ON THE CONTROLLABILITY OF
THE 2-D VLASOV–STOKES SYSTEM∗

IVÁN MOYANO†

Abstract. In this paper we prove an exact controllability result for the Vlasov–Stokes system in
the two-dimensional torus with small data by means of an internal control. We show that one can
steer, in arbitrarily small time, any initial datum of class C^1 satisfying a smallness condition in certain
weighted spaces to any final state satisfying the same conditions. The proof of the main result is
achieved thanks to the return method and a Leray–Schauder fixed-point argument.

Keywords. Vlasov–Stokes system; kinetic-theory; kinetic-fluid model; controllability; return
method

AMS subject classifications. 35R01; 82C40; 93C20

1. Introduction

We consider the Vlasov–Stokes system in the 2-dimensional torus $T^2 := \mathbb{R}^2 / \mathbb{Z}^2$, which writes, for $T > 0$ and $\omega \subset T^2$, for $t, x, v \in (0, T) \times T^2 \times \mathbb{R}^2$

\[
\begin{align*}
\partial_t f + v \cdot \nabla_x f + \lambda \nabla v \cdot \mathcal{L}_{U-v} f &= 1_{\omega}(x)G, \\
-\Delta_x U + \nabla_x p &= j(f), \\
div_x U &= 0, \\
\int_{T^2} U(t, x) \, dx &= 0, \\
f(0, x, v) &= f_0(x, v),
\end{align*}
\]

(1.1)

where $\lambda > 0$ is a friction coefficient and

\[
j_f(t, x) := \int_{\mathbb{R}^2} v f(t, x, v) \, dv.
\]

This is a control system in which the state is the distribution function $f(t, x, v)$ and the
control is the source term $1_{\omega}(x)G(t, x, v)$, located in $[0, T] \times \omega \times \mathbb{R}^2$. Let us note that U
and p can be deduced from the distribution function f.

The Vlasov–Stokes system studied in this paper is an adaptation to the case of
the 2-dimensional torus of the system obtained by P.E. Jabin and B. Perthame in [17].
System (1.1) is a kinetic-fluid model describing the behaviour of a large cloud of particles,
represented by the distribution function $f(t, x, v)$, interacting with an incompressible
fluid, whose velocity field is given by $U(t, x)$, under the hypothesis that the effects of
convection are negligible. The quantity $f(t, x, v) \, dx \, dv$ can be interpreted as the number
of particles at time t whose position is close to x and whose velocity is close to v. This
model is especially convenient when describing sprays and aerosols, bubbly flows or
suspension and sedimentation phenomena. This system is also important in biological
applications, such as the transport in the respiratory tract (see Section 1.2.2 for more
details).

∗Received: January 12, 2016; accepted (in revised form): October 12, 2016. Communication by
Alberto Bressan.
The author would like to very much thank Daniel Han-Kwan (CNRS and CMLS, Ecole Polytechnique)
for suggesting him this problem and for many fruitful discussions and advices.
†Centre de mathématiques Laurent Schwartz, UMR 7640, Ecole polytechnique, Palaiseau, France
(ivan.moyano-garcia@polytechnique.edu). http://ivan.moyano.perso.math.cnrs.fr/
1.1. Main result. We are interested in the controllability properties of system (1.1), by means of an internal control. The controllability problem that we want to solve is the following. Given \(f_0 \) and \(f_1 \) in a suitable function space and given \(T > 0 \), is it possible to find a control \(G \) steering the solution of system (1.1) from \(f_0 \) to \(f_1 \), in time \(T \)? In other words, we want to find \(G \) such that

\[
f(T, x, v) = f_1(x, v), \quad \forall (x, v) \in \mathbb{T}^2 \times \mathbb{R}^2.
\]

(1.3)

Let us observe that a natural constraint regarding the control \(G \) is in order. Indeed, since the Vlasov–Stokes system preserves the total mass when \(G \equiv 0 \), i.e.,

\[
\int_{\mathbb{T}^2} \int_{\mathbb{R}^2} f(t, x, v) \, dx \, dv = \int_{\mathbb{T}^2} \int_{\mathbb{R}^2} f_0(x, v) \, dx \, dv, \quad \forall t \in [0, T],
\]

(1.4)

we shall prescribe the condition

\[
\int_{\mathbb{T}^2} \int_{\mathbb{R}^2} G(t, x, v) \, dx \, dv = 0, \quad \forall t \in [0, T].
\]

(1.5)

More precisely, we obtain the following controllability result.

Theorem 1.1. Let \(T > 0 \), \(\gamma > 2 \), \(\lambda = 1 \) and let \(\omega \) be an arbitrary non-empty open subset of \(\mathbb{T}^2 \). There exists \(\epsilon > 0 \) such that for every \(f_0, f_1 \in C^1(\mathbb{T}^2 \times \mathbb{R}^2) \cap W^{1,\infty}(\mathbb{T}^2 \times \mathbb{R}^2) \) satisfying condition (1.4), that

\[
\int_{\mathbb{T}^2} \int_{\mathbb{R}^2} v f_0(x, v) \, dx \, dv = \int_{\mathbb{T}^2} \int_{\mathbb{R}^2} v f_1(x, v) \, dx \, dv = 0,
\]

(1.6)

and that, for \(i = 0, 1 \),

\[
\| f_i \|_{C^1(\mathbb{T}^2 \times \mathbb{R}^2)} + \| (1 + |v|)^{\gamma+2} f_i \|_{C^0(\mathbb{T}^2 \times \mathbb{R}^2)} \leq \epsilon,
\]

\[
\exists \kappa > 0, \quad \left(|\nabla_x f_i| + |\nabla_v f_i| \right)(x, v) \leq \frac{\kappa}{(1 + |v|)^{\gamma+1}}, \forall (x, v) \in \mathbb{T}^2 \times \mathbb{R}^2,
\]

(1.7)

(1.8)

there exists a control \(G \in C^0([0, T] \times \mathbb{T}^2 \times \mathbb{R}^2) \), verifying condition (1.5), such that the solution of system (1.1) with \(f|_{t=0} = f_0 \) exists, is unique and satisfies Equation (1.3).

Remark 1.1. Condition (1.6) in the previous statement can be seen as a natural compatibility condition needed for the well-posedness of the Stokes system with sources \(j f_0 \) and \(j f_1 \).

Remark 1.2. Due to the physical model under consideration, the distribution function \(f \) is frequently supposed to be non-negative. Furthermore, when \(G \equiv 0 \) and \(f_0 \geq 0 \), the corresponding solution of system (1.1) preserves the non-negativity for any time.

However, the control strategy developed in this article consists in finding a suitable absorption-emission function \(G \), which accounts for the possibility of trapping particles inside the control region \(\omega \). Consequently, due to the absorption process, the solution of the controlled system (1.1) found in Theorem 1.1 is in general non-negative outside \(\omega \) but possibly negative inside \(\omega \).

On the other hand, the preservation of total mass (1.4) is guaranteed by the constraint (1.5).
1.2. Previous work.

1.2.1. The controllability of kinetic equations. There exist some results on the controllability of nonlinear kinetic equations. The first one was obtained by O. Glass for the Vlasov–Poisson system on the torus (see [9]). The strategy of this work consists on the construction of a reference solution, in the spirit of the return method introduced by J.-M. Coron (see Section 1.3.2 below). This allows to conclude the existence and uniqueness of a controlled solution by means of the Leray–Schauder theorem.

The strategy of [9] permits to obtain two types of results:
- In dimension 2, with arbitrary control region, one can obtain a local controllability result, i.e., a small-data result.
- In any dimension and with a geometric assumption, precisely that the control region \(\omega \subset T^n \) contains a hyperplane of \(\mathbb{R}^n \) by the canonical surjection, one can obtain a global exact controllability result, i.e., an arbitrary-data result. However, the use of the invariant scaling of the Vlasov–Poisson system is crucial in this case.

This strategy was later extended in [11] by O. Glass and D. Han-Kwan to the Vlasov–Poisson system under external and Lorentz forces. The authors obtain both local and global exact controllability results in the case of bounded external forces, which requires some new ideas to construct the reference trajectories. Precisely, the authors exploit the fact that the dynamics under the external force and without it are similar in small time. In the case of Lorentz forces, a precise knowledge of the magnetic field and a geometric control condition in the spirit of [3] allow to obtain a local exact controllability result. The functional framework of [9, 11] is the one given by the classical solution of the Vlasov–Poisson system, that is, some appropriate Hölder spaces.

A remarkably different strategy has been developed by [12] in the context of the Vlasov–Maxwell system. In this case, the authors combine the classical strategy described previously with some controllability results for the Maxwell system, under the geometric control condition of [3]. They also obtain a local result for \(\omega \) containing a hyperplane, using the convergence towards the Vlasov–Poisson system under a certain regime.

1.2.2. A short review on the Vlasov–Stokes system. The Vlasov–Stokes system has been rigorously derived from the dynamics of a system of particles in a fluid by P. E. Jabin and B. Perthame in [17]. The system derived in this result, using the method of reflections and the dipole approximation, is set in the whole phase space \(\mathbb{R}^3 \times \mathbb{R}^3 \). In this setting, some regularity results can be found in [7]. The limit when \(\lambda \to \infty \) has been studied in [14, 15]. Moreover, a major feature emphasised in these works is that friction plays a very important role in the dynamics of the Vlasov–Stokes system. More precisely, friction entails the dissipation of the kinetic energy. Consequently, as it has been proven by P. E. Jabin in [16], when \(t \to \infty \), we recover a macroscopic limit of the form \(\rho(x) \delta_{v=0} \). On the other hand, very little information concerning the density \(\rho \) is known.

The non-stationary Vlasov–Stokes system on a domain with boundary has been considered by K. Hamdache in [13]. The author gives a well-posedness result in Sobolev spaces in the case of Dirichlet boundary condition for the velocity field and specular reflexion boundary conditions for the distribution function.

A derivation of a model considering also the effects of convection has been obtained by L. Desvillettes, F. Golse and V. Ricci in [6].

For more concrete biological models, let us cite [4] and the references therein.
1.3. Strategy of the proof.

1.3.1. Obstructions to controllability. Since Theorem 1.1 is of local nature around the steady state \((f,U,p) = (0,0,0)\), a first step to achieve its proof could be the use of the linear test (see [5]). Following the classical scheme, the controllability of the linearised system around the trivial trajectory and the classical inverse mapping theorem between proper functional spaces would imply the controllability of the nonlinear system (1.1).

Indeed, the formal linearised equation around the trajectory \((f,U,p) = (0,0,0)\) is

\[
\begin{aligned}
 tF + v \cdot \nabla_x F - v \cdot \nabla_v F - 2F &= 1_\omega(x) \tilde{G}, \\
 F(0,x,v) &= f_0(x,v),
\end{aligned}
\]

which is a transport equation with friction. By the method of characteristics, we can give an explicit solution of (1.9), which writes

\[
F(t,x,v) = e^{2t} f_0(x + (1 - e^{-t})v, e^t v) + \int_0^t e^{2(t-s)} (1_\omega \tilde{G})(s, x + (1 - e^{-s})v, e^{-s}v) ds.
\]

As pointed out in [9], there exist two obstructions for controllability, which are

Small velocities. A certain \((x,v) \in T^2 \times \mathbb{R}^2\) can have a “good direction” with respect to the control region \(\omega\), in the sense that \(x + (1 - e^{-t})v\) meets \(\omega\) at some time. However, if \(|v|\) is not sufficiently large, the trajectory of the characteristic beginning at this point would possibly not reach \(\omega\) before a fixed time. In our case, the effects of friction could enhance this difficulty.

Large velocities. The obstruction concerning large velocities is of geometrical nature. There exist some “bad directions” with respect to \(\omega\), in the sense that a characteristic curve parting from \((x,v) \in T^2 \times \mathbb{R}^2\) would never reach \(\omega\), no matter how large \(|v|\) is.

As a result of this, and considering again Equation (1.10), we deduce that the linearised system is not controllable in general.

1.3.2. The return method. In order to circumvent these difficulties, we use the return method, due to J.-M. Coron.

The idea of this method, in the case under study, is to construct a reference trajectory \((\overline{f},\overline{U},\overline{p})\) starting from \((0,0,0)\) and coming back to \((0,0,0)\) at some fixed time in such a way the linearised system around it is controllable. This method allows to avoid the problems discussed in the previous section.

We refer to [5, 10] for presentations and examples on the return method.

1.3.3. Strategy of the proof of Theorem 1.1. The strategy of this work follows very closely the scheme of [9, 11]. More precisely, it relies on two ingredients.

Step 1. We build a reference solution \((\overline{f},\overline{U},\overline{p})\) of system (1.1) with a control \(\overline{G}\), located in \(\omega\), starting from \((0,0,0)\) and arriving at \((0,0,0)\) outside \(\omega\) at time \(T > 0\) and such that the characteristics associated to the field \(-v + \overline{U}\) meet \(\omega\) before \(T > 0\).

Step 2. We build a solution \((f,U,p)\) close to \((\overline{f},\overline{U},\overline{p})\) parting from \((f_0,U_0,p_0)\) and arriving at \((0,0,0)\) outside \(\omega\) at time \(T > 0\). This can be done by means of a fixed-point argument involving an absorption operator in the control region.

