈Ωi

1

2
mi

∫
(v−ui)2fidv, E∗=

∑
i∈S
I∈Ωi

1

2
mi

∫
(v−ui)

2gidv. (3.17)

It is clear that a necessary condition for K(f) to be non-empty is

E∗−E∗= 1

2

p∑
i=1

ρi(ui−u)2− 1

2

p∑
i=1

ρi(ui−u)2≥0 (3.18)
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(we will see in Definition 3.4 that this condition is actually sufficient by exhibiting a set
(gi)i of nonnegative functions satisfying all constraints). The constraint it imposes is
that M must be larger than

̃M =

∑
iλ

2
i ‖Vi‖2∑

iλi‖Vi‖2
where V=WN

(
U−U

)
(3.19)

which is obtained by minimizing

p∑
i=1

ρi(ui−u)2=‖WT

(
I− 1

M
Λ

)
V‖2.

Equation (3.18) is then satisfied since

p∑
i=1

ρi(ui−u)2≤max
r

(1− λr
M

)2
p∑

i=1

ρi(ui−u)2, ∀M >0, (3.20)

(W is orthonormal). We will see later on that the entropy production is more or less
maximal when M = ̃M (Proposition 3.6). Yet, 1/M should be considered as the mean
relaxation time of the mixture for the translational and internal degrees of freedom to
come to equilibrium. For a single polyatomic gas, this time is proportional to the volume
viscosity [20]

α=
2

3
p
cint

cv

1

M

where p is the pressure, cint is the internal specific heat per molecule and cv is the
constant-volume specific heat per molecule. We may as well consider the same quantities
for the mixture with

p=ρ
R

m̄
T (3.21)

and define M with the above formula. This is, of course, subject to the condition
M ≥ ̃M and leads us to the definition of our model.

Definition 3.4. Set

M =max

(
2

3

p

α

cint

cv
, ̃M

)
. (3.22)

Denote with MM =(MM
1 , · · · ,MM

p ) the set of functions such that

Skin(MM )= max
g∈K(f)

Skin(g). (3.23)

Those functions read as

MM
i =

1

βiI

ni
Qi(T∗)

exp

{
− mi

2kBT∗
(v−ui)

2− EiI

kBT∗

}
(3.24)

where T∗ is implicitly defined by

E∗=
∑
i∈S

ni(
3

2
kBT∗+Ei(T∗)), Ei(T∗)=

1

Qint
i (T∗)

∑
I∈Ωi

aiIEiI exp
(
− EiI

kBT∗

)
(3.25)
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(see (2.9) for the definition of Qint
i ) together with

E∗=E − 1

2
‖
(
I− 1

M
Λ

)
WN

(
U−U

)‖2. (3.26)

Then the mechanical relaxation operator RM (f) reads as

RM (f)=M
(
MM −f

)
. (3.27)

Remark 3.5. In [1] different collision frequencies are considered for each molecules.
However their model is only valid for Maxwellian molecules and its derivation is very
different from the essence of the method of moments relaxation. We may impose in
(3.22) that M ≥maxr 

M
r where Mr is a typical mechanical collision frequency of the

rth species. This is important as regards the assumption of slow chemistry but it seems
somehow artificial. Thus considering multiple collision frequencies in our framework
should be investigated.

3.4. Step 3: General properties and linearized operator. The whole
construction of the model R(f) relies on its ad-hoc linearized form and on the derivation
of the hydrodynamic limit. The required conditions of Proposition 3.3 are given in the
sequel. It is firstly necessary that the order −1 in the Chapman–Enskog expansion of
(the re-scaled) Equation (3.6) vanishes if and only if

R(f)=0⇐⇒ f0=M.

Proposition 3.6. The non-reactive entropy source term vM is nonnegative and van-
ishes if and only if f=M or, equivalently, R(f)=0.

The proof, which differs from that given in the monoatomic case, is left to the
appendix. Then, the second conditions are given in the following lemma (see [11]).

Lemma 3.7. The linearized operator LM of RM reads as

LM =M (PK+R◦PC−I)
where PC denotes the orthogonal projection C and R is the linear operator defined on
C by the formula

∀r∈ [1,p−1] ,R(wr)=

(
1− λr

M

)
wr.

As a conclusion, LM satisfies the same properties as LS. Moreover, KerLM =K, and
LM is continuous and self-adjoint negative.

4. A BGK model for chemical reactions
In this section, we firstly construct a BGK model for a single reaction r∈R (2.5)

and secondly consider the whole set of reactions. Then we prove the conservation laws
and the H-theorem. Finally, we reflect upon the meaning of this model.

4.1. A single reaction. The aim is to construct a relaxation model that
allows us to approximate the molecular production rates of

∫
Cr

i (f)dv and still satisfies
conservation laws and entropy production. In the slow chemistry regime, it is reasonable
to assume that

∫
Cr

i (f)dv≈
∫
Cr

i (M)dv. However, the slight departure of the averaged
macroscopic fields in a subset Sr from those of the Maxwellian functions in the same set
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does not allow us to make this approximation. More precisely, macroscopic quantities
in the subset Sr are defined by

ρr=
∑

i∈Sr

∑
I∈Ωi

∫
mifidv,

ρrur=
∑

i∈Sr

∑
I∈Ωi

∫
mivfidv,

1
2ρ

r|ur|2+Er=∑
i∈Sr

∑
I∈Ωi

∫
( 12miv

2+EiI)fi(t,x,v,EiI)dv

(4.1)

where ρr, ur, and Er are respectively the total mass per unit volume, the mean hy-
drodynamic velocity, and the internal energy of the species. It is easily seen that, in
general, ur �=u and

Er �=
∑
i∈Sr

ni(
3

2
kBT +Ei(T ))

(see (3.25) for the definition of Ei). We may associate to the above quantities
Maxwellian distributions Mr=(Mi,r)i∈Sr

, which we do not define here, and the corre-
sponding molecular production rates