Furthermore, let us note that in the proof of Theorem 1.1 we can assume that

\[
f_1(x,v) = 0, \quad \forall (x,v) \in (T^2 \setminus \omega) \times \mathbb{R}^2.
\]
To justify this assumption, we observe that, if f is solution of system (1.1), then the functions
\[
\tilde{f}(t,x,v) := f(T-t,x,-v), \quad \tilde{G}(t,x,v) := G(T-t,x,-v),
\]
for every $(t,x,v) \in [0,T] \times \mathbb{T}^2 \times \mathbb{R}^2$, satisfy the backwards Vlasov–Stokes system
\[
\begin{aligned}
\partial_t \tilde{f} + v \cdot \nabla_x \tilde{f} + \lambda \text{div}_v \left[\left(\tilde{U} + v \right) \tilde{f} \right] &= 1_\omega(x) \tilde{G}, \\
-\Delta_x \tilde{U} + \nabla_x \tilde{p} &= -j \tilde{f}, \\
\text{div}_v \tilde{U}(t,x) &= 0, \\
\int_{\mathbb{T}^2} \tilde{U}(t,x) \, dx &= 0, \\
\tilde{f}(T,x,v) &= f_0(x,v),
\end{aligned}
\tag{1.12}
\]
 Consequently, given f_0, f_1 as in Theorem 1.1, it is sufficient to consider
- f_0 as initial datum and \tilde{f}_1 satisfying Equation (1.11) as a final state,
- $f_1(x,-v)$ as initial datum and again \tilde{f}_1 satisfying Equation (1.11) as a final state.

If we are able to solve these problems, a simple composition of them gives a solution with initial datum f_0 and final state f_1. We observe, as it will be clear from the proofs, that system (1.12) can be treated like the forward problem without significant modifications. As a consequence, we shall only treat specifically the forward problem with final state satisfying Equation (1.11).

A possible different strategy to prove Theorem 1.1 is discussed in Remark 5.1.

1.3.4. Notation. Let $T > 0$. We denote $Q_T := [0,T] \times \mathbb{T}^2 \times \mathbb{R}^2$ and $\Omega_T := [0,T] \times \mathbb{T}^2$. If Ω is a domain, for any $\sigma \in (0,1)$, $\mathcal{C}^{0,\sigma}_b(\Omega)$ denotes the space of bounded σ–Hölder functions, equipped with the norm
\[
\|f\|_{\mathcal{C}^{0,\sigma}_b(\Omega)} := \|f\|_{L^\infty(\Omega)} + \sup_{(t,x,v) \neq (t',x',v')} \frac{|f(t,x,v) - f(t',x',v')|}{|(t,x,v) - (t',x',v')|^\sigma}.
\tag{1.13}
\]
We shall also use the Sobolev spaces $W^{m,p}(\Omega)$, with $m \in \mathbb{N}^*$ and $p \in [1,\infty]$ (see the Appendix B for more details). If X is a Banach space, we will sometimes use, for simplicity, the notations $L^p_x X$ or $\mathcal{C}^{0}_t X$ to refer to $L^p(0,T;X)$ or $\mathcal{C}^{0}(\mathbb{R};X)$.

For $x \in \mathbb{T}^2$ and $r > 0$, we denote by $B(x,r)$ the open ball in \mathbb{T}^2 with centre x and radius r. Analogously, $S(x,r) = \partial B(x,r)$. If $y \in S(x,r)$, we denote by $B_S(y;d)$, for $d > 0$, the ball in \mathbb{S}^1 with the metric inherited by the Euclidean metric, i.e., $B_S(y;d) = S(x,r) \cap B(y;d)$. We will also admit that $\int_{\mathbb{S}^1} dx = 1$ without specifying the normalisation.

In dimension two, given a vector field $V \in \mathcal{C}^1(\mathbb{R}^2;\mathbb{R}^2)$, with $V(x) = (V_1,V_2)(x)$ we recall the usual operator
\[
curl V(x) := 1 V_2(x) - 2 V_1(x).
\]
Given a function $\phi \in \mathcal{C}^1(\mathbb{R}^2;\mathbb{R})$, we recall
\[
\nabla^\perp \phi(x) := \begin{pmatrix} -2 \phi(x) \\ \phi(x) \end{pmatrix},
\]
1.3.5. Structure of the article. In Section 2 we set some features of the characteristic equations. In Section 3 we construct the reference trajectory, treating separately the large velocities and the low ones. In Section 4 we define the fixed-point operator and we show that it has a fixed point. We prove next that this fixed point is the unique solution of system (1.1) within a certain class. In Section 5 we show that this solution satisfies the controllability property (1.3), which ends the proof of Theorem 1.1. In Section 6 we give some conclusions and comments. Finally, we gather in the Appendices A and B some auxiliary results about harmonic approximation and the Stokes system.

2. Some remarks on the characteristic equations

Let be given a fixed $U \in \mathcal{C}^0([0,T];\mathcal{C}^1(\mathbb{T}^2;\mathbb{R}^2))$. Let $s,t \in [0,T]$, $(x,v) \in \mathbb{T}^n \times \mathbb{R}^n$. We denote by $(X(t,s,x,v),V(t,s,x,v))$ the characteristics associated with the field $-v+U(t,x)$, i.e., the solution of the system

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{d}{dt} \begin{pmatrix} X(t) \\ V(t) \end{pmatrix} = \begin{pmatrix} V(t) \\ -V(t) + U(t,X(t)) \end{pmatrix}, \\
(X(t),V(t))|_{t=s} = \begin{pmatrix} x \\ v \end{pmatrix},
\end{array} \right.
\end{align*}
\] (2.1)

We observe that system (2.1) has a unique solution, thanks to the Cauchy–Lipschitz theorem. Moreover, one has the explicit formulæ

\[
\left\{ \begin{array}{l}
X(t,s,x,v) = x + (1-e^{-t+s}) v + \int_s^t e^{\tau-t'} U(\tau,X(\tau,s,x,v)) \, d\tau \\
V(t,s,x,v) = e^{-t+s} v + \int_s^t e^{\tau-t} U(\tau,X(\tau,s,x,v)) \, d\tau.
\end{array} \right.
\] (2.2)

Using the method of characteristics, given an initial datum $f_0 \in \mathcal{C}^0(\mathbb{T}^2 \times \mathbb{R}^2)$, the solution of the transport equation with friction

\[
\left\{ \begin{array}{l}
t f + v \cdot \nabla_x f + \text{div}_v \left((U-v)f\right) = 0, (t,x,v) \in (0,T) \times \mathbb{T}^2 \times \mathbb{R}^2, \\
f(0,x,v) = f_0(x,v), \quad (x,v) \in \mathbb{T}^2 \times \mathbb{R}^2,
\end{array} \right.
\] (2.3)

has the explicit solution

\[
f(t,x,v) = e^{2t} f_0((X,V)(0,t,x,v)),
\] (2.4)

where (X,V) are given by (2.2).

The following result is an adaptation of [9, Lemma 1, p. 337] to the case with friction. It will be used to obtain some Hölder estimates in Section 4.

Lemma 2.1. Let $U \in \mathcal{C}^0([0,T];\mathcal{C}^1(\mathbb{T}^2;\mathbb{R}^2))$. Then, the characteristics associated to the field $-v+U$ satisfy that for some $C = C(T,\|U\|_{\mathcal{C}^0,1}) > 0$,

\[
|\langle (X,V)(t,s,x,v) - (X,V)(t',s',x',v') \rangle| \\
\leq C(1+|v|)|\langle (t,s,x,v) - (t',s',x',v') \rangle|,
\]

whenever $(t,s,x,v),(t',s',x',v') \in [0,T] \times \mathbb{T}^2 \times \mathbb{R}^2$, with $|v-v'| < 1$.

Proof. We shall divide the proof in four cases.

Step 1. Assume $s = s', x = x', v = v'$. We can suppose that $t' \leq t$. Then, using Equation (2.2), we write

\[
V(t,s,x,v) - V(t',s,x,v)
\]
\[(e^{-t} - e^{-t'})e^s v + \int_s^t e^{\tau - t}U(\tau, X(\tau, s, x, v)) d\tau \]
\[- \int_s^{t'} e^{\tau - t'}U(\tau, X(\tau, s, x, v)) d\tau \]
\[= (e^{-t} - e^{-t'})e^s v + \int_s^t e^\tau (e^{-t} - e^{-t'})U(\tau, X(\tau, s, x, v)) d\tau \]
\[- \int_{t'}^t e^{\tau - t'}U(\tau, X(\tau, s, x, v)) d\tau. \]

This yields,
\[
|V(t, s, x, v) - V(t', s, x, v)| \\
\leq |e^{-t} - e^{-t'}| \left(e^T |v| + T e^T \|U\|_{\phi_{t,x}^{0.1}} \right) + |t - t'| e^T \|U\|_{\phi_{t,x}^{0.1}} \\
\leq C(T) (1 + |v|)(1 + \|U\|_{\phi_{t,x}^{0.1}})|t - t'|.
\]

The same argument gives, through Equation (2.2),
\[
|X(t', s, x, v) - X(t, s, x, v)| \leq C(T)(1 + |v|)(1 + \|U\|_{\phi_{t,x}^{0.1}})|t - t'|.
\]

Step 2. Assume \(t = t', s = s' \). Then, again by Equation (2.2), we have
\[
X(t, s, x, v) - X(t, s, x', v') \\
= (x - x') + (1 - e^{-t+s})(v - v') \\
+ \int_s^t \int_s^\sigma e^{\sigma - \tau} (U(\tau, X(\tau, s, x, v)) - U(\tau, X(\tau, s, x', v'))) d\tau d\sigma,
\]
which gives, since \(U \) is Lipschitz in \(x \),
\[
|X(t, s, x, v) - X(t, s, x', v')| \\
\leq (e^T + 1)(|x - x'| + |v - v'|) + Te^T \|U\|_{\phi_{t,x}^{0.1}} \int_s^t |X(\tau, s, x, v) - X(\tau, s, x', v')| d\tau.
\]
Then, by Gronwall’s lemma, we obtain
\[
|X(t, s, x, v) - X(t, s, x', v')| \\
\leq (e^T + 1)(|x - x'| + |v - v'|)(1 + Te^T \|U\|_{\phi_{t,x}^{0.1}})Te^{T^2e^T \|U\|_{\phi_{t,x}^{0.1}}} \\
\leq C(T) (|x - x'| + |v - v'|)(1 + \|U\|_{\phi_{t,x}^{0.1}})e^{T^2e^T \|U\|_{\phi_{t,x}^{0.1}}}.
\]

This allows to obtain an analogue estimate for \(V \).

Step 3. Assume that \(t = t', x = x', v = v' \). We observe that
\[
(X, V)(t, s', x, v) = (X, V)(t, s, X(s, s', x, v), V(s, s', x, v)).
\]
Thus, Step 2 allows to write
\[
|(X, V)(t, s, x, v) - (X, V)(t, s', x, v)| \\
\leq C(T) (|x - X(s, s', x, v)| + |v - V(s, s', x, v)|)(1 + \|U\|_{\phi_{t,x}^{0.1}})e^{T^2e^T \|U\|_{\phi_{t,x}^{0.1}}}.
\]
On the other hand, putting \((x,v) = (X,V)(s',s',x,v)\), Step 1 allows to write

\[
|x - X(s,s',x,v)| + |v - V(s,s',x,v)| \\
\leq |s - s'|C(T)(1 + |v|)(1 + \|U\|_{\mathcal{C}^{0,1}}),
\]

which together with the previous inequality gives

\[
|(X,V)(t,s,x,v) - (X,V)(t,s',x,v)| \\
\leq C(T)(1 + |v|)(1 + \|U\|_{\mathcal{C}^{0,1}})^2 e^{T^2 \varepsilon^2 T} \|U\| |s - s'|.
\]

Step 4. In the general case, we write

\[
(X,V)(t,s,x,v) - (X,V)(t',s',x',v') \\
= (X,V)(t,s,x,v) - (X,V)(t',s',x,v) \\
+ (X,V)(t',s',x,v) - (X,V)(t,s',x',v') \\
+ (X,V)(t,s',x',v') - (X,V)(t',s',x',v'),
\]

which allows to use the previous estimates to conclude.

3. Construction of a reference trajectory

3.1. Large velocities.

The key result for the treatment of large velocities is the following one, which is an adaptation of [9, Proposition 1, p. 340] to the friction case. We will need some results on harmonic approximation, gathered in the Appendix A.

Proposition 3.1. Let \(\tau > 0\). Given \(x_0 \in \mathbb{T}^2\) and \(r_0 > 0\) a sufficiently small number, there exist \(U \in \mathcal{C}^\infty([0,\tau] \times \mathbb{T}^2; \mathbb{R}^2)\) and \(m > 0\) such that

\[
\text{curl}_x U(t,x) = 0, \quad \forall (t,x) \in [0,\tau] \times (\mathbb{T}^2 \setminus \overline{B}(x_0,r_0/10)),
\]

\[
\text{supp} U \subset (0,\tau) \times \mathbb{T}^2,
\]

\[
\text{div} U(t,x) = 0, \quad \forall (t,x) \in [0,T] \times \mathbb{T}^2,
\]

\[
\int_{\mathbb{T}^2} U(t,x) \, dx = 0, \quad \forall t \in [0,\tau].
\]

Moreover, the characteristics \((X,V)\) associated to the field \(-v + U\) satisfy that, for every \(m \geq m\),

\[
\forall (x,v) \in \mathbb{T}^2 \times \mathbb{R}^2 \text{ with } |v| \geq m, \exists t \in \left(\frac{\tau}{4},\frac{3\tau}{4}\right) \text{ such that }
\]

\[
X(t,0,x,v) \in B\left(\frac{r_0}{4}\right) \text{ and } |V(t,0,x,v)| \geq \frac{m}{2e^\tau}.
\]

Following O. Glass (see [9]), we characterise the bad directions in the following sense.

Definition 3.1 (Bad directions.) Given \(x_0 \in \mathbb{T}^2\) and \(r_0 > 0\) a small number, \(e \in \mathbb{S}^1\) is a bad direction if

\[
\{(x + te); t \in \mathbb{R}^+\} \cap B(x_0, r_0/4) = \emptyset,
\]

in the sense of \(\mathbb{T}^2\).
Remark 3.1. It can be shown, thanks to B´ezout’s theorem, that for any \(x_0 \in \mathbb{T}^2 \) and \(r_0 > 0 \) small, there exists only a finite number of such bad directions, namely \(\{ e_1, \ldots, e_N \} \) (see [9, Appendix A, p. 373]).

Proof. (Proof of Proposition 3.1.) Given \(\tau > 0 \) and \(N \in \mathbb{N}^* \), the number of bad directions, let us define

\[
t_j := \frac{\tau}{4} + \frac{j \tau}{2(N+1)}, \quad \forall j \in \left\{ i + \frac{k}{4} : i = 0, \ldots, N, k = 0, 1, 2, 3 \right\}.
\]

We consider

\[
\eta \in \mathcal{C}_c^\infty(0,1) \text{ such that } 0 \leq \eta \leq 1, \text{ and } \int_0^1 \eta(t) dt = 1.
\]

Let \(A, \nu > 0 \) so that

\[
\nu < \frac{\tau}{8(N+1)}, \quad A > e^{\frac{12(N+1)}{\nu} + 2 + \frac{\tau}{4(N+1)}}.
\]

Let \(\epsilon > 0 \) to be chosen later on and set, according to Proposition A.2, the following vector field

\[
\begin{cases}
U(t,x) = \frac{4}{\nu} \eta \left(\frac{t - t_i + \frac{1}{2}}{\nu} \right) \nabla^\perp \theta_i(x), \quad (t, x) \in [t_i + \frac{1}{4}, t_i + \frac{3}{4}] \times \mathbb{T}^2, \\
U(t,x) = 0, \quad \text{otherwise}.
\end{cases}
\]

With this definition, we readily have Equations (3.1) and (3.2), using Equations (A.2) and (3.6). Condition (3.3) follows from the definition of \(U \) above. We have to show that Equation (3.4) is satisfied with this construction.

To prove the second point of Equations (3.4), (2.2) yields

\[
|V(t,0,x,v)| \geq e^{-\tau} |v| - \tau \| U \|_{\mathcal{E}_{t,x}^0}
\]

\[
\geq e^{-\tau} m - \tau \| U \|_{\mathcal{E}_{t,x}^0} \geq e^{-\tau} \frac{m}{2},
\]

provided that \(m \) is large enough.

To show the first part of Equation (3.4), we distinguish several cases, according to \((x,v) \in \mathbb{T}^2 \times \mathbb{R}^2 \). More precisely, if \(e = \frac{v}{|v|} \in \mathbb{S}^1 \), we shall show that

1. if \(x \in \mathbb{T}^2 \) and \(e \in \mathbb{S}^1 \setminus \{ e_1, \ldots, e_N \} \), with \(|v| \) large enough, then Equation (3.4) follows by comparison with the free transport without friction,

2. if \(x \in B(x_0, \frac{r_0}{4}) + \mathbb{R} e_i \) and \(e \in B_{\mathbb{S}^1}(e_i; \epsilon_1) \), for some \(i \in \{ 1, \ldots, N \} \) and \(\epsilon_1 > 0 \), then Equation (3.4) still holds if \(|v| \) is large enough,

3. if \(x \in \mathbb{T}^2 \), \(e \in B_{\mathbb{S}^1}(e_i; \epsilon_2) \) for some \(i \in \{ 1, \ldots, N \} \) and \(\epsilon_2 > 0 \) small enough, then for \(|v| \) large enough, we shall deduce that \((X,V)(\sigma,0,x,v)\), with some \(\sigma \in [t_i, t_i + \frac{1}{4}] \), satisfies the hypotheses of the case (2).

Let us now treat in detail the three cases below.

First case. Let \(e \in \mathbb{S}^1 \setminus \{ e_1, \ldots, e_N \} \). Since \(e \) is not a bad direction, from Definition 3.1, there exists \(m > 0 \) such that if \(|v| \geq m \), then,

\[
x + t|v| e \in B \left(x_0, \frac{r_0}{4} \right),
\]
for a certain \(t \in [t_0, t_1] \). In particular, \(\exists t_{\text{trans}} \in [t_0, t_1] \) such that
\[
x + t_{\text{trans}}(1 + m)e \in B \left(x_0, \frac{r_0}{4} \right).
\] (3.9)

We shall prove next that, by augmenting the minimal speed required, we can conclude in the friction case. Indeed, consider
\[
m_0 := \frac{t_1(1 + m)}{1 - e^{-t_1}}.
\]
and for any \(v^b \in \mathbb{R}^2 \) with \(|v^b| \geq m_0 \), set the function
\[
t \mapsto f_b(t) := (1 - e^{-t})|v^b|,
\]
which is continuous from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \). Since \(f_b(0) = 0 \) and \(f_b(t_1) \geq t_1(1 + m) \), by the intermediate value theorem, \(\exists t^* \in (0, t_1) \) such that \(f_b(t^*) = t_{\text{trans}}(1 + m) \).

Whence, by condition (3.9),
\[
x + (1 - e^{-t^*})|v^b|e = x + f_b(t^*)e = x + t_{\text{trans}}(1 + m)e \in B \left(x_0, \frac{r_0}{4} \right).
\] (3.10)

This shows Equation (3.4) in this case, since \(U(t, x) = 0 \) for \(t \in [t_0, t_1] \), and thus, \(X(t^*, 0, x, v) = x + (1 - e^{-t^*})v \).

Second case. Let us suppose that \(x \in B(x_0, \frac{r_0}{4}) + \mathbb{R}e_i \) for some \(i \in \{1, \ldots, N\} \). Let \(e \in V_1(e_i) := B_{\mathbb{S}^1}(e_i; \epsilon_1) \). If \(\epsilon_1 > 0 \) is small enough and \(|v| \geq m_1 \) is large enough, then there exists \(0 < s \leq t \leq \frac{C}{|v|} \), for some constant \(C > 0 \), independent of \((x, e) \in \mathbb{T}^2 \times \mathbb{S}^1 \), such that
\[
x + (1 - e^{-t + s})|v|e \in B \left(x_0, \frac{9r_0}{40} \right).
\]

To justify this, we point out that this holds for the free transport (see [9, p.375]), which implies, by a similar argument as before, that this also holds in the friction case. Whence, from Equation (2.2) and for any \(s', s'' \in [0, \tau] \),
\[
|X(s', s, x, v) - x - (1 - e^{-s' + s''})v| \leq C(T, \|U\|_{C^0_{\text{trans}}})|s' - s''| = O \left(\frac{1}{m_1} \right).
\]

Then, if \(m_1 \) is large enough, this entails in particular
\[
X(s, t_i, x, v) \in B \left(x_0, \frac{r_0}{4} \right), \text{ for some } s \in [t_i, t_i + 4].
\]

Third case. Let \(x \in \mathbb{T}^2 \), \(|v| \geq m_2 \), large enough. Let \(e \in V_2(e_i) := B_{\mathbb{S}^1}(e_i; \epsilon_2) \), for some \(i \in \{1, \ldots, N\} \) and \(\epsilon_2 > 0 \) small enough. We have to show that \(\exists t \in [t_i, t_i + \frac{4}{5}] \) such that
\[
X(t, t_i, x, v) \in B \left(x_0, \frac{r_0}{5} \right) + \mathbb{R}e_i,
\] (3.11)
\[
\frac{V(t, t_i, x, v)}{|V(t, t_i, x, v)|} \in B_{\mathbb{S}^1}(e_i; \epsilon_1), \text{ with } |V(t, t_i, x, v)| \geq m_1.
\] (3.12)

Then, we can use the analysis of the second case to conclude.
We prove first (3.11) by means of the orthogonal projection on the direction \(e^\perp_t \). Let

\[
P_{e^\perp_t} : \mathbb{R}^2 \rightarrow \mathbb{R}
\]
\[
v \mapsto P_{e^\perp_t}(v) := \langle v, e^\perp_t \rangle.
\]

We distinguish two cases.

Firstly, let \(v \in \mathbb{R}^2 \) such that \(|P_{e^\perp_t}(v)| > \frac{6(N+1)}{\tau} \). Then, for a large enough speed \(|v| \geq m_2\), Equation (3.11) is satisfied, as follows by comparison with the free transport case.

Secondly, if \(|P_{e^\perp_t}(v)| < \frac{6(N+1)}{\tau} \), let us suppose that \(X(t,t_i,x,v) \) does not meet \(B(x_0,r_0/5) + \mathbb{R}e_i \) during \([t_i + \frac{1}{4}, t_i + \frac{1}{2}]\). Then, by Equation (3.8) and Proposition A.2, we have

\[
\begin{align*}
\| U(t,X(t,t_i,x,v)) - \frac{A}{\nu} \eta \left(\frac{t-t_i+\frac{1}{2}}{\nu} \right) e^\perp_t \|_{\mathcal{C}^{0,x}} &
\leq \frac{A}{\nu} \| \eta \|_{\mathcal{C}^{0,x}} \| \nabla^\perp \theta^i - e^\perp_t \|_{\mathcal{C}^{0,x}} < \frac{Ae}{\nu},
\end{align*}
\]

(3.13)

We choose \(\epsilon > 0 \) small enough so that \(\frac{Ae}{\nu} < 1 \). Then, by Equation (2.2),

\[
|P_{e^\perp_t}(V(t_{i+\frac{1}{2}}^t,x,v))| = |\langle V(t_{i+\frac{1}{2}},t_i,x,v), e^\perp_t \rangle|
\geq -|P_{e^\perp_t}(v)|(t_{i+\frac{1}{2}} - t_i) + \left| \int_{t_i + \frac{1}{4}}^{t_{i+\frac{1}{2}}} e^{s-t_i+\frac{1}{2}} U(s,X(s,t_i,x,v))ds, e^\perp_t \right|.
\]

(3.14)

For the first term, by Equation (3.5) and the hypothesis on \(P_{e^\perp_t}(v) \),

\[
-|P_{e^\perp_t}(v)|(t_{i+\frac{1}{2}} - t_i) = -|P_{e^\perp_t}(v)| \frac{\tau}{4(N+1)} \geq -\frac{3}{2}.
\]

(3.15)

For the second term, we write

\[
\left| \left\langle \int_{t_i + \frac{1}{4}}^{t_{i+\frac{1}{2}}} e^{s-t_i+\frac{1}{2}} U(s,X(s,t_i,x,v))ds, e^\perp_t \right\rangle \right|
\leq \left| \langle T_1 + T_2, e^\perp_t \rangle \right|
\geq -|\langle T_1, e^\perp_t \rangle| + |\langle T_2, e^\perp_t \rangle|,
\]

(3.16)

with

\[
T_1 := \int_{t_i + \frac{1}{4}}^{t_{i+\frac{1}{2}}} e^{s-t_i+\frac{1}{2}} \left(U(s,X(s,t_i,x,v)) - \frac{A}{\nu} \eta \left(\frac{s-t_i+\frac{1}{2}}{\nu} \right) e^\perp_t \right) ds,
\]

\[
T_2 := \frac{A}{\nu} \int_{t_i + \frac{1}{4}}^{t_{i+\frac{1}{2}}} e^{s-t_i+\frac{1}{2}} \eta \left(\frac{s-t_i+\frac{1}{2}}{\nu} \right) e^\perp_t ds.
\]

Then, using Equations (3.13) and (3.5),

\[
|\langle T_1, e^\perp_t \rangle| \leq 2(t_{i+\frac{1}{2}} - t_i + \frac{1}{4}) \left\| U - \frac{A}{\nu} \eta e^\perp_t \right\|_{\mathcal{C}^{0,x}} \leq \frac{\tau}{4(N+1)},
\]

(3.17)
For the second term, using Equations (3.5) and (3.6), we get

$$|\langle T_2, e^+_i \rangle| \geq e^{-\frac{s(N+1)}{8}} A$$

Combining last inequality with Equations (3.17), (3.16), (3.15) and (3.14), the choice of A and ν in Equation (3.7), this yields

$$|P_{e^+_i} (V(t_{i+\frac{1}{2}}, t, x, v))| \geq \frac{6(N+1)}{\tau}.$$

Whence, by the previous point, $\exists t \in [t_{i+\frac{1}{2}}, t_{i+\frac{3}{2}}]$ such that

$$X(t_{i}, t_{i+1}, x, v) \in B \left(x_0, \frac{r_0}{5} \right) + \mathbb{R} e_i,$$

which shows Equation (3.11). We have to show next Equation (3.12). Indeed, from Equation (2.2), we deduce

$$|V(t, t_{i}, x, v) - e^{-t-t_{i}} v| \leq |t - t_{i}| \| U \| \varphi^{0}_{t,x},$$

which implies, by (3.5), that

$$e^{-t-t_{i}} |v| - |V(t, t_{i}, x, v)| \leq \frac{3\pi \| U \| \varphi^{0}_{t,x}}{8(N+1)}.$$ (3.18)

Then, choosing m_2 large enough, we get the second point of Equation (3.12). On the other hand, we observe that

$$\left| \frac{V(t, t_{i}, x, v)}{|V(t, t_{i}, x, v)|} - e_i \right| \leq \left| \frac{V(t, t_{i}, x, v)}{|V(t, t_{i}, x, v)|} - \frac{v}{|v|} \right| + \left| \frac{v}{|v|} - e_i \right|. \quad (3.19)$$

By definition of $\mathcal{V}_2(e_i)$, $\left| \frac{v}{|v|} - e_i \right| < \epsilon_2$. With the other term, using Equation (2.2), we find

$$\begin{align*}
&\left| \frac{V(t, t_{i}, x, v)}{|V(t, t_{i}, x, v)|} - e_i \right| \\
&= \left| \frac{e^{-t-t_{i}} v + \int_{t_{i}}^{t} e^{-s} U(s, X(s, t_{i}, x, v)) ds}{|V(t, t_{i}, x, v)|} - \frac{v}{|v|} \right| \\
&\leq \left| \frac{e^{-t-t_{i}} v}{|V(t, t_{i}, x, v)|} - \frac{v}{|v|} \right| + \frac{\tau e^\tau \| U \| \varphi^{0}_{t,x}}{|V(t, t_{i}, x, v)|} \\
&= \left| \frac{e^{-t-t_{i}} v}{|V(t, t_{i}, x, v)|} - \frac{v}{|v|} \right| + \frac{\tau e^\tau \| U \| \varphi^{0}_{t,x}}{|V(t, t_{i}, x, v)|} \\
&\leq \frac{2\tau e^\tau \| U \| \varphi^{0}_{t,x}}{|V(t, t_{i}, x, v)|}.
\end{align*}$$

This shows, by Equation (3.19), that

$$\left| \frac{V(t, t_{i}, x, v)}{|V(t, t_{i}, x, v)|} - e_i \right| \leq O \left(\frac{1}{|V(t, t_{i}, x, v)|} \right) + \epsilon_2,$$

which entails, by Equation (3.18), that Equation (3.12) holds choosing m_2 large enough and $\epsilon_2 > 0$ small enough.
3.2. Low velocities. The goal of this section is to prove the following result, which is the key ingredient for the treatment of low velocities. The main difficulty is to adapt the construction made in [9, Proposition 2] to the case with friction.