∫
Cr

i (M
r)dv. The latter can be considered, to a

certain extent, as approximations of
∫
Cr

i (f)dv in the slow chemistry regime. They read
as ∫

Cr
i (M

r)dv=νir τ r(t,x), i∈Sr,

where τ r is the zero-order rate of progress of the reaction at (t,x) defined by

τ r=Kr

{∏
k∈S

( nk

Qk

)νf
kr−

∏
k∈S

( nk

Qk

)νb
kr

}
(4.2)

(here the dependance of all quantities on (t,x) is omitted for the sake of brevity).
Essentially, Kr is an average of all reactive collisions (either forward or backward but
not both) with respect to the distribution functions

exp

{
− mi

2kBT r
(v−ur)2− EiI

kBT r

}
, i∈Sr,

where T r is implicitly defined through the equation

Er=
∑
i∈Sr

ni(
3

2
kBT

r+Ei(T
r)). (4.3)

Then we consider Sr as an isolated system. The construction of our model relies on
the evolution equations of those species at thermodynamical equilibria and constant
internal energy when only chemical reactions occur. Those equations read as

dsρi(s)=miνir τ r(s), ∀i∈Sr,

ρi(0)=min
i(t,x),

Er(s)=Er(t,x), ∀s≥0,

(4.4)

where τ r(s) now depends on ni(s) and Tr(s) is implicitly defined through (4.3) replacing
(ni) with (ni(s)). The usual progress of this reaction at time s is, in absolute value,

ξr(s)=

∫ s

0

τ r(u)du.
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Here, the time s is independent from t and ds is the classical derivative with respect to s.
Note that the temperature Tr(s) is implicitly defined at any time through Equation (4.3)
(replacing ni with ni(s)) and the conservation of internal energy Er. We may as well
write the evolution equation for Tr(s) coupled with the ones for (ρi(s))i∈Sr

) taking into
account the conservation of internal energy. However, we will see that the construction
of the model relies essentially upon the conservation of mass atoms concentrations and
internal energy all along the chemical process. So as a first step, we are suggesting the
following definition.

Definition 4.1. Set

ni=n
i+νirξ

r(s), ∀i∈Sr, (4.5)

and

Mr
i =

1

βiI

ni
Qi(Tr)

exp

{
−1

2

mi(v−ur)2

kBTr
− EiI

kBTr

}
, i∈Sr, (4.6)

where Tr=Tr(s). Then the chemistry BGK model for the reaction r is defined by

Rr
i (fi)=

τ r(0)

ξr(s)
(Mr

i −fi). (4.7)

The whole construction allows one to recover the averaged Maxwellian production rate
of the rth reaction at (t,x) whatever the choice of s:

∑
I∈Ωi

∫
Rr

i (fi)dv=νirτ r(t,x), ∀i∈Sr.

The instantaneous variation of higher “physical” moments of the distribution functions
should be recovered for the smallest values of s. But this is true only if those functions
were at thermal equilibrium. As an example, we have

∑
I∈Ωi

∫
mivRr

i (f)dv=miu
rνirτ r(0)+

τ r(0)

ξr(s)
ρi(ur−ui),

=ur dρ
i

ds
(0)+

τ r(0)

ξr(s)
ρi(ur−ui).

The first term is an approximation of
∑

I∈Ωi

∫
mivC

r
i (f)dv (2.6) in the thermal limit f→

Mr, but the second one features a spurious relaxation of ui toward ur. As a consequence,
s must be chosen in such a way that this non-physical relaxation is as small as possible.
The best we can do is to set s=+∞. We denote with ξr,eq and (neqi ) the following
quantities:

ξr,eq =

∫ +∞

0

τ r(u)du⇐⇒neqi =ni+νirξ
r,eq, ∀i∈Sr. (4.8)

We do not know exactly the order of magnitude of τ r(0)/ξ
r,eq, but we have the following

stability property whose proof is left to the appendix.

Proposition 4.2. The model (4.7) is well-posed in the sense that

lim
ξr,eq→0

τ r(0)

ξr,eq
=αr,eq<+∞
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where αr,eq depends on macroscopic values at equilibrium. In particular, for bimolecular
reactions — Mi+Mj �Mk+Ml — we have

αr,eq =Kr

{
neqi +neq

j

QiQj
+
neqk +neq

l

QkQl

}

+Kr

neqi n
eq
j

QiQj

(
Ei+Ej−Ej−Ej

)2
(∑

j∈Sr
ρjcvj(T r,eq)

)
kB(T r,eq)2

where cvj(T
r,eq) is the constant-volume specific heat of the jth species defined by

cvj=
3
2kB+

dEj

dT (T r,eq)

mj
(4.9)

(here we have omitted all dependance on T r,eq when it is self-evident).

If the distribution functions were at thermal equilibrium when the mass action
holds, then the reactive term (4.7) would vanish. Unfortunately, the above proposition
shows that Rr

i (f) may not vanish even when τ r=0. So, finally, we propose the following
definition.

Definition 4.3. Let (neqi )i∈Sr
(see (4.8)) and T r,eq be respectively the equilibrium

densities and temperature of the system (4.4). Set

Mr,eq
i =

1

βiI

neqi
Qi(T r,eq)

exp

{
−1

2

mi(v−ur)2

kBT r,eq
− EiI

kBT r,eq

}
, i∈Sr. (4.10)

Then the chemistry BGK model for the reaction r is defined by

Rr
i (fi)=

τ r(0)

ξr,eq
H(τ r) (Mr,eq

i −fi) (4.11)

=r (Mr,eq
i −fi) (4.12)

where H(·) is the Heaviside function.

Remark 4.4. Note that r>0 varies all along the reaction process and vanishes
artificially at equilibrium. Moreover, r is not a collision frequency. It is the exact rate
of relaxation of a mass specie’s to its equilibrium value, i.e when the mass action holds.
To our knowledge, this variable is never considered in classical chemistry.