Proposition 3.2. Let \(\tau > 0 \), \(M > 0 \). Given \(x_0 \in \mathbb{T}^2 \) and \(r_0 > 0 \) a small positive number, there exists \(U \in \mathcal{C}^\infty([0, \tau] \times \mathbb{T}^2; \mathbb{R}^2) \) satisfying

\[
\begin{align*}
 \text{curl}_x U(t, x) &= 0, \quad (t, x) \in [0, \tau] \times (\mathbb{T}^2 \setminus \overline{B}(x_0, r_0)), \\
 \text{supp} U &\subset (0, \tau) \times \mathbb{T}^2, \\
 \text{div} U(t, x) &= 0, \quad \forall (t, x) \in [0, T] \times \mathbb{T}^2, \\
 \int_{\mathbb{T}^2} U(t, x) \, dx &= 0, \quad \forall t \in [0, \tau],
\end{align*}
\]

and such that, for some \(\overline{M} > 0 \), the characteristics associated to \(-v + U \) satisfy that, for every \((x, v) \in \mathbb{T}^2 \times B_{\mathbb{R}^2}(0, M) \), there exists \(t \in (0, \tau) \) such that

\[
V(t, 0, x, v) \in B_{\mathbb{R}^2}(0, \overline{M}) \setminus B_{\mathbb{R}^2}(0, M + 1).
\]

Proof. Let \(\theta \) be as in Proposition A.3. Since \(\text{Ind}_{S(x_0, r_0)}(\nabla \theta) = 0 \), possibly after a continuous extension, we may define

\[
m := \inf_{x \in \mathbb{T}^2} |\nabla \theta(x)| > 0.
\]

Let \(a, b \in \mathbb{R} \), to be chosen later on, and such that \(c := \frac{a}{b} \) is fixed. Let \(\eta \) be as in Equation (3.6). Then, we define the field

\[
U(t, x) := a\eta(bt)\nabla^\perp \theta(x), \quad \forall (t, x) \in [0, \tau] \times \mathbb{T}^2.
\]

Conditions (3.20)–(3.22) follow from the definition of \(U \) and the properties of \(\theta \), given by Proposition A.3. We have to show Equation (3.23). Indeed, from Equation (2.2), we find that, for every \((x, v) \in \mathbb{T}^2 \times B_{\mathbb{R}^2}(0, M) \),

\[
V(t, 0, x, v) = e^{-t} v + a \int_0^t e^{\sigma - t} \eta(b \sigma) \nabla^\perp \theta(X(\sigma, 0, x, v)) \, d\sigma.
\]

This gives, changing variables and using (3.6),

\[
|V(t, 0, x, v) - e^{-t} v| \leq \frac{a}{b} \|
abla^\perp \theta\|_{L^2_x} \int_0^{bt} e^{\theta - t} \eta(s) \, ds \\
\leq c \|
abla \theta\|_{L^2_x},
\]

whenever \(t \leq \frac{1}{b} \). Consequently,

\[
|X(t, 0, x, v) - x| \leq \int_0^t |V(s, 0, x, v) - e^{-s} v| \, ds + \int_0^t |e^{-s} v| \, ds \\
\leq \frac{c}{b} \|	heta\|_{L^2_x} + \frac{M}{b},
\]

for every \(t \leq \frac{1}{b} \). Thus, from Equation (3.25),

\[
\left| V\left(\frac{1}{b}, 0, x, v\right) - e^{-\frac{1}{b}} v - c \nabla^\perp \theta(x) \right|
\]
We note that the introduction of the term with the exponential in the first integral.

\[
\text{Whence, by Equation (3.24), this concludes the proof.}
\]

which gives, choosing \(c := \frac{2(M+1)}{m} \),

\[
\left| V\left(\frac{1}{b}, 0, x, v \right) \right| > M + \frac{3}{2}
\]

This concludes the proof. \(\square \)
3.3. Description of the reference trajectory. Since \(\omega \) is a nonempty open set in \(T^2 \), there exist \(x_0 \in \omega \) and \(r_0 > 0 \) such that

\[
B(x_0, 2r_0) \subset \omega.
\]

We can define a suitable vector field \(\overline{U} \) using the constructions made in the previous sections. Firstly, we apply Proposition 3.1 with \(\tau := T_3 \), which gives a vector field \(\overline{U}_1 \) and \(m_1 > 0 \) such that Equation (3.4) is verified.

For reasons that will be clear in Section 5, we set the following parameters. Let

\[
\alpha := \max \left\{ T\|\overline{U}_1\|_{C^0} + \frac{5}{2} \frac{C_{r_0,T}\|\overline{U}_1\|_{C^0}}{4} \right\},
\]

(3.27)

where \(C_{r_0,T} > 0 \) is a constant chosen large enough so that

\[
\log \left(1 + \frac{9r_0}{C_{r_0,T}\|\overline{U}_1\|_{C^0}} \right) < \frac{T}{200}.
\]

(3.28)

We set

\[
M_1 := \max \{ m_1, 2\alpha \} + \frac{T}{3}\|\overline{U}_1\|_{C^0}.
\]

(3.29)

With this choice of parameters, we apply Proposition 3.2 with \(\tau = T_3 \) and \(M = M_1 \), which gives \(\overline{U}_2 \) and \(\overline{M} \).

This allows to set

\[
\overline{U}(t,x) := \begin{cases}
\overline{U}_1(t,x), & (t,x) \in \left[0, T_3\right] \times T^2, \\
\overline{U}_2 \left(t - \frac{T_3}{3}, x \right), & (t,x) \in \left[\frac{T_3}{3}, \frac{2T_3}{3}\right] \times T^2, \\
\overline{U}_1 \left(t - \frac{2T_3}{3}, x \right), & (t,x) \in \left[\frac{2T_3}{3}, T\right] \times T^2.
\end{cases}
\]

(3.30)

By construction,

\[
curl_x \overline{U}(t,x) = 0, & (t,x) \in [0,T] \times (T^2 \setminus \omega),
\]

(3.31)

\[
supp \overline{U} \subset (0,T) \times \omega,
\]

(3.32)

\[
div_x \overline{U}(t,x) = 0,
\]

(3.33)

\[
\int_{T^2} \overline{U}(t,x) \, dx = 0, & \forall t \in [0,T],
\]

(3.34)

We set

\[
\overline{W}(t,x) := curl_x \overline{U}(t,x).
\]

(3.35)

Let us consider the functions

\[
Z_1(v) := -k_1v_2 e^{-\frac{|v|^2}{2}}, \quad Z_2(v) := k_2v_1 e^{-\frac{|v|^2}{2}}, \quad \forall v = (v_1, v_2) \in \mathbb{R}^2,
\]

(3.36)

where \(k_1, k_2 > 0 \) are normalisation constants. These functions satisfy that

\[
Z_1, Z_2 \in \mathcal{S}(\mathbb{R}^2),
\]
where \(\mathcal{S}(\mathbb{R}^d) \) stands for the space of real-valued Schwartz functions in \(\mathbb{R}^d \). Moreover, choosing \(k_1, k_2 \) adequately, we have

\[
\begin{align*}
\int_{\mathbb{R}^2} v_1 Z_1(v) dv &= \int_{\mathbb{R}^2} v_2 Z_2(v) dv = 0, \\
\int_{\mathbb{R}^2} v_2 Z_1(v) dv &= -\int_{\mathbb{R}^2} v_1 Z_2(v) dv = -1, \\
\int_{\mathbb{R}^2} Z_1(v) dv &= \int_{\mathbb{R}^2} Z_2(v) dv = 0.
\end{align*}
\]

We thus define, for any \((t, x, v) \in [0, T] \times T^2 \times \mathbb{R}^2\),

\[
\bar{f}(t, x, v) := Z_1(v)x_1 \overline{W}(t, x) + Z_2(v)x_2 \overline{W}(t, x).
\]

From Equations (3.32) and (3.35), we have

\[
\bar{f}|_{t=0} = 0, \quad \bar{f}|_{t=T} = 0.
\]

Thanks to Equation (3.39),

\[
\rho_{\bar{f}}(t, x) = 0, \quad \forall (t, x) \in \Omega_T.
\]

Furthermore, by construction and using Equations (3.37) and (3.38) we find

\[
-\Delta_x \overline{W} = \text{curl}_x \int_{\mathbb{R}^2} v \bar{f} dv.
\]

Moreover, thanks to Equation (3.40),

\[
\int_{T^2} j_{\bar{f}}(t, x) dx = 0.
\]

Hence, thanks to Equation (3.35), there exists \(\overline{p} \in \mathcal{C}^\infty([0, T] \times T^2; \mathbb{R}) \) such that

\[
-\Delta_x \overline{U}(t, x) = \nabla_x \overline{p}(t, x) + \int_{\mathbb{R}^2} v \bar{f} dv.
\]

Furthermore, from (3.40), (3.31) and (3.35), we deduce that

\[
\bar{f} + v \cdot \nabla_x \bar{f} + \text{div}_v [(\overline{U} - v) \bar{f}] = 0, \forall (t, x, v) \in [0, T] \times (T^2 \setminus \omega) \times \mathbb{R}^2,
\]

\[
\bar{f}(t, x, v) = 0, \forall (t, x, v) \in [0, T] \times (T^2 \setminus \omega) \times \mathbb{R}^2.
\]

To sum up, we have constructed a reference solution \((\bar{f}, \overline{U}, \overline{p})\) of system (1.1) with (3.41) and such that the characteristics associated to \(-v + \overline{U}\) satisfy Equation (3.4).

4. Fixed point argument

Let \(\epsilon \in (0, \epsilon_0) \) be fixed, with \(\epsilon_0 \) to be chosen later on. We shall define an operator \(\mathcal{V}_\epsilon \) acting on a domain \(\mathcal{S} \subset \mathcal{C}^0([0, T] \times T^2 \times \mathbb{R}^2) \) to be precised below. The goal of this section is to show that \(\mathcal{V}_\epsilon \) has a fixed point.
4.1. Definition of the operator. We describe the set \(\mathcal{S} \). Let \(\epsilon \in (0, \epsilon_0) \), to be precised later on, and \(\gamma > 2 \). Then, set

\[
\delta_1 := \frac{\gamma}{2(\gamma + 3)}, \quad \delta_2 := \frac{\gamma + 2}{\gamma + 3}.
\]

According to the notation of Section 1.3.4, we define

\[
\mathcal{S}_1 := \left\{ g \in C^{0, \delta_2}_b(Q_T) ; \right. \left. \int_{\mathbb{R}^2} (\mathcal{F} - g) \, dv \right\}_{C^{0, \delta_1}_b(\Omega_T)} \leq c_3 \epsilon,
\]

(a) \(\| (1 + |v|)^{\gamma+2} (\mathcal{F} - g) \|_{L^\infty(\Omega_T)} \leq c_1 (\| f_0 \|_{C^1(\mathbb{T}^2 \times \mathbb{R}^2)} + \| (1 + |v|)^{\gamma+2} f_0 \|_{C^0(\mathbb{T}^2 \times \mathbb{R}^2)}) \)

(b) \(\| (1 + |v|)^{\gamma+2} (\mathcal{F} - g) \|_{C^0(\mathbb{T}^2 \times \mathbb{R}^2)} \leq c_2 (\| f_0 \|_{C^1(\mathbb{T}^2 \times \mathbb{R}^2)} + \| (1 + |v|)^{\gamma+2} f_0 \|_{C^0(\mathbb{T}^2 \times \mathbb{R}^2)}) \)

(c) \(\int_{\mathbb{T}^2} \int_{\mathbb{R}^2} v g(t, x, v) \, dx \, dv = 0, \quad \forall t \in [0, T] \)

(d) \(\int_{\mathbb{T}^2} \int_{\mathbb{R}^2} g(t, x, v) \, dx \, dv = \int_{\mathbb{T}^2} \int_{\mathbb{R}^2} f_0(x, v) \, dx \, dv, \quad \forall t \in [0, T] \}

where \(c_1, c_2, c_3 \) are constants depending only on \(T, \omega, \gamma, \delta_1 \) and \(\delta_2 \) (see Equations (4.32), (4.35) and (4.36) for details). We observe that, for \(c_1, c_2, c_3 \) large enough and \(f_0 \in C^1(\mathbb{T}^2 \times \mathbb{R}^2) \), with high moments in \(v \), satisfying

\[
\| \int_{\mathbb{R}^2} f_0(x, v) \, dv \|_{C^{0, \delta_1}_b(\Omega_T)} \leq c_3 \epsilon,
\]

we trivially have that \(\mathcal{F} + f_0 \in \mathcal{S} \). Thus, \(\mathcal{S} \neq \emptyset \).

In order to describe the operator \(\mathcal{V} \), we have to introduce some definitions. Let (see [9, p. 342])

\[
\gamma^- := \left\{ (x, v) \in S(x_0, r_0) \times \mathbb{R}^2 ; |v| \geq \frac{1}{2}, \langle v, \nu(x) \rangle \leq \frac{|v|}{10} \right\},
\]

\[
\gamma^2^- := \left\{ (x, v) \in S(x_0, r_0) \times \mathbb{R}^2 ; |v| \geq 1, \langle v, \nu(x) \rangle \leq \frac{|v|}{8} \right\},
\]

\[
\gamma^3^- := \left\{ (x, v) \in S(x_0, r_0) \times \mathbb{R}^2 ; |v| \geq 2, \langle v, \nu(x) \rangle \leq \frac{|v|}{5} \right\},
\]

\[
\gamma^+ := \left\{ (x, v) \in S(x_0, r_0) \times \mathbb{R}^2 ; \langle v, \nu(x) \rangle \leq 0 \right\},
\]

where \(\nu(x) \) denotes the outward unit normal at \(S(x_0, r_0) \) at \(x \). By construction,

\[
\text{dist} \left([S(x_0, r_0) \times \mathbb{R}^2] \setminus \gamma^2^- ; \gamma^3^- \right) > 0.
\]

Consequently, we may choose an absorption function \(\mathcal{A} \in C^\infty \cap W^{1, \infty}(S(x_0, r_0) \times \mathbb{R}^2; \mathbb{R}^+) \) such that

\[
0 \leq \mathcal{A}(x, v) \leq 1, \forall (x, v) \in S(x_0, r_0) \times \mathbb{R}^2,
\]

\[
\mathcal{A}(x, v) = 1, \forall (x, v) \in [S(x_0, r_0) \times \mathbb{R}^2] \setminus \gamma^2^-,
\]

\[
\mathcal{A}(x, v) = 0, \forall (x, v) \in \gamma^3^-.
\]
We also choose a truncation function $\mathcal{Y} \in \mathcal{C}^\infty(\mathbb{R}^+; \mathbb{R}^+)$ such that
\begin{align}
\mathcal{Y}(t) &= 0, \forall t \in \left[0, \frac{T}{48}\right] \cup \left[\frac{47T}{48}, T\right], \\
\mathcal{Y}(t) &= 1, \forall t \in \left[\frac{T}{24}, \frac{23T}{24}\right].
\end{align}

We describe the operator V_ϵ in three steps.

(1) Stokes system. Let $g \in \mathcal{S}_\epsilon$. We associate to g the pair $(U^g(t), p^g(t))$, for every $t \in [0, T]$, solution of
\begin{align}
-\Delta_x U^g(t) + \nabla_x p^g(t) &= j^g(t), \quad x \in \mathbb{T}^2, \\
\text{div}_x U^g(t, x) &= 0, \quad x \in \mathbb{T}^2, \\
\int_{\mathbb{T}^2} U^g(t, x) \, dx &= 0, \quad t \in [0, T],
\end{align}
where
\[j^g(t, x) := \int_{\mathbb{R}^2} v g(t, x, v) \, dv. \]

We shall prove that this association is well defined, thanks to point (d) and the following result.

Lemma 4.1. Let $\epsilon > 0$. Then, there exists a constant $K_1 = K_1(\gamma) > 0$ such that, for every $g \in \mathcal{S}_\epsilon$ and every $t \in [0, T]$,
\[\|j^g(t)\|_{L^2(\mathbb{T}^2)^2} \leq K_1 \sqrt{1 + c_1^2 \epsilon^2}. \]

Proof. We write, by the triangular inequality,
\begin{align}
\|j^g(t)\|_{L^2(\mathbb{T}^2)^2}^2 &= \int_{\mathbb{T}^2} \left| \int_{\mathbb{R}^2} v g(t, x, v) \, dv \right|^2 \, dx \\
&= \int_{\mathbb{T}^2} \left| \int_{\mathbb{R}^2} v \left(g - \overline{f} + \overline{f} \right) (t, x, v) \, dv \right|^2 \, dx \\
&\leq \int_{\mathbb{T}^2} \left(\int_{\mathbb{R}^2} |v||g - \overline{f}| \, dv + \int_{\mathbb{R}^2} |v||\overline{f}| \, dv \right)^2 \, dx \\
&\leq 2 \int_{\mathbb{T}^2} \left(\int_{\mathbb{R}^2} |v||g - \overline{f}| \, dv \right)^2 \, dx + 2 \int_{\mathbb{T}^2} \left(\int_{\mathbb{R}^2} |v||\overline{f}| \, dv \right)^2 \, dx.
\end{align}

Let us note that, from Equations (3.40), (3.36) and the properties of Schwartz functions, we have that
\[\mathcal{L}_1 := \int_{\mathbb{T}^2} \left(\int_{\mathbb{R}^2} |v||\overline{f}| \, dv \right)^2 \, dx < \infty, \]
is a positive constant, independent from g.

We have to treat the first part of Equation (4.7). Indeed, by point (b),
\[\int_{\mathbb{T}^2} \left(\int_{\mathbb{R}^2} |v||(g - \overline{f})(t, x, v)| \, dv \right)^2 \, dx \]
\[\leq c^2_1 \left(\int_{\mathbb{R}^2} \frac{|v| \, dv}{(1 + |v|)^{\gamma + 2}} \right)^2 \left(\| f_0 \|_{\mathcal{C}^2} + \|(1 + |v|)^{\gamma + 2} f_0 \|_{L^\infty} \right)^2, \]
\[\leq I_2 c^2_1 \epsilon^2, \tag{4.9} \]

where we have used Equation (1.7) and
\[I_2 := \left(\int_{\mathbb{R}^2} \frac{|v| \, dv}{(1 + |v|)^{\gamma + 2}} \right)^2 < \infty. \]

Finally, putting together Equations (4.9), (4.8) and (4.7), we obtain the result by choosing
\[K_1 := \sqrt{2 \max \{I_1, I_2\}}. \]

We observe that the previous lemma shows that \(j_g(t) \in L^2(\mathbb{T}^2)^2 \), for every \(t \in [0, T] \).

Then, using point (d), we get from Proposition B.1 (see Appendix B for notation) the solution of system (4.6),
\[(U^g(t), p^g(t)) \in (H^2_0(\mathbb{T}^2)^2 \cap \mathbb{V}) \times L^2(\mathbb{T}^2), \quad \forall t \in [0, T]. \]

Consequently, the association given by (4.6) is well defined.

Let us show some consequences that will be important in next sections. We will assume from now on that the choice of \(\epsilon \) is made according to
\[\epsilon_0 \leq \min \left\{ \frac{1}{c_1}, 1 \right\}. \tag{4.10} \]

Lemma 4.2. There exists a constant \(K_2 = K_2(T, \gamma) > 0 \) such that for any \(g \in \mathcal{S}_\epsilon \) and \(U^g \) given by system (4.6), we have
\[\| U^g \|_{L^\infty(\Omega_T)} \leq K_2(T, \gamma). \tag{4.11} \]

Moreover,
\[U^g \in \mathcal{C}^0([0, T]; \mathcal{C}^1(\mathbb{T}^2; \mathbb{R}^2)). \tag{4.12} \]

Proof. Let \(g \in \mathcal{S}_\epsilon \). Then, by Equation (B.2), the Sobolev embedding theorem and Equation (4.10),
\[\| U^g \|_{L^\infty(\Omega_T)} \leq C_S \| U^g \|_{L^\infty(\mathcal{H}^2_0)^2} \]
\[\leq C_S c_1 \| j_g \|_{L^\infty(\mathcal{L}^2_2)^2} \leq C_S c_1 \sqrt{2} K_1, \tag{4.13} \]
which gives inequality (4.11) for a constant \(K_2 := \sqrt{2} C_S c_1 K_1 > 0 \), independent from \(g \).

Let us show inequality (4.12). Indeed, by similar arguments as those in Lemma 4.1, we deduce that \(j_g(t) \in L^\infty(\mathbb{T}^2)^2 \), for every \(t \in [0, T] \). Then, by interpolation between the \(L^p \) spaces, we deduce that
\[j_g(t) \in L^p(\mathbb{T}^2)^2, \quad \forall t \in [0, T], p \in [2, \infty]. \]
Consequently, using Proposition B.2 with source term $j_g(t) \in L^p(T^2)^2$, we deduce that

$$U^g(t) \in W^{2,p}(T^2)^2, \quad \forall t \in [0,T], p \in [2,\infty).$$

Finally, choosing $2 < p < \infty$, the Sobolev embedding theorem in this case (see [18, Corollaire 9.1, p.52]) implies that

$$U^g(t) \in \mathcal{C}^1(T^2)^2, \quad \forall t \in [0,T].$$

We have to show the continuity w.r.t. the time variable. Let $t, s \in [0,T]$. Then, $W(t,s) := U^g(t) - U^g(s)$, $p(t,s) := p^g(t) - p^g(s)$, satisfy

$$
\begin{aligned}
-\Delta_x W(t,s) + \nabla_x p(t,s) &= j_g(t) - j_g(s), \quad x \in T^2, \\
\text{div}_x W(t,s) &= 0, \quad x \in T^2, \\
\int_{T^2} W(t,s) \, dx &= 0.
\end{aligned}
$$

On the one hand, we have

$$
\|j_g(t) - j_g(s)\|_{L^p(T^2)^2}^p \\
\leq C(p) \sup_{x \in T^2} \left| \int_{T^2} v(g(t,x,v) - g(s,x,v)) \, dv \right| \\
\leq C(p) \sup_{x \in T^2} \|g(t,x) - g(s,x)\|^{1-\frac{\gamma+1}{2}}_{L^\infty} \left(\int_{T^2} |v||g(t,x,v) - g(s,x,v)|^{\frac{\gamma+1}{\gamma+2}} \, dv \right). \tag{4.14}
$$

Furthermore, let us write, for any $x \in T^2$,

$$
\int_{T^2} |v||g(t,x,v) - g(s,x,v)|^{\frac{\gamma+1}{\gamma+2}} \, dv \leq A_1 + A_2,
$$

with

$$
A_1 := \int_{T^2} |v||g(t,x,v) - \overline{f}(t,x,v)|^{\frac{\gamma+1}{\gamma+2}} \, dv + \int_{T^2} |v||\overline{f}(s,x,v) - g(s,x,v)|^{\frac{\gamma+1}{\gamma+2}} \, dv,
$$

$$
A_2 := \int_{T^2} |v||\overline{f}(t,x,v) - \overline{f}(s,x,v)|^{\frac{\gamma+1}{\gamma+2}} \, dv.
$$

Using point (b), we have

$$
A_1 \leq 2 \left[c_1^{\frac{\gamma+1}{\gamma+2}} \left(\|f_0\|_{\mathcal{C}^1(T^2 \times \mathbb{R}^2)} + \|(1 + |v|)^{\gamma+2} f_0\|_{L^\infty(T^2 \times \mathbb{R}^2)} \right)^{\frac{\gamma+1}{\gamma+2}} \int_{\mathbb{R}^2} \frac{|v| \, dv}{(1 + |v|)^{\gamma+1}} \right],
$$

For the other term, using Equations (3.40) and (3.36), we readily have

$$
A_2 \leq C(\overline{f}, \gamma),
$$

which allows to deduce that

$$
\int_{T^2} |v||g(t,x,v) - g(s,x,v)|^{\frac{\gamma+1}{\gamma+2}} \, dv \leq C(f_0, \overline{f}, \gamma).
$$

This yields, from inequality (4.14) and using the fact that $g \in \mathcal{C}^{0,\frac{\gamma}{2}}(Q_T)$,

$$
\|j_g(t) - j_g(s)\|_{L^p(T^2)^2} \leq C(p,c_1,f_0,\gamma,\overline{f}) \sup_{x \in T^2} \|g(t,x) - g(s,x)\|^{1-\frac{\gamma+1}{\gamma+2}}_{L^\infty}.
$$
\[
\leq C(p,c_1,f_0,\gamma,f)\|g\|_{C^{1+\frac{3}{2}}(Q_T)}|t-s|^{\frac{1}{\gamma^2}}.
\]

Then, combining this with (B.2), we deduce
\[
\|W(t,s)|_{W^{2,p}(\mathbb{T}^2)^2} \leq C|t-s|^{\frac{1}{\gamma^2}}, \quad \forall t,s \in [0,T].
\]

This implies, again by the Sobolev embedding,
\[
\lim_{|t-s| \to 0} \|U^g(t) - U^g(s)\|_{C^{1}(\mathbb{T}^2)^2} = 0,
\]

which gives Equation (4.12).

We also deduce the following property for the backwards characteristics associated to \(-v + U^g\).

Lemma 4.3. Let \(g \in \mathcal{S}_e\) and let \((X^g, V^g)\) be the characteristics associated to the field \(-v + U^g\), according to system (4.6). Then, there exists a constant \(K_3 = K_3(T, \gamma) > 0\), independent of \(g\), such that
\[
|e^t| - |V^g(0,t,x,v)| \leq K_3,
\]
for any \((t,x,v) \in [0,T] \times \mathbb{T}^2 \times \mathbb{R}^2\).

Proof. By Equation (2.2), we have
\[
|e^t| - |V^g(0,t,x,v)| \leq |V^g(0,t,x,v) - e^t|
\]
\[
= \left| \int_0^t e^{t-s} U^g(s, X^g(0,s,x,v))\,ds \right|
\]
\[
\leq C(T)\|U^g\|_{L_{loc}^{\infty}}
\]
\[
\leq C(T)K_2(T, \gamma),
\]
using Equation (4.11). This allows to conclude, choosing \(K_3 := C(T)K_2(T, \gamma)\).

2. Absorption. To give a sense to the procedure of absorption we need first the following result, which asserts that the number of times the characteristics associated to the Stokes velocity field of the previous parts meet \(\gamma^-\) is finite.

Lemma 4.4. Let \(g \in \mathcal{S}_e\) and let \(U^g\) be given by system (4.6) accordingly. Let \((X^g, V^g)\) be the characteristics associated to the field \(-v + U^g\). Then, for any \((x,v) \in \mathbb{T}^2 \times \mathbb{R}^2\), there exists \(n(x,v) \in \mathbb{N}\) such that there exist \(0 < t_1 < \cdots < t_{n(x,v)} < T\) such that
\[
\{(X^g, V^g)(t,0,x,v); t \in [0,T]\} \cap \gamma^- = \{t_i\}_{i=1}^{n(x,v)},
\]
\[
\exists s > 0 \text{ s.t. } (t_i - s, t_i + s) \cap (t_j - s, t_j + s) = \emptyset, \forall i,j = 1, \ldots, n(x,v),
\]
with the convention that \(n(x,v) = 0\) and \(\{t_i\}_{i=1}^{n(x,v)} = \emptyset\) if \(\{(X^g, V^g)\} \cap \gamma^- = \emptyset\).