Remark 4.5. This model may be compared, to some extent, to the relaxation
model derived by Bisi, Groppi, and Spiga [7]. In their article, the Maxwellian functions
Mr,eq

i are defined under the constraints of atom mass concentrations, mean velocity
and energy conservation. The corresponding macroscopic fields are bound together
with the mass action law. Finally, the H-theorem is satisfied, but the use of different
collision frequencies does not allow one to approximate the chemistry production rates.
Another approach was proposed by Groppi and Spiga [22] which takes into account
those production rates. The also model features different chemical collision frequencies.
On the one hand, this eliminates the spurious relaxation terms; on the other hand,
the model is not well-posed. In particular, the H-theorem is only satisfied when the
distribution functions are at thermal equilibria. We believe the main reason is that
atom mass concentrations of the relaxation functions are different from those of the
distribution functions.
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4.2. A model for all chemical reactions. The quantities that must be
calculated to design the whole chemistry model are summarized here.

1. For each reaction r, consider the set of distributions functions (fi)i∈Sr as an
isolated system with corresponding macroscopic quantities ρr, ur, Er, and T r.

2. Calculate the zero-order macroscopic rate of progress at (t,x),

τ r=Kr

{∏
k∈S

( nk

Qk

)νf
kr−

∏
k∈S

( nk

Qk

)νb
kr

}
, (4.13)

and the densities (nr,eqi )i∈Sr and temperature T r,eq of the system (4.4) at chem-
ical equilibrium. Finally, set

nr,eqi =ni+νirξ
r,eq, ∀i∈Sr.

Let us now define some macroscopic quantities of the following weighted sum of
Maxwellian functions, (Mr,eq

i )r, for the i
th species: the density nC

i

nCi =
1∑

r/ i∈Sr
r

∑
r/ i∈Sr

r
∑
I∈Ωi

∫
Mr,eq

i dv

=
1∑

r/ i∈Sr
r

∑
r/ i∈Sr

r nr,eq
i , (4.14)

the velocity uC
i

ρCi u
C
i =

mi∑
r/ i∈Sr

r

∑
r/ i∈Sr

r
∑
I∈Ωi

∫
v Mr,eq

i dv

=
mi∑

r/ i∈Sr
r

∑
r/ i∈Sr

r nr,eqi ur, (4.15)

and the internal energy per unit volume ECi

ECi =
1∑

r/ i∈Sr
r

∑
r/ i∈Sr

r
∑
I∈Ωi

∫
(
1

2
mi(v−uC

i )
2+EiI) Mr,eq

i dv

=
1∑

r/ i∈Sr
r

∑
r/ i∈Sr

r
[
nr,eqi

(
3

2
kBT

r,eq+Ei(T
r,eq)

)
+ (ur−uC

i )
2

]

(4.16)

(in these equations
∑

r/ i∈Sr
r only applies to the relaxation rates r which are different

from 0). Finally, the temperature TC
i is defined implicitly by the relation

ECi =nC
i

(
3

2
kBT

C
i +Ei(T

C
i )

)
. (4.17)

Definition 4.6. Set

MC
i =

1

βiI

nCi
Qi(TC

i )
exp

{
− mi

2kBTC
i

(v−uC
i )

2− EiI

kBTC
i

}
. (4.18)
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Then the chemical model for the species i is defined by

RC
i (fi)=(

∑
r/ i∈Sr

r) (MC
i −fi) (4.19)

=Ci (MC
i −fi). (4.20)

The whole construction allows one to recover the zero-order molecular production rate
of the ith species at (t,x),

Ci
∑
I∈Ωi

∫
(MC

i −fi) dv=(
∑

r/ i∈Sr

r)(nC
i −ni)=

∑
r/ i∈Sr

r (nr,eqi −ni)

=
∑

r/ i∈Sr

νir τ r((n
i)i,Er) (4.21)

where we have used (4.14) and (4.11).

4.3. General properties. The solution (ρi(s))i∈Sr to the Euler system (4.4)
conserves atom mass concentrations by construction. As a consequence, this is also the
case for the sum of the reactions. The whole construction of the chemical model (4.12)
also preserves the other collisional invariants ψψψl (l=p+1, . . . ,p+4). We have

∑
i∈S

Ci
∑
I∈Ωi

∫
(MC

i −fi) ψl
i dv=

∑
i∈S

(
∑

r/ i∈Sr

r)

∫
(MC

i −fi) ψl
i dv

=
∑
r

r
∑
i∈Sr

∫
(Mr,eq

i −fi) ψl
i dv=0 (4.22)

where we have used (4.15) and (4.16) and the construction of the models (4.11) for all
reactions r.

Proposition 4.7. The reactive entropy source term vC is nonnegative.

The proof is left to the appendix.

4.4. Discussion. We have considered each reaction separately in the construc-
tion of this model which seems incorrect at first sight. Let us now consider the full
chain of reactions assuming that f=M. In the homogeneous case, the equations of the
chemical reactions are

dsρi=
∑

r νirτ r, ∀i∈Sr,

ρi(0)=ρ
i,

E(s)=∑
i∈Sn

i( 32kBT +Ei(T )), ∀s≥0,

(4.23)

where T is the temperature at thermal equilibrium at s=0. Denote with (Meq
i )i the

equilibrium distribution functions obtained as s→+∞ in these equations. It would thus
be tempting to set

R̃C
i (fi)= ̃

C
i (Meq

i −fi)

where ̃Ci (neqi −ni)=
∑

r νirτ r(0). But there is no reason why
∑

r νirτ r(0) /(n
eq
i −ni)>

0, so that the model is ill-posed. In some sense, the best relaxation model is obtained
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when replacing r in (4.11) with τ r(0)/ξ
r(s), defined in (4.7) for s small. Indeed, (MC

i )i
would thus tend to the thermal distributions all along the chemical process as s→0.
We have already seen that such a choice is not possible and want to go further in the
analysis of RC

i (fi). One can deduce from (4.8), (4.12), and (4.14) that

nCi =ni+

∑
r νirτ r(0)∑
r/ i∈Sr

r
=ni+

1∑
r/ i∈Sr

r
dni

ds
(0), i∈S.