For more details on this result, see [9, p.348] and [11, p.5468]. In the friction case, this holds true without further modification, thanks to Lemma 4.2 and Lemma 4.3.

The previous lemma allows to define the following quantities. Let \(f_0 \in C^1(\mathbb{T}^2 \times \mathbb{R}^2)\) and let \((x,v) \in \mathbb{T}^2 \times \mathbb{R}^2\). Then, for every \(t_i\), with \(i = 1, \ldots, n(x,v)\), we have \((\tilde{x}, \tilde{v}) = (X^g, V^g)(t_i, 0,x,v) \in \gamma^-\). Moreover, let
\[
f(t, \tilde{x}, \tilde{v}) = \lim_{t \to t_i^-} f_0((X^g, V^g)(0,t,x,v)),
\]
(4.18)
\[f(t^+, \bar{x}, \bar{v}) = \lim_{{t \to t^+_i}} f_0((X^g, V^g)(0,t,x,v)). \] (4.19)

We define \(f := \tilde{V}_c[g] \) to be the solution of
\[
\begin{cases}
 tf + v \cdot \nabla_x f + U^g \cdot \nabla_v f - \text{div}_v(vf) = 0, & (t,x,v) \in [0,T] \times [T^2 \times \mathbb{R}^2] \setminus \gamma^2, \\
 f(0,x,v) = f_0(x,v), & (x,v) \in T^2 \times \mathbb{R}^2, \\
 f(t^+, x,v) = (1 - \mathcal{Y}(t)) f(t^-, x,v) + \mathcal{Y}(t) A(x,v) f(t^-, x,v), & (t,x,v) \in [0,T] \times \gamma^-.
\end{cases}
\] (4.20)

where \(\mathcal{Y} \) is given by Equations (4.4) and (4.5). Let us explain how the absorption procedure works. From (4.12), the characteristics associated to the field \(-v + U^g\) are regular. Thus, outside \(\omega \), the system above defines a function \(\tilde{V}_c[g] \) of class \(C^1 \). Moreover, the exact value of \(\tilde{V}_c[g] \) is given by these characteristics through Equations (2.4) and (2.2). When the characteristics \((X^g, V^g)\) meet \(\gamma^- \) at time \(t \), \(f(t^+, \cdot, \cdot) \) is fixed according to the last equation in (4.20). We can see the function \(\mathcal{Y}(t) A(x,v) \) as an opacity factor depending on time and on the incidence of the characteristics on \(S(x_0, r_0) \). Indeed, \(f(t^+, \cdot, \cdot) \) can take values varying from \(f(t^-, \cdot, \cdot) \), in the case of no absorption, to 0, according to the angle of incidence, the modulus of the velocity and time.

(3) Extension. The function \(\tilde{V}_c[g] \) is not necessarily continuous around \([0,T] \times \gamma^- \subset [0,T] \times S(x_0,2r_0)\). To avoid this problem we shall use some extension operators preserving regularity.

Let us first consider a linear extension operator
\[
\pi : \mathcal{C}^0(T^2 \setminus B(x_0,2r_0)) \to \mathcal{C}^0(T^2),
\]
such that for any \(\sigma \in (0,1) \), a \(\mathcal{C}^{0,\sigma} \) function is mapped onto a \(\mathcal{C}^{0,\sigma} \) function. This allows to define another linear extension operator by
\[
\tilde{\pi} : \mathcal{C}^0([0,T] \times [T^2 \setminus B(x_0,2r_0)] \times \mathbb{R}^2) \to \mathcal{C}^0([0,T] \times T^2 \times \mathbb{R}^2)
\]
\[
\text{such that } \tilde{\pi} f(t,x,v) = \pi[f(t,\cdot,\cdot)](x).
\]

We modify \(\tilde{\pi} \) in the following way. Let \(\mu_1, \mu_2 \in \mathcal{C}^\infty(T^2 \times \mathbb{R}^2) \) such that
\[
\int_{T^2} \int_{\mathbb{R}^2} \mu_1 \, dx \, dv = 0, \quad \int_{T^2} \int_{\mathbb{R}^2} v \mu_1 \, dx \, dv = 1,
\]
\[
\int_{T^2} \int_{\mathbb{R}^2} \mu_2 \, dx \, dv = 1, \quad \int_{T^2} \int_{\mathbb{R}^2} v \mu_2 \, dx \, dv = 0.
\]

Then, set
\[
\pi(f) := \tilde{\pi}(f) - \int_{T^2} \int_{\mathbb{R}^2} v \tilde{\pi}(f) \, dx \, dv \mu_1 + \left[\int_{T^2} \int_{\mathbb{R}^2} (f_0 - \tilde{\pi}(f)) \, dx \, dv \right] \mu_2.
\]

Thus, \(\pi \) is an affine extension satisfying the following properties: for every \(f \in \mathcal{C}^0([0,T] \times (T^2 \setminus B(x_0,2r_0)] \times \mathbb{R}^2) \), we have
\[
\int_{T^2} \int_{\mathbb{R}^2} \pi f(t,x,v) \, dx \, dv = \int_{T^2} \int_{\mathbb{R}^2} f_0(x,v) \, dx \, dv, \quad \forall t \in [0,T],
\] (4.21)
\[
\int_{T^2} \int_{\mathbb{R}^2} v \pi f(t,x,v) \, dx \, dv = 0, \quad \forall t \in [0,T],
\] (4.22)
\[
\exists C_\pi > 0 \text{ such that}
\] (4.23)
This allows to define the fixed point operator by which implies, through (2.4), for every t,x,v.

We introduce another truncation in time. Let $\tilde{\gamma} \in C(\mathbb{R}^+;[0,1])$ such that

\[
\tilde{\gamma}(t) = 0, \ t \in \left[0, \frac{T}{100}\right], \\
\tilde{\gamma}(t) = 1, \ t \in \left[\frac{T}{48}, T\right].
\] (4.25)

Finally, we set

\[
\Pi : C^0([0,T] \times (T^2 \setminus B(x_0,2r_0)) \times \mathbb{R}^2) \rightarrow C^0([0,T] \times T^2 \times \mathbb{R}^2), \\
f \mapsto \Pi f = (1 - \tilde{\gamma}(t)) f + \tilde{\gamma}(t) \pi f.
\] (4.26)

This allows to define the fixed point operator by

\[
\mathcal{V}_\epsilon[g] := \tilde{f} + \Pi \left(\tilde{V}_\epsilon[f]|_{([0,T] \times (T^2 \setminus B(x_0,2r_0)) \times \mathbb{R}^2) \cup ([0,\frac{T}{48}] \times T^2 \times \mathbb{R}^2)} \right),
\] (4.27)

for every $(t,x,v) \in [0,T] \times T^2 \times \mathbb{R}^2$.

4.2. Existence of a fixed point.

We shall apply the Leray–Schauder fixed point theorem (see [8, Theorem 1.11, p. 279]). To do this, we have to verify that

1. The set \mathcal{S}_ϵ is convex and compact in $C^0(Q_T)$,
2. $\mathcal{V}_\epsilon : \mathcal{S}_\epsilon \subset C^0(Q_T) \rightarrow C^0(Q_T)$ is continuous,
3. $\mathcal{V}_\epsilon(\mathcal{S}_\epsilon) \subset \mathcal{S}_\epsilon$.

The first point is straightforward, since the convexity of \mathcal{S}_ϵ is clear and the compactness is a consequence of Ascoli’s theorem (see, for instance, [20, Theorem 11.28, p. 245]). The second point is similar to [9, Section 3.3] and holds without further modification, thanks to Lemma 4.4, Lemma 4.3 and Lemma 2.1.

We need to show that point (3) holds. Let $g \in \mathcal{S}_\epsilon$. We have to prove that $\mathcal{V}_\epsilon[g] \in \mathcal{S}_\epsilon$, i.e., points (a)–(c), since points (d) and (e) follow by the construction of \mathcal{V}_ϵ, using Equations (4.22) and (4.21).

4.2.1. Proof of point (b).

By construction of \mathcal{V}_ϵ, we have

\[
\| (1 + |v|)^{\gamma+2} \mathcal{V}_\epsilon[f] - \tilde{f} \|_{L^\infty(Q_T)} \\
= \| (1 + |v|)^{\gamma+2} \Pi \left(\tilde{V}_\epsilon[g]|_{([0,T] \times (T^2 \setminus B(x_0,2r_0)) \times \mathbb{R}^2) \cup ([0,\frac{T}{48}] \times T^2 \times \mathbb{R}^2)} \right) \|_{L^\infty(Q_T)} \\
\leq C_\pi \| (1 + |v|)^{\gamma+2} \tilde{V}_\epsilon[g] \|_{L^\infty(Q_T)},
\] (4.28)

where we have used Equation (4.23). Moreover, by Equations (4.20) and (4.3),

\[
|f(t^+,t,x,v)| \leq |f(t^-,t,x,v)|,
\]

which implies, through (2.4),

\[
|\tilde{V}_\epsilon[g](t,x,v)| \leq |e^{2t} f_0((X^g,V^g)(0,t,x,v))|.
\]

On the other hand,

\[
|f_0((X^g,V^g)(0,t,x,v))| = \left(\frac{1 + |V^g(0,t,x,v)|}{1 + |V^g(0,t,x,v)|}\right)^{\gamma+2} |f_0((X^g,V^g)(0,t,x,v))|
\]
\[\frac{1}{1 + |x - x'|} \leq \frac{1 + |x'|}{1 + |x|}, \quad \forall x, x' \in \mathbb{R}^2. \] (4.30)

Furthermore, since
\[(1 + |v|)^{\gamma + 2} |\tilde{V}_e[g](t, x, v)| \leq (1 + e^{|v|})^{\gamma + 2} |\tilde{V}_e[g](t, x, v)|, \]
for every \((t, x, v) \in [0, T] \times \mathbb{T}^2 \times \mathbb{R}^2\), we have
\[\frac{e^{2T} (1 + K_3(T, \gamma))^{\gamma + 2} (\|f_0\|_{\mathcal{E}^1} + (1 + |v|)^{\gamma + 2} f_0\|_{L^\infty})}{(1 + |v|)^{\gamma + 2} \mathcal{L}_T (1 + K_3(T, \gamma))^{\gamma + 2}} \]
This gives that \(V_e[g]\) satisfies point (b), thanks to Equation (4.28) and choosing
\[c_1 \geq C_\pi e^{2T} (1 + K_3(T, \gamma))^{\gamma + 2}. \] (4.32)

4.2.2. Proof of point (c).
We need the following technical result, which can be adapted from [9, Lemma 2, p. 347], thanks to Lemma 2.1 and (4.12).

Lemma 4.5. For any \(g \in \mathcal{S}_e\), one has \(\tilde{V}_e[g] \in \mathcal{E}^4(Q_T \setminus \Sigma_T)\), with \(\Sigma_T := [0, T] \times \gamma^-\). Moreover, there exists a constant \(K_4 = K_4(\gamma, \omega) > 0\) such that
\[\frac{|\tilde{V}_e[g](t, x, v) - \tilde{V}_e[g](t', x', v')|}{(1 + |v|)(t, x, v) - (t', x', v')} \leq K_4 (\|f_0\|_{\mathcal{E}^1(\mathbb{T}^2 \times \mathbb{R}^2)} + (1 + |v|)^{\gamma + 2} f_0\|_{L^\infty(Q_T)}), \]
for any \((t, x, v), (t', x', v') \in [0, T] \times (\mathbb{T}^2 \setminus \omega) \times \mathbb{R}^2\) with \(|v - v'| < 1\). Furthermore, if \(f_0\) satisfies Equation (1.8), we also have
\[\|((1 + |v|)^{\gamma + 1} \nabla_{x,v} \tilde{V}_e[g]\|_{L^\infty} \leq K_5 \|((1 + |v|)^{\gamma + 1} \nabla_{x,v} f_0\|_{L^\infty(Q_T)} + (1 + |v|)^{\gamma + 2} f_0\|_{L^\infty}), \] (4.33)
for some constant \(K_5 = K_5(\kappa, g) > 0\).

Let \(\delta_2\) be given by Equation (4.1). Again, by construction of \(V_e\) and Equation (4.24), we deduce
\[\|\tilde{V}_e[g] - \bar{f}\|_{\mathcal{E}^0, \delta_2(Q_T)} \leq C_\pi, \delta_2 \|\tilde{V}_e[g]\|_{\mathcal{E}^0, \delta_2([0,T] \times (\mathbb{T}^2 \setminus B(x_0, 2r_0)) \times \mathbb{R}^2)}. \] (4.34)

Then, interpolating Equation (4.31) and Lemma 4.5, we have
\[\frac{|\tilde{V}_e[g](t, x, v) - \tilde{V}_e[g](t', x', v')|}{|(t, x, v) - (t', x', v')|^{\delta_2}} \]
Consequently, choosing ϵ small and satisfying Equation (4.10). Then, the smallness assumption (1.7) and the properties of \mathcal{V}_ϵ and Π allow to conclude. Thus, if $\epsilon \leq \epsilon_0$, thanks to Leray–Schauder theorem, there exists $g \in \mathcal{S}_\epsilon$ such that $\mathcal{V}_\epsilon[g] = g$.

\[
\left(1 + |v| \right)^{\gamma^2} \left| \mathcal{V}_\epsilon[g](t, x, v) - \mathcal{V}_\epsilon[g](t', x', v') \right| \leq C_1 \left(1 + |v| \right)^{\frac{3}{4}} \left| (t, x, v) - (t', x', v') \right|^\gamma
\]
4.3. Uniqueness. The goal of this section is to show that the solution of system (1.1) obtained in the previous section is unique within a certain class.