Thus, the faster the relaxation rates r are, the smaller the “time step” Δsi=
1/(

∑
r/ i∈Sr

r) is. Hence, nCi can be seen as an approximation of ni(Δsi), the so-

lution to the system (4.23).

5. The whole BGK model: properties and hydrodynamic limit
The modified Boltzmann equation reads as

∂tfi+v.∇xfi=
M (MM

i −fi) + Ci (MC
i −fi), ∀i∈S, (5.1)

where the mechanical and chemical operators are respectively defined in (3.27) and
(4.19).

5.1. Properties. We have seen that the mechanical operator”s construction
is based on a maximization of the entropy Skin under constraints (3.14). Recall then
that those constraints include the conservation of all moments in the set of mechanical
collisional invariants K. Moreover, mass atom concentrations, mean velocity, and energy
are conserved by definition of the chemical operators. We now want to characterize the
states of null entropy production.

Theorem 5.1. The entropy source term,

vkin=vM +vC ,

is nonnegative. Moreover, the three following assertions are equivalent:

i) fi=Mi, ∀i∈S and all molecular production rates τ r=0,

ii) M (MM
i −fi) + Ci (MC

i −fi)=0, ∀i∈S,
iii) vkin=0.

Proof.
i) ⇒ ii) We have that

fi=Mi, ∀i∈S⇒MM
i =Mi

by construction of the mechanical operators. Finally,

Ci =
∑

r/ i∈Sr

τ r
ξr,eq

H(|τ r|)=0, ∀i∈S.

ii) ⇒ iii) This is straightforward.

iii) ⇒ i) We have already proven that vM ≥0 and vanishes if and only if f=M
(Proposition 3.6). Besides, vC ≥0 (Proposition 4.7). Hence, vkin=0 if and only if
vC =0 with f=M. Following the proof of Proposition 4.7, it must hold that

0=vC ≥
∑
r

r
∑
i∈Sr

(Skin(Mi)−Skin(Mr,eq
i )

)≥0
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Thus either r=0 or fi=Mi=Mr,eq
i for each reaction r. In each case, this means that

τ r=0 by construction of the models Rr
i (fi) (4.11). Hence, τ r=0 for all r which ends

the proof.

5.2. Hydrodynamic limit for slow reactions. The slow reactions regime
corresponds to the situation where the chemistry characteristic time is much less than
the mechanical time. The hydrodynamic limit of our model is then obtained by studying
the equations

∂tfεi +v.∇xf
ε
i =

1

ε
M (MM

i −fεi ) + Ci (MC
i −fεi ), i∈S, (5.2)

as ε→0.

5.2.1. Euler equations. Equation (5.2) at order −1 implies that fi=Mi for
all species i thanks to Proposition 3.6. Then, the zero-order macroscopic equations read
as

∂tρ
i+∇x ·(ρiu)=mi ω

0
i ,

∂t(ρu)+∇x ·(ρu⊗u+pI)=0,

∂t(
1
2ρu

2+E)+∇·(( 12ρu2+E+p) u)=0

(5.3)

where the pressure p is defined in (3.21). Additionally, ω0
i is the zero-order molecular

production rate of the species i with

ω0
i =

∑
r

νirτ r (5.4)

where (τ r)r are the set of Maxwellian rates of progress (4.13) with T r=T .

5.2.2. The Navier–Stokes equations. We may write the Navier–Stokes
equations in the general form

∂tρ
i+∇·(ρiu)+ε∇·Ji=miω

0
i +εmiω

1
i ,

∂t(ρu)+∇·(ρu⊗u+pI)+ε∇·Ju)=0,

∂t(
1
2ρu

2+E)+∇·(( 12ρu2+E+p) u)+ε∇·Jq=0.

(5.5)

The fluxes are given by

Ji=−
p∑

j=1

ρiDij
∇pj
p
, i∈S, (5.6)

Ju=p
reac

I− α̃(∇x.u)I− η̃D(u) , (5.7)

Jq=−λ̂∇T +

p∑
i=1

hiJi. (5.8)

Here, (Dij)ij is the diffusion matrix computed with the linearized Boltzmann operator.
The volume and shear viscosities are equal to

α̃=
2

3

p

M
cint

cv
, η̃=

p

M
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where cint=
∑

i∈S
ni

n cinti is the mixture internal specific heat per molecule with cinti =

dEi/dT and cv=
3
2kB+cint is the mixture constant-volume specific heat per molecule.

We have the following formula for the reactive pressure:

preac=
1

2M

∑
i∈S

Ci (n
C
i kBT

C
i −nikBT )− kBT

2M

∑
i∈S

ω0
i +

kB
2Mcv

∑
i∈S

miω
0
i ei

where Ci , n
C
i and TC

i are defined in (4.19), (4.14), (4.17) and ei=( 32kBT + Ēi)/mi is
the specific energy of the ith species. The partial thermal conductivity is equal to

λ̂=kBT
∑
i∈S

ni

mi

(
5

2
kB+

dĒi

dT

)
=kBT

∑
i∈S

ni

mi
(
5

2
kB+cinti ),

and hi=( 52kBT +Ei)/mi is the specific enthalpy of the ith species. Finally, perturba-
tions of the chemical source terms are explicitly given in the following lemma.

Lemma 5.2. We have that

ω1
i =

∑
r/ i∈Sr

αr∑
k∈Sr

ρkcvk(T )
νir

dτ r
dT

(5.9)

where cvk is the constant-volume specific heat of the kth species defined in (4.9). Fur-
thermore,

αr=− 1
�M kBT

(
(
∑

j∈Sr
nj)c

int

cv
−n∑j∈Sr

cint
j

cv

)
∇.u

+ 1
�M

∑
j∈Sr

Cj (ECj −Ej)− 1
�M

∑
j∈Sr

mjω
0
j ej

+ 1
�M

(∑
j∈Smjω

0
j ej

)
×(

∑
j∈Sr

ρjcvj(T ))/(
∑

j∈S ρjcvj(T ))

where ECj is defined in (4.16) with ur=ui=u and Ej =ρjej is the internal energy of
the species j.