Indeed, let $\epsilon \leq \epsilon_0$ and $g = \mathcal{V}_\epsilon [g]$. Then, if $f_0 \in \mathcal{C}_b^1 (T^2 \times \mathbb{R}^2)$ satisfies Equation (1.8), Lemma 4.5 gives (4.33). By the construction of \mathcal{F} and \mathcal{V}_ϵ, and since II preserves regularity, we deduce that

$$g \in \mathcal{C}_b^1 (Q_T), \quad (4.37)$$

$$\exists \kappa' > 0, (|g| + |\nabla_x g|)(t,x,v) \leq \frac{\kappa'}{(1 + |v|)^{1 + \gamma}}, \quad \forall (t,x,v) \in Q_T. \quad (4.38)$$

Next result, inspired from [22, Section 8], shows that the solution in this class is unique.

Proposition 4.1. Let $f_0 \in \mathcal{C}_b^1 (T^2 \times \mathbb{R}^2)$ satisfying Equation (1.8) and let $G \in \mathcal{C}_b^0 (Q_T)$. Then, the solution of system (1.1) satisfying conditions (4.37) and (4.38) is unique.

Proof. Let $f_1 = \mathcal{V}_\epsilon [f_1]$, for $\epsilon \leq \epsilon_0$. Let us suppose that (f^2, U^2, p^2) is a solution of system (1.1) with initial datum f_0 and control G such that (4.37) and (4.38) are satisfied.

Let $W := U^1 - U^2$, $g := f^1 - f^2$, $\pi := p^1 - p^2$. Then, (g, W, π) satisfies

$$\begin{align*}
\partial_t g + v \cdot \nabla_x g + \div_v [(U^1 - v)g] &= \gamma - W \cdot \nabla_v f^2, & (t,x,v) &\in Q_T, \\
-\Delta_x W + \nabla_x \pi &= j_g, & (t,x) &\in \Omega_T, \\
\div_x W &= 0, & (t,x) &\in \Omega_T, \\
\int_{\mathbb{T}^2} W(t,x) \, dx &= 0, & t &\in [0,T], \\
g|_{t=0} &= 0, & (x,v) &\in \mathbb{T}^2 \times \mathbb{R}^2.
\end{align*} \quad (4.39)$$

Using Proposition B.1 and point (a), with Equation (4.10), we get, for every $t \in [0,T]$,

$$\|W(t)\|_{(H^2_x)} \leq C \|j_g(t)\|_{(L^2_v)}^2. \quad (4.40)$$

Moreover, the Sobolev embedding theorem gives, for every $t \in [0,T]$,

$$\|W(t)\|_{(L^\infty_v)} \leq C' \|j_g(t)\|_{(L^2_v)}^2. \quad (4.41)$$

On the other hand, we observe that condition (4.38) gives

$$(1 + |v|)|\nabla_x f^2(t, (X^1, V^1)(0,t,x,v))| \leq \frac{\kappa'(1 + |v|)}{(1 + |V^1(0,t,x,v)|)^{1 + \gamma}} \leq \frac{C(\kappa', \gamma)}{(1 + |v|)^\gamma},$$

proceeding in the same fashion as in Equation (4.29). As a result,

$$\sup_{(t,x) \in \Omega_T} \int_{\mathbb{T}^2} (1 + |v|)|\nabla_v f^2(t, (X^1, V^1)(0,t,x,v))| \, dv \leq \tilde{C}(\kappa', \gamma),$$

for some constant $\tilde{C}(\kappa', \gamma) > 0$. Consequently, from the Vlasov equation in (4.39), by the method of characteristics, we have

$$|g(t,x,v)| \leq e^{2T} \left| \int_0^t W(s, X^1(0,s,x,v)) \cdot \nabla_v f^2(s, X^1, V^1)(0,s,x,v) \, ds \right|$$

$$\leq e^{2T} \int_0^t \|W(s, \cdot)\|_{L^\infty_v} |\nabla_v f^2(s, X^1, V^1)(0,s,x,v)| \, ds.$$
Thus,
\[(1 + |v|)|g(t, x, v)| \leq \int_0^t \|W(s, \cdot)\|_{L^\infty} (1 + |v|) \left| \nabla_v f^2(s, (X^1, V^1)(0, s, x, v)) \right| ds,
\]
which implies, thanks to Equations (4.41) and (4.40),
\[\sup_{x \in \mathbb{T}^2} |j_g(t, x)| \leq C \int_0^t \|W(s, \cdot)\|_{L^\infty} ds \leq C' \int_0^t \sup_{x \in \mathbb{T}^2} |j_g(s)| ds, \quad \forall t \in [0, T],\]
which, by Gronwall’s lemma entails, since \(j_g(0) = 0\), that
\[j_g(t, x) = 0, \quad \forall (t, x) \in \Omega_T.\]
Moreover, using again system (4.39) we deduce from this that the difference \(W(t) = (U^1 - U^2)(t)\) satisfies, for every \(t \in [0, T]\),
\[
\begin{cases}
-\Delta_x W(t) + \nabla_x \pi(t) = 0, & x \in \mathbb{T}^2, \\
div_x W(t) = 0, & x \in \mathbb{T}^2, \\
\int_{\mathbb{T}^2} W(t) dx = 0,
\end{cases}
\]
which, according to Proposition B.1 must imply that \(U^1 = U^2\) in \(\Omega_T\). In particular, the characteristics associated to \(-v + U^1\) and to \(-v + U^2\) coincide and thus, \(f^1 = f^2\) in \(Q_T\).

5. End of the proof
In order to conclude the proof of Theorem 1.1 we have to show that if we choose \(\epsilon \in (0, \epsilon_1)\) with \(\epsilon_1\) small enough, then the fixed point \(g\) found in the previous section satisfies Equation (1.3). To do this, we show that \(\mathcal{V}_c[g](T) = 0\) in \((\mathbb{T}^2 \setminus \omega) \times \mathbb{R}^2\) (see the strategy of proof in Section 1.3.3). The key result is the following.

Proposition 5.1. There exists \(\epsilon_1 > 0\) such that the characteristics \((X^g, V^g)\) associated to the field \(-v + U^9\) meet \(\gamma^{3^-}\) for some time in \(\left[\frac{T}{24}, \frac{23T}{24}\right]\).

Proof. Let us define
\[\gamma^{4^-} := \left\{ (x, v) \in S(x_0, r_0) \times \mathbb{R}^2; \quad |v| \geq \frac{5}{2}, \langle v, \nu(x) \rangle \leq -\frac{|v|}{4} \right\}.
\]
We proceed in two steps. In a first time, we show the result for the characteristics associated to \(-v + \overline{U}\), given by Equation (3.30). In a second time, we show that, thanks to the first step, the result for \((X^g, V^g)\) follows by choosing \(\epsilon_1 > 0\) small enough.

Step 1. Let us consider the characteristics \((\overline{X}, \overline{V})\) associated to the field \(-v + \overline{U}\). We claim that
\[\exists \sigma \in \left[\frac{T}{12}, \frac{3T}{12}\right] \cup \left[\frac{9T}{12}, \frac{11T}{12}\right] \text{ such that } \overline{X}(\sigma, 0, x, v) \in \gamma^{4^-}. \quad (5.1)\]
To show this claim, we need to prove the following
\[\exists t \in \left[\frac{T}{12}, \frac{3T}{12} \right] \cup \left[\frac{9T}{12}, \frac{11T}{12} \right] \quad \text{s.t.} \quad \bar{X}(t,0,x,v) \in B\left(x_0, \frac{r_0}{4}\right), |\nabla(t,0,x,v)| \geq \alpha, \]
where \(\alpha \) is given by Equation (3.27). Indeed, let \(M_1 \) be given by Equation (3.29) and let us consider two cases.

Case 1. If |\(\nabla \left(\frac{T}{3},0,x,v \right) \)| \(\geq M_1 \), then using Equation (2.2), one obtains that
\[
|v| \geq e^{\frac{\pi}{2}} \left| \nabla \left(\frac{T}{3},0,x,v \right) \right| - e^{\frac{\pi}{2}} \left| \int_0^T e^{-\frac{\pi}{2} T} \nabla \left(\tau, \bar{X}(\tau,0,x,v) \right) d\tau \right|
\]
\[
\geq e^{\frac{\pi}{2}} M_1 - \frac{T}{3} e^{\frac{\pi}{2}} \| \nabla \|_{\ell^0,1}.
\]

Then, by the choice (3.29), this implies
\[|v| \geq e^{\frac{\pi}{2}} \max \{m_1, 2\alpha\}. \]

(5.3)

Hence, in particular, we get |\(v \)| \(\geq m_1 \). This allows to apply Proposition 3.1, which gives that \(\exists t \in \left[\frac{T}{12}, \frac{3T}{12} \right] \) such that \(\bar{X}(t,0,x,v) \in B(x_0, \frac{r_0}{4}) \).

Moreover, we deduce from Equation (5.3) that
\[|v| \geq 2e^{\frac{\pi}{2}} \alpha, \]

which entails, thanks to Equation (3.4), that \(|\nabla(t,0,x,v)| \geq \alpha \). Thus, (5.2) is satisfied in this case.

Case 2. If |\(\nabla \left(\frac{T}{3},0,x,v \right) \)| < \(M_1 \), then Proposition 3.2 implies that
\[
\left| \nabla \left(\frac{2T}{3},0,x,v \right) \right| \geq 1 + M_1.
\]

Proceeding as in the previous case, this yields (5.2) with some \(t \in \left[\frac{9T}{12}, \frac{11T}{12} \right] \).

This shows (5.2).

Let us prove (5.1). We choose \(s > 0 \) with
\[s < \log \left(1 + \frac{9r_0}{4\alpha} \right) < \frac{T}{200}, \]
thanks to Equations (3.27) and (3.28), and such that
\[\bar{X}(t,0,x,v) + (1 - e^s)\nabla(t,0,x,v) \in S(x_0,2r_0), \]
\[(\nabla(t,0,x,v),\nu(x)) \leq -\frac{\sqrt{3}}{2}|\nabla(t,0,x,v)|. \]

(5.4)

(5.5)

The last point follows from the fact that any straight line arising from \(B(x_0, \frac{r_0}{4}) \) cuts \(S(x_0,r_0) \) forming an angle with \(\nu(x) \) of value at most \(\frac{s}{2} \). To see Equation (5.4), we observe that, choosing \(s_0 := \log \left(1 + \frac{9r_0}{4\alpha} \right) \) one has
\[
|\bar{X}(t,0,x,v) + (1 - e^{s_0})\nabla(t,0,x,v) - x_0| \geq (e^{s_0} - 1)\alpha - |\bar{X}(t,0,x,v) - x_0|,
\]

which shows that
\[|\bar{X}(t,0,x,v) + (1 - e^{s_0})\nabla(t,0,x,v) - x_0| \geq (1 - e^{s_0})\alpha - |\bar{X}(t,0,x,v) - x_0|.
\]

(5.6)

This allows to apply Proposition 3.2, which implies that
\[\exists t \in \left[\frac{T}{12}, \frac{3T}{12} \right] \cup \left[\frac{9T}{12}, \frac{11T}{12} \right] \quad \text{s.t.} \quad \bar{X}(t,0,x,v) \in B\left(x_0, \frac{r_0}{4}\right), |\nabla(t,0,x,v)| \geq \alpha, \]

where \(\alpha \) is given by Equation (3.27). Indeed, let \(M_1 \) be given by Equation (3.29) and let us consider two cases.
\[
\geq \frac{9r_0}{4} - \frac{r_0}{4} = 2r_0.
\]

Hence, by the intermediate value theorem, there exists \(s\) with \(0 < s \leq s_0\) such that Equation (5.4) holds.

Moreover, we deduce from Equations (2.2) and (5.2) that

\[
\mid \bar{X}(t,0,x,v) + (1 - e^s)\nabla(t,0,x,v) - \bar{X}(t-s,0,x,v) \mid
\]

\[
= \mid \bar{X}(t,0,x,v) + (1 - e^s)\nabla(t,0,x,v) - \bar{X}(t-s,t,(\bar{X},\nabla)(t,0,x,v)) \mid
\]

\[
= \int_t^{t-s} \int_t^{t-s} e^{\sigma - \frac{1}{2}} \nabla(z,\bar{X}(z,\bar{X}(t,0,x,v))) dz d\sigma
\]

\[
\leq T e^T s \| U_1 \|_{\phi_{t,x}^0}
\]

\[
\leq C(T) \log \left(1 + \frac{9r_0}{4\alpha}\right) \| U_1 \|_{\phi_{t,x}^0}
\]

\[
\leq C'(T) \frac{9r_0}{4\alpha} \| U_1 \|_{\phi_{t,x}^0} \leq \frac{C(T, r_0)}{C_{r_0,T}},
\]

using Equation (3.27) and the fact that \(\log(1+x) \leq x\), for \(x > -1\). We may choose \(C_{r_0,T}\) large enough, together with Equation (3.28), so that

\[
\mid \bar{X}(t,0,x,v) + (1 - e^s)\nabla(t,0,x,v) - \bar{X}(t-s,0,x,v) \mid < \frac{r_0}{2},
\]

which allows to deduce, thanks to (5.4), that

\[
\bar{X}(t-s,0,x,v) \notin B(x_0, r_0).
\]

Hence, by the intermediate value theorem, there exists \(\sigma \in [t-s, t]\) such that

\[
\bar{X}(\sigma,0,x,v) \in S(x_0, r_0).
\]

Moreover, by Equations (2.2) and (5.2), we have

\[
\| \nabla(\sigma,0,x,v) \| = \| \nabla(\sigma,t,(\bar{X},\nabla)(t,0,x,v)) \|
\]

\[
\geq e^{t-\sigma} \| \nabla(t,0,x,v) \| - T e^{t-\sigma} \| U_1 \|_{\phi_{t,x}^0}
\]

\[
= e^{t-\sigma} (\alpha - T \| U_1 \|_{\phi_{t,x}^0}).
\]

Then, the choice of \(\alpha\) in Equation (3.27) yields

\[
\| \nabla(\sigma,0,x,v) \| \geq \frac{5}{2}.
\]

Thus, Equation (5.1) follows.