The computation of the transport coefficients together with the proof of this lemma
are left to the appendix.

Comment. The diffusion matrix is the one derived from the Chapman–Enskog
expansion of the true Boltzmann equation (2.2) in the slow chemistry regime, but the
thermal diffusion coefficients are equal to 0. All other transport coefficients depend on
M . However, if M is the first argument in (3.22), then α̃ is equal to the true volume
viscosity α. Note finally, that there is a bulk viscosity in the first order correction of the
the molecular production rates and a chemical pressure preac as in the “true” Navier–
Stokes equations. As a conclusion, one may obtain all transport coefficients in (3.4) by
diagonalizing the whole Onsager Matrix (Lij)i,j=1,···,p+1 (see (3.1) and the introduction
of Section 3).

5.3. Calculation of the coefficients. As already mentioned in the introduction,
the present model is not just a well-posed mathematical model. Many softwares and
formulae provide us with tools for calculating its coefficients.

The mechanical operator: Let us recall that its derivation essentially requires
one to diagonalize the symmetric nonnegative matrix D∗ defined by (3.9),

D∗ij :=
√
ρiρj

nkBT
Dij , i,j∈ [1,p] .
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Ern and Giovangigli [16] have derived algorithms to compute the modified diffusion
matrix D̃=(ρi

ρ Dij)ij that preserve the required property of D. Those algorithms have

been implemented in the free access software EGlib [17]. Moreover, their iterative
procedure is numerically stable for vanishing mass fractions. In this case, D∗ is not
defined, but we need, essentially, to compute the inverse of its eigenvalues (Proposition
1). This problem must be investigated within the framework of [16].

The chemical operator: It depends on different coefficients which are either
directly given by the macroscopic fields or must be calculated.

1. The first step consists of calculating ur and Er (4.1) for each reaction.

2. At this stage, the molecular production rate may be rewritten in a more familiar
form (molar production rate):

τ r
N =Kf

r

∏
k∈S

(γk)
νf
kr−Kb

r

∏
k∈S

(γk)
νb
kr (5.10)

where γk=nk/N =ρk/(Nmk). The forward rate constant Kf
r (T ) can be ap-

proximated by Arrhenius empirical relation. The backward rate constant must
then be defined by Kb

r(T )=K
f
r (T )/K

e
r (T ) where K

e
r (T ) is the equilibrium con-

stant of the rth reaction. This constant is related to the standard Gibbs free
energy change

−RT lnKe
r (T )=

∑
i∈Sr

νirNmi

(
gatmk (T )− kBT

mi
ln(

patm

RT
)

)

where the quantities in parenthesis are the Gibbs free energy of each species at
unit concentration.

3. The next step consists of calculating the concentrations and temperatures at
equilibrium for the whole set of chemical reactions. Softwares such as STANJAN
[36] are dedicated to such computations. In our case, it is done by maximizing
the thermodynamic entropy S in the set

X={(ni+νirx)i∈Sr
, ∀x∈R}∩(R+)dimSr , (5.11)

where dimSr is the total number of species in the reaction — reactants and
products (see the proof of Lemma 5.2 in the appendix). Note that S is different
from the entropy Skin which depends on the partition functions (Qi)i∈Sr

and
thus on quantum mechanics. In practice, this means that the H-theorem will
be satisfied only up to some small error.

4. The final step just consists of calculating the weighted macroscopic quantities
(4.14), (4.15), (4.16), and (4.17).

6. Discussion and conclusion
We have presented a kinetic simulation model for dilute polyatomic gases under-

going chemical reactions. It is the sum of mechanical and chemical operators for each
species. The mechanical part is the extension to polyatomic gases of the method of mo-
ment relaxations for monatomic gas mixtures [11]. This method allows us to construct
a well-posed BGK model based on the knowledge of the “true” transport coefficients
at the hydrodynamic limit (diffusion matrix, etc). In some sense, this operator mim-
ics the behavior of the linearized Boltzmann operator as concerns its restriction to a
limited number of functions, not only in its restriction to the collisional invariants K
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(see Definition 2.1) but also in its restriction to other physically relevant moments. The
chemical relaxation models feature many interesting properties and a certain simplicity
in regards to the unlimited number of reactions. The production rate of a given reaction
r is approximated by a Maxwellian production rate, an assumption which makes sense
in the case of slow chemistry. The H-theorem is proved and the entropy production
vanishes if and only if the distribution functions are at thermal equilibrium and all pro-
duction rates are null (Theorem 5.1). The hydrodynamic limit is very close to that of the
Boltzmann equation for reacting gas mixtures [16, 19]. Finally, we have summarized the
derivation of the whole model in Section 5.3. Softwares such as EGlib [17] or STANJAN
[36] allow us to calculate the whole set of parameters of the two operators. Thus, the
model can be utilized in a real physical context, especially in the so-called moderately
non-equilibrium regime. The mechanical operator may be subject to some restrictions,
however. On one side, it would be necessary to include different relaxation frequencies
(see Remark 3.5, Section 3.3) in the framework of the method of moments relaxation
(Section 3). This is a required condition to make sure that the characteristic times of
relaxation of internal energy are larger than the chemistry characteristic times. On the
other side, the derivation of the mechanical BGK model should take into account the
whole set of transport coefficients; that is, not only the diffusion matrix and the shear
viscosity but also the thermal diffusion coefficients, the partial thermal conductivity,
and the volume viscosity should be accounted for. A work is in progress as concerns
this last point.

Acknowledgement. The author would like to thank Professor Giovangigli for
many helpful discussions on chemical processes.

Appendix A.

A.1. Proof of Proposition 3.6.

Proof. We have

vM =−kB M
∑
i∈S
I∈Ωi

∫ (MM
i −fi

)
log(βiIfi)dv≥M

(
Skin(MM )−Skin(f)

)
(A.1)

by concavity of the function x→−x lnx. Let M̃∗
be the set of functions

M̃∗
i =

1

βiI

ni
Qi(T ∗)

exp

{
− mi

2kBT ∗
(v−ui)2− EiI

kBT ∗

}

where T ∗ is implicitly defined by

E∗=
∑
i∈S

ni(
3

2
kBT

∗+Ei(T
∗))

and E∗ is defined in (3.17). It holds that

Skin(f)≤Skin(M̃
∗
). (A.2)

Denote with M∗ and M∗ the set of functions obtained by setting ui=0 in MM
i and

ui=0 in M̃∗
i for all species i∈S. Those functions are two states of the gas at rest and

at thermal equilibrium. One may define the corresponding thermodynamics functions
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— entropy S, volumetric energy E , etc — from the kinetic framework and state the
celebrated fundamental thermodynamic relation

DS=
1

T
DE −

∑
i∈S

gi
T
Dρi (A.3)

where gi=(kBT/mi)ln(n
i/Qi) are the specific Gibbs functions and D denotes the total

derivative. Next, we set A=(E∗,ρ1, ...,ρp), B=(E∗,ρ1, ...,ρp), and γ(t)=(1− t)A+ tB
with t∈ [0,1]. Then, integrating the exact differential 1-form (A.3) on the path γ, one
obtains

S(B)−S(A)=
∫
γ

dS=

∫ 1

0

∂S

∂E (γ(t)) (E∗−E
∗)dt=(E∗−E∗)

∫ 1

0

1

T (γ(t))
dt.

Recall that E∗≥E∗ by construction of RM (f), so that using (A.1), (A.2), and the defi-
nitions of M∗ and M∗ one obtains

vM ≥M
(
Skin(MM )−Skin(M̃

∗
)
)
=M (S(B)−S(A))≥0.

Note that Skin(f)<Skin(M̃
∗
) (A.2) unless f=M̃

∗
. Next, it is easily checked by using

(3.20) and (3.22) that E∗=E∗ if and only if ui=ui=u, ∀i∈S. Therefore, vM =0 if and
only if f=M=MM .

Finally, it is easily seen that

f=M=MM =⇒RM (f)=⇒vM =0,

which ends the proof.

A.2. Proof of Proposition 4.2.
Proof. Let (neq

j )j and T
r,eq be respectively the densities and temperature obtained

as t→+∞ in (4.4). Consider the function

f(x,y)=
∑
j∈Sr

(neqj −νjrx)
(
3

2
kB(T

r,eq+y)+Ej(T
r,eq+y)

)
−Er.

We naturally have f(0,0)=0 due to the conservation of internal energy in (4.4). Recall
that (see (2.9))

Qint
j (T r,eq)=

∑
J∈Ωj

ajJ exp
(
− EjJ

kBT r,eq

)
.

Then we have

∂f

∂y
(0,0)=

∑
j∈Sr

ρjcvj(T
r,eq)>0

where cvj is the constant-volume specific heat of the jth species defined by

cvj=
3
2kB+

dEj

dT (T r,eq)

mj
.
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Without entering too much into detail, the implicit function theorem states that there
exists an open set W containing 0, an open set U containing 0, and a unique C∞

function ϕ from W to U such that f(x,ϕ(x))=0. Note that one can apply the same
theorem any time s≥0 in (4.4) so that ϕ can be extended to the bounded set I=]0,ξr,eq[
(if τ r(0)>0) and I=]ξr,eq,0[ (if τ r(0)<0). Set x= ξr,eq and

τeqr (x)= τ r(0)=Kr(ϕ(x)+T
r,eq)

×
{∏

k∈S
(

neq
k −νkrx

Qk(ϕ(x)+T r,eq)

)νf
kr−∏

k∈S
(

neq
k −νkrx

Qk(ϕ(x)+T r,eq)

)νb
kr

}
.

(A.4)

It is easily seen that τeqr is a C∞ function of x in I. Using a Taylor expansion, one has

τeqr (x)= τeqr (0)+x
dτeqr
dx

(0)+O(x2)=x
dτeqr
dx

(0)+O(x2).

As a consequence,

lim
ξr,eq→0

τ r(0)

ξr,eq
= lim

x→0

τeqr (x)

x
=
dτeqr
dx

(0).

This limit can be easily calculated by differentiating (A.4) at x=0. We just consider,
for the sake of clarity, the case of a bimolecular reaction Mi+Mj �Mk+Ml. Then
one finds after some calculation that

αr,eq =
dτeqr
dx

(0)=Kr

{
neqi +neq

j

QiQj
+
neqk +neq

l

QkQl

}

+Kr

neqi n
eq
j

QiQj

(
Ei+Ej−Ej−Ej

)2
(∑

j∈Sr
ρjcvj(T r,eq

)
kB(T r,eq)2

where we have omitted the dependance upon T r,eq when it is self evident.

A.3. Proof of Proposition 4.7.
Proof. We firstly recall a result due to Giovangigli which we adapt to our case

(Proposition 6.5.1 [19]).

Proposition A.1 ([19]). The entropy of the system (4.4) is defined by

Skin,r=
∑
i∈Sr

ni
(5
2
kB+

Ei

Tr
−kB log ni

Qi(Tr)

)
(A.5)

where Tr=Tr(s) is defined implicitly thanks to the conservation of internal energy,

Er=
∑
i∈r

ni(s)(
3

2
kBTr+Ei(Tr)).