Step 2. Let us denote by \((X^g, V^g)\) the characteristics associated to \(-v + U^g\). We have

\[
\sup_{(t,x,v) \in Q_T} \mid ((X^g, V^g) - (\bar{X},\nabla))(t,0,x,v) \mid \leq C \| U^g - \bar{U} \|_{\phi_{t,x}^0}.
\]

(5.6)

Observe that, thanks to (4.6), (3.44) and (3.43), \((U^g - \bar{U})(t)\) satisfy

\[
\left\{
\begin{array}{l}
-\Delta_x (U^g - \bar{U})(t) + \nabla_x (p^g - \bar{p})(t) = j_{g-7}(t), \ \text{in} \ \mathbb{T}^2,
\ \\
div_x (U^g - \bar{U})(t) = 0, \ \text{in} \ \mathbb{T}^2,
\ \\
j_{g-7}(U^g - \bar{U})(t) dx = 0, \ \text{in} \ [0,T].
\end{array}
\right.
\]
Using the Sobolev embedding theorem and Proposition B.1, we deduce
\[
\|U^g - \mathcal{U}\|_{(L^\infty_tC^0_x)}^2 \leq C\|U^g - \mathcal{U}\|_{L^\infty_tL^2_x(H^2_x)}^2 \\
\leq C\|g - \mathcal{T}\|_{L^\infty_tL^2_x(T)}^2 \leq C\epsilon,
\]
using point (b). Hence, choosing \(\epsilon_1\) small enough, from Equations (5.1) and (5.6), the conclusion follows.

Proof. (Proof of Theorem 1.1.) By Section 4.2, choosing \(\epsilon \leq \min\{\epsilon_0, \epsilon_1\}\), where \(\epsilon_0\) satisfies Equation (4.10) and \(\epsilon_1\) is given by Proposition 5.1, there exists \(g \in \mathcal{S}\) such that \(\mathcal{V}_\epsilon[g] = g\) and such that Proposition 5.1 applies.

The fact that \(g\) satisfies system (1.1) follows from the construction of \(\mathcal{V}_\epsilon\) and Equation (4.20). Since \(g \in \mathcal{C}^1([0,T] \times \mathbb{T}^2 \times \mathbb{R}^2)\), thanks to Lemma 4.5, Equation (3.45) and the fact that \(\Pi\) preserves regularity, we deduce that
\[
tg + v \cdot \nabla_v g - \text{div}_v [(U^g - v)g] = 1_\omega(x)G,
\]
for some \(G \in \mathcal{C}^{\infty}([0,T] \times \mathbb{T}^2 \times \mathbb{R}^2)\).

To show Equation (1.3), we observe that from the construction of \(\mathcal{V}_\epsilon\) and Equation (3.41), we have
\[
\mathcal{V}_\epsilon[g](T, x, v) := \Pi \left(\mathcal{V}_\epsilon[f]([0,T] \times (\mathbb{T}^2 \setminus (B(x_0,2r_0) \times \mathbb{R}^2) \cup [0, T_\gamma] \times \mathbb{T}^2 \times \mathbb{R}^2)) \right) (T, x, v).
\]
In particular, for any \((x, v) \in (\mathbb{T}^2 \setminus \omega) \times \mathbb{R}^2\), it comes from the definition of \(\Pi\) that
\[
\mathcal{V}_\epsilon[g](T, x, v) = \tilde{\mathcal{V}}_\epsilon[g](T, x, v).
\]
Moreover, by (4.20) and (2.4),
\[
\tilde{\mathcal{V}}_\epsilon[g](T, x, v) = e^{2T} f_0((X^g, V^g)(0, T, x, v)).
\]
Hence, the absorption procedure described by Equations (4.20) and (4.3) and Proposition 5.1 allow to conclude that \(\tilde{\mathcal{V}}_\epsilon[g](T, x, v) = 0\) in \((\mathbb{T}^2 \setminus \omega) \times \mathbb{R}^2\).

Remark 5.1. According to the strategy discussed in Section 1.3.3, our approach to prove Theorem 1.1 consists in finding a fixed point of \(\mathcal{V}_\epsilon\) for \(\epsilon > 0\) small enough, say \(g^*\), such that \(g^*|_{t=T}\) is zero outside \(\omega\). Then, it is possible to reach the configuration \(f_1\) using the backward problem and a similar fixed-point operator.

On the other hand, a slightly different strategy to reach \(f_1\) from \(f_0\) has been proposed in [12, Section 5.3, p.728], allowing both processes to be performed simultaneously. Let us explain briefly the main idea.

Let us introduce a function \(\hat{f}\) satisfying
\[
\begin{cases}
\partial_t \hat{f} + v \cdot \nabla_x \hat{f} + \lambda \text{div}_v [(\hat{U} + v)\hat{f}] = 0, & (t, x, v) \in [0,T] \times [\mathbb{T}^2 \times \mathbb{R}^2] \setminus \gamma^2, \\
\hat{f}(0, x, v) = f_1(x, v), & (x, v) \in \mathbb{T}^2 \times \mathbb{R}^2, \\
\hat{f}(t^+, x, v) = (1 - \mathcal{Y}(t))\hat{f}(t^-, x, v) + \mathcal{Y}(t)\mathcal{A}(x, v) \hat{f}(t^-, x, v), & (t, x, v) \in [0,T] \times \gamma^-,
\end{cases}
\]
with the notations of Section 4 and
\[
-\Delta_x \hat{U} + \nabla_x \hat{p} = -\mathcal{J}, \\
\text{div}_x \hat{U}(t, x) = 0, \\
\int_{\mathbb{T}^2} \hat{U}(t, x) \text{d}x = 0.
\]
Then, one can replace the fixed-point operator defined previously by the following one. Let \(g \in \mathcal{S} \), let \(f \) the reference solution constructed in Section 3 and define

\[
\mathcal{V}_\epsilon^*[g] := \mathcal{T} + \Pi \left(f + \hat{f}(T - t, x, -v) \right) \mid_{\left(\left[0, T\right] \times \left(T^2 \setminus B(x_0, 2r_0) \right) \times \mathbb{R}^2 \right) \cup \left(\left[0, \frac{T}{2}\right] \times \mathbb{T}^2 \times \mathbb{R}^2 \right)}
\]

for \(f \) solving Equation (4.20) and \(\Pi \) defined by Equation (4.26). One can treat this fixed-point operator by the same techniques developed in the previous sections.

Despite the fact that this second approach seems to be more direct, we have preferred to develop the first strategy for the sake of simplicity and concision.

6. Conclusion and open questions

We have proved in Theorem 1.1 a local controllability result for the Vlasov equation coupled with the stationary Stokes system. Some possible extensions are possible.

We could consider the Vlasov–Stokes system on a bounded domain with boundary, as in [13], with Dirichlet boundary conditions for the vector field and specular boundary conditions for the distribution function. In this case, with an internal control, the construction of a reference trajectory given in Section 3 is no longer effective, because of the specular reflection on the boundary of the characteristic flow. In particular, the distinction between good and bad directions should be refined. A geometric control condition could be very useful in this context. The boundary control problem may necessitate a very technical approach.

Other fluid-kinetic models could possibly be studied with similar techniques, such as the Vlasov–Navier–Stokes system, in which the steady Stokes system is replaced by the unsteady Navier–Stokes system. This has been done by the author in [19].

Appendix A. Auxiliary results on harmonic approximation. We gather some results needed for the construction of the reference trajectory in Section 3.

As it has been done in by O. Glass in [9], the treatment of large velocities relies on a result on harmonic approximation due to T. Bagby and P. Blanchet (see [2]).

Proposition A.1 ([2]). Let \(\mathcal{F} \) be a closed subset of an orientable compact Riemannian manifold \(\Omega \), and \(\mathcal{U} \) an open subset of \(\Omega \setminus \mathcal{F} \). Suppose that \(\mathcal{U} \) meets every connected component of \(\Omega \setminus \mathcal{F} \). For \(f \) harmonic in a neighborhood of \(\mathcal{F} \) and \(\epsilon > 0 \), there is a Newtonian\(^1 \) function \(u \) on \(\Omega \), whose poles lie in \(\mathcal{U} \), and such that

\[
\sup_{\mathcal{F}} |u - f| < \epsilon. \tag{A.1}
\]

This result allows to show the following, which is a minor variation of [9, Lemma A.1, p. 374]. Let \(\{e_1, \ldots, e_N\} \) be given by Definition 3.1.

Proposition A.2. For any \(i \in \{1, \ldots, N\} \) and any \(\epsilon > 0 \), there exists \(\theta^i \in \mathcal{C}^\infty(T^2; \mathbb{R}) \) such that

\[
\Delta \theta^i (x) = 0, \quad x \in \mathbb{T}^2 \setminus B \left(x_0, \frac{r_0}{10} \right), \tag{A.2}
\]

\[
\|\nabla \theta^i - e_i\|_{\mathcal{C}^1 (\mathbb{T}^2 \setminus [B(x_0, r_0/10) + Re_i])} \leq \epsilon. \tag{A.3}
\]

\(^1\)The function \(u : \Omega \to \mathbb{C} \) is said to be Newtonian if

\[
\Delta u = 0, \quad \text{in} \ \Omega \setminus \{\text{poles of } u\}
\]

and for any \(p \in \{\text{poles of } u\} \) there exist \(c \in \mathbb{R} \) and a regular neighbourhood of \(p \), say \(R_p \), such that if \(G_{R_p} \) is the Green function in \(R_p \), then \(u - cG_{R_p} \) is harmonic in \(R_p \).
For the treatment of low velocities, we need the following result, proved by O. Glass in [9, Lemma 3, p. 356].

Proposition A.3 (O. Glass [9]). For any nonempty open set \(\mathcal{O} \subset \mathbb{T}^2 \), there exists \(\theta \in \mathcal{C}^\infty(\mathbb{T}^2; \mathbb{R}) \) such that

\[
\Delta \theta(x) = 0, \forall x \in \mathbb{T}^2 \setminus \mathcal{O}, \quad (A.4)
\]

\[
|\nabla \theta(x)| > 0, \forall x \in \mathbb{T}^2 \setminus \mathcal{O}. \quad (A.5)
\]

Appendix B. The Stokes system. The well-posedness theory for the Stokes system is classical, especially in the case of \(L^2 \) with possibly Dirichlet boundary conditions. However, we shall need to precise an energy estimate needed in Section 4 and a regularity result in \(L^p \) spaces.

Following [21, Ch.2], we set the appropriate functional setting. We shall work with the usual Sobolev spaces \(W^{m,p}(\mathbb{T}^2) \), with \(m \in \mathbb{N} \) and \(1 \leq p \leq \infty \). When \(p = 2 \), we can write, thanks to the Fourier series,

\[
H^m_{0}(\mathbb{T}^2) = \left\{ f \in H^m(\mathbb{T}^2); \int_{\mathbb{T}^2} f(x) \, dx = 0 \right\},
\]

which allows to equip these spaces, respectively, with the norms

\[
\|f\|_{H^m} := \left(\sum_{n \in \mathbb{Z}^2} (1 + |n|)^{2m} |c_n|^2 \right)^{\frac{1}{2}}, \quad \|f\|_{H^m_{0}} := \left(\sum_{n \in \mathbb{Z}^2} |n|^{2m} |c_n|^2 \right)^{\frac{1}{2}},
\]

with equivalence of norms in the case of \(H^m_{0} \) as a subspace of \(H^m \).

In the case of vector fields, we shall use \((W^{m,p}(\mathbb{T}^2))^2 \), with the product norm. Let us introduce, as usual,

\[
\mathbb{V} := \left\{ F \in H^1(\mathbb{T}^2)^2; \text{div}_x F = 0 \text{ in } \mathbb{R}^2 \right\},
\]

where the operator \(\text{div}_x \) is taken in the distributional sense. This setting allows to treat the system (see [21, Section 2.2])

\[
\begin{aligned}
\begin{cases}
-\Delta_x U + \nabla_x p = f, & x \in \mathbb{T}^2, \\
\text{div}_x U = 0, & x \in \mathbb{T}^2,
\end{cases} \\
\int_{\mathbb{T}^2} U \, dx = 0.
\end{aligned} \quad (B.1)
\]

Proposition B.1 ([21]). Let \(f \in L^2(\mathbb{T}^2)^2 \) such that \(\int_{\mathbb{T}^2} f(x) \, dx = 0 \). Then, the Stokes system (B.1) has a unique solution \((U, p) \in (H^2_{0}(\mathbb{T}^2)^2 \cap \mathbb{V}) \times H^1(\mathbb{T}^2) \). Moreover, there exists a constant \(C_0 > 0 \) such that

\[
\|U\|_{H^2} + \|p\|_{H^1} \leq C_0 \|f\|_{L^2}. \quad (B.2)
\]
The following regularity result in L^p spaces is an adaptation of [1, Theorem 4, p. 173] to the case of the flat torus \mathbb{T}^2.

Proposition B.2 ([1]). Let $r \in (1, \infty)$ and $m \in \mathbb{N}$. For each $f \in W^{m,r}(\mathbb{T}^2)$ satisfying $\int_{\mathbb{T}^2} f(x) \, dx = 0$, the Stokes system (B.1) has a unique solution $U \in W^{m+2,r}(\mathbb{T}^2)$, $p \in W^{m+1,r}(\mathbb{T}^2)$. Moreover,

$$
\|U\|_{W^{m+2,r}(\mathbb{T}^2)^2} + \|p\|_{W^{m+1,r}(\mathbb{T}^2)} \leq C_2 \|f\|_{W^{m,r}(\mathbb{T}^2)^2},
$$

(B.3)

for a constant $C_2 > 0$.

REFERENCES