Then the entropy production vC,r is equal to

vC,r=−kB
Tr

∑
i∈Sr

gimiνirτ r

where gi is the specific Gibbs function of the ith species. It is nonnegative and vanishes
if and only if τ r=0.
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Let us first remark that

Skin(MC
i )≥Skin

⎛
⎝ 1∑

r/ i∈Sr
r

∑
r/ i∈Sr

r(Mr,eq
i )

⎞
⎠

≥ 1∑
r/ i∈Sr

r

∑
r/ i∈Sr

rSkin(Mr,eq
i )

where we have used on one side the definition of MC
i (4.18) and on the other side the

concavity of the function Skin. Thus,

vC =−kB
∑
i

Ci
∑
I∈Ωi

∫
(MC

i −fi) log(βiIfi)dv (A.6)

≥
∑
i

Ci
(Skin(MC

i )−Skin(fi)
)

≥
∑
r

r
∑
i∈Sr

(Skin(Mr,eq
i )−Skin(fi)

)
(A.7)

where we have used the concavity of the function x←−x lnx. Set

Mir=
1

βiI

ni

Qi(T r)
exp

{
− mi

2kBT r
(v−ur)2− EiI

kBT r

}
, i∈Sr, (A.8)

where T r=T r(0) in (4.4). Then,

∑
i∈Sr

Skin(fi)≤
∑
i∈Sr

Skin(Mir)

by definition. Finally, using Proposition A.1 it holds that

∑
i∈Sr

(Skin(Mr,eq
i −Skin(Mir)

)≥0, ∀r∈R,

which ends the proof.

A.4. Derivation of the Navier–Stokes Equation (4.2). One can compute
the first order perturbation g in the same way that it is done when coming from the
Boltzmann equation (see e.g [20] or [19]). This is essentially due to the properties of
the linearized mechanical operator LM (see Lemma ??) and to the ad-hoc form of the
Euler equation (5.3). So we will not recall the calculations that lead to the equation

LM (g)=

j=p∑
j=1

ΦΦΦDj ·∇xpj+
1

2
A :D(u)+

1

3
A

V :∇xu+B ·∇
(

1

kBT

)
+ΨΨΨC . (A.9)

The list of tensors ΨΨΨDj , A, AV , and B belong to K⊥ (2.7) and read on their ith line as

ΦΦΦ
Dj

i =
1

p i

(
δji− ρi

ρ

)
(v−u) , j∈S

(A)i=
mi

kBT

[
(v−u)⊗(v−u)− 1

3
‖v−u‖2 I

]
,
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A
V
i =

(
2cint

cvkBT

(1
2
mi(v−u)2− 3

2
kBT

)
+

2ctrv
cvkBT

(Ei−EiI)

)
I,

(B)i=
(5kBT

2
− 1

2
mi(v−u)2+Ei−EiI

)
(v−u).

Finally,

ΨΨΨC
i =−

C
i (MC

i −Mi)

Mi
+
ω0
i

ni
+

∑
j∈S(

3
2kBT + Ēj)ω

0
i

pcvT

×(3
2
kBT − 1

2
mi|v−u|2+ Ēi−EiI).

Here ΨΨΨC
i is simply obtained by calculating the ith line of (I−PK)V

C with VC =(−C1 (MC
1 −M1)/M1, · · · ,−Cp (MC

p −Mp)/Mp

)T
(recall that I is the identity opera-

tor on L2 (M ) and PK is the orthogonal projection on K).
Then the computation of the transport coefficients is easily obtained thanks to

Proposition 3.3 and the explicit formulation of the pseudo inverse of LM

∀g∈K⊥, L−1
M (g)=

1

M

(
(R−IC)−1 ◦PC+(PC−I)

)
(g) (A.10)

where IC denotes the restriction on C of the identity operator.

Remark A.2. Yet another formulation of (A.9) is more suited to the computation of
the Onsager matrix (thermodynamics of irreversible processes). This formulation was
introduced in [11] in the case of monoatomic gas mixtures following an interpretation
of the Euler equations by Levermore in [30]. This formulation reads

LS
i (g)=

j=p∑
j=1

(I−PK)(Cj) ·∇x

(
ln
nj
Qj

)
+

1

2
A :D(u)+

1

3
A

V :∇xu+B̃ ·∇
(

1

kBT

)
+ΨΨΨC

where Cj is the vector whose jth component is v−u and whose other components are

0 and B̃ is given by

B̃i=mi(v−u)
(5nkBT

2ρ
− 1

2
(v−u)2+Ei−EiI

)
.

Note that B̃ is no longer orthogonal to C (Definition 3.1), contrary to B. Then,

Lij =−k−1
B mimj

〈L−1
S [(I−PK)(Cj)] ,(I−PK)(Ci)

〉
,

Li,p+1=Lp+1,iI=−k−1
B mi

〈
L−1
S

(
B̃
)
,(I−PK)(Ci)

〉
,

Lp+1,p+1=−k−1
B

〈
L−1
S

(
B̃
)
,B̃

〉
.

(A.11)

Finally, the matrix (Lij)i,j=1,...,p+1 is symmetric nonpositive thanks to the property
(2.11), and one can easily check that its kernel is (1, · · · ,1,0)T ∈Rp+1.

A.5. Proof of Lemma 5.2.
Proof. Our aim is to calculate

ω1
i =

∑
i

I∈Ωi

∫
LC
i (g)dv (A.12)
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where

LC
i (g)= lim

s→0

1

s

(RC
i (M(1+sg))−RC

i (M)
)

(A.13)

= lim
s→0

1

s

[
Ci,s

(MC
i,s−Mi(1+sgi)

)−Ci (MC
i −Mi

)]
(A.14)

and Ci,s and MC
i,s are respectively the rate of relaxation and equilibrium function of

the ith species defined in (4.19) and (4.18). They depend on the relaxation models Rr
i

(4.7) and, therefore, on the initial distribution functions M(1+sg). So let us consider
a single reaction r and calculate the perturbed rate of relaxation rs together with the
Maxwellian function Mr,eq

i,s at chemical equilibrium where

Mr,eq
i,s =

1

βiI

neqi,s
Qi(T

eq
s )

exp

{
− mi

2kBT
r,eq
s

(v−v)2− EiI

kBT
r,eq
s

}
. (A.15)

Let us now consider the system (4.4) and calculate its initial conditions. Note that the
mass species (ρi)i∈Sr remain unchanged since L−1

M : K⊥→K⊥. Hence, ρr=
∑

i∈Sr
ρi.

Other macroscopic quantities for this reaction (see (4.1)) are found to be equal to

ρrur
s=ρ

rur
s +

∑
i∈Sr

p∑
j=1

ρiDij
∇pj
p
, (A.16)

Ers =Er + sαr+s
2βr (A.17)

where

αr= − 1

M

∑
j∈Sr
I∈Ωj

∫ (
1

2
mj(v−u)2+EiI

) (
1

3
A

V
j :∇xu+ΨΨΨC

j

)
Mjdv,

= − 1

M
kBT

⎛
⎝(

∑
j∈Sr

nj)
cint

cv
−n

∑
j∈Sr

cintj

cv

⎞
⎠∇.u

+
1

M

∑
j∈Sr

Cj (ECj −Ej)−
1

M

∑
j∈Sr

mjω
0
j ej

+
1

M

⎛
⎝∑

j∈S
mjω

0
j ej

⎞
⎠×(

∑
j∈Sr

ρjcvj(T ))/(
∑
j∈S

ρjcvj(T )),

βr is some constant depending on ΨΨΨC , and (∇pj)j . ej =( 32kBT + Ēj)/mj is the specific
energy of the jth species. Additionally, ECj is defined in (4.16) with ur=ui=u, and
Ej is the internal energy of the species j. It is well known (see for example [12]) that
the entropy is a concave function of the number densities per unit volume once the
internal energy is fixed. This still applies to thermodynamics functions defined from
the kinetic entropy such as Skin,r (A.5). In the case where a chemical reaction occurs
at fixed internal energy, the usual thermodynamics function used for characterizing
the equilibrium is the entropy [12]. We are now going to prove it in a mathematical
framework. Let us consider the concave function φ(x)=Skin,r((ni+νirx)i∈Sr ,Er) which
is defined for all values of x such that ni+νirx≥0, ∀i∈Sr, or equivalently for all number
densities in the set

X={(ni+νirx)i∈Sr
, ∀x∈R}∩(R+)dimSr .
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Here dimSr is the total number of species in the reaction — reactants and products.
Atom mass concentrations are conserved in this set, and X contains the solutions of
(4.4) as s varies (see (4.5)). Using the second law of thermodynamics (A.3) and the
implicit theorem that was used in the proof of Proposition 4.2, one has

dφ=kB
∑
i∈Sr

νir ln

(
ni+νirx

Qi(Tr(x,Er))
)
dx

in such a way that φ′(x)=0 if and only if τ r(x)=0 (see (4.2) for the definition of the
macroscopic rate of progress τ r). Thus, the maximum value of φ in X is obtained
for x= ξr,eq (here we avoid some technical arguments to prove that the densities at
equilibrium are in the interior of X).

Let us now study the variation of densities and temperature at chemical equilibrium
with respect to the variation of internal energy. This can be done by calculating the
variation of x and y with respect to the variation of Er in the manifold

g(x,y)=
∑
i∈Sr

νir ln

(
neq
i +νirx

T r,eq+y

)
=0.

Clearly, x is a strictly monotonic function of the variation of Er in its vicinity since
∂g
∂x (0,0)>0. It is even shown in [19] that this function is smooth, and we may write
neq
i,s=n

eq
i +φr(Ers −Er). The behavior of y with respect to this variation is less clear

since ∂g
∂y (0,0)=

∑
iνirĒi(T

r,eq) which might be null. So let us consider the problem

from another point of view. The mass atoms concentrations ρ̃r=(ρ̃1,r, ..., ρ̃na,r ) and
temperature T are the “natural” variables in the study of chemical equilibrium flows
[16, 19] (here na,r is the number of atoms in the set of reactants (or products) in the
reaction r). As concerns the homogeneous problem, ρ̃r is determined by the initial mass
species (ρj)j∈Sr and is kept constant during the reaction, that is (ni)i∈Sr ∈X (5.11).
Then one may consider the internal energy and the densities as functions of (T,ρ̃r), and
one has, in particular ,

neqi =ni(T
r,eq, ρ̃r), ∀i∈Sr, Er=E(T r,eq, ρ̃r).

It is shown in this framework ([19], Lemma 10.2.3) that ∂T E is positive (not infinite) at
chemical equilibrium points, and E is also a smooth function of T . Hence, we also have
T r,eq
s =T r,eq+ψr(Ers −Er) for ρ̃r fixed. The calculation of the macroscopic fields defining
MC

i,s is then performed using (4.14), (4.15), (4.16), and (4.17). They depend smoothly
on the perturbation sMg thanks to the above results. Denote with Fi,s the function in
the limit (A.14). Skipping all technical details, Fi,s is bounded by a function G∈L1(R3)
for 0≤s≤ δ with δ fixed and sufficiently small. Moreover, Fi,s converges point-wise to
a function Fi=LC

i (g)∈L1(R3), so that we can use the dominated convergence theorem
to compute ω1

i . More precisely,

ω1
i =

∑
r/ i∈Sr

lim
s→0

νir (τ r,s−τ r)
s

(A.18)

where we have used (4.21). Here, τ r,s= τ r((ρ
i)i,Ers ). Next, consider the perturbed

initial condition in (4.4). For (ρi)i fixed, one has

Ers (T r
s )=Er(T )+ (T r

s −T )
∑
j∈Sr

ρj cvj(T )+ O((T r
s −T )2).
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For a given reaction r, one sets s=(T r
s −T ) (

∑
j∈Sr

ρj cvj(T ))/αr in (A.18) if αr �=0.
Otherwise the limit is 0. Then the final result is

ω1
i =

∑
r/ i∈Sr

αr∑
k∈Sr

ρkcvk(T )
νir

dτ r
dT

.
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