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THE BRAMSON CORRECTION FOR INTEGRO-DIFFERENTIAL
FISHER–KPP EQUATIONS∗

COLE GRAHAM†

Abstract. We consider integro-differential Fisher–KPP equations with nonlocal diffusion. For
typical equations, we establish the logarithmic Bramson delay for solutions with step-like initial data.
That is, these solutions resemble a front at position c∗t− 3

2λ∗
log t+O(1) for explicit constants c∗ and

λ∗. Certain strongly asymmetric diffusions exhibit more exotic behaviour.
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1. Introduction
We study integro-differential Fisher–KPP equations:

∂tu = µ (J ∗ u− u) + f(u) for (t, x) ∈ R+ × R. (1.1)

Here µ > 0 is a constant, J is a Borel probability measure on R, and f is a KPP
nonlinearity as defined below. We supplement (1.1) with the initial data u(0, · ) = 1R− .
Then a standard contraction argument yields a unique mild solution in L∞. Moreover,
(1.1) satisfies the comparison principle, so 0 ≤ u ≤ 1.

We assume that the measure J has the following moments:

(J1)

∫
R
|x| J(dx) < ∞ and there exists λ > 0 such that

∫
R
eλx J(dx) < ∞.

The latter is sometimes known as Mollison’s condition [35]. Next, if J has an atom at
the origin, it can be absorbed by changing µ. We are thus free to assume that

(J2) J
(
{0}

)
= 0.

Here, we deploy standard measure-theoretic notation, so that J
(
{0}

)
is the measure

of the (singleton) Borel set {0} under J . Finally, we often assume a weak form of
exponential monotonicity for J :

(J3) There exist Λ,M > 0 such that

ΛJ
(
[x, x+M ]

)
≥ J

(
(x+M,∞)

)
for all x ≥ 0. The same holds for the spatial reverse J∗ given by J∗(A) =
J(−A) for all Borel sets A ⊂ R.

Informally, (J3) says that that the mass of J near x ≥ 0 is not much smaller than
the mass far to the right. If J has a density J that is eventually bounded between
two positive multiples of an exponential, it satisfies (J3). Alternatively, if eλ|x|J (x) is
eventually decreasing for each λ > 0, then J satisfies (J3). This describes Gaussian and
compactly-supported kernels, for example.

The condition (J3) plays an important role in our comparison arguments. We seek
comparison principles on the half-line, but nonlocal interactions with the complementary
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half-line complicate matters. Assumption (J3) limits the influence of the complement.
This hypothesis is likely technical: it enables our comparison strategy, but we expect
our results to hold in its absence.

We emphasise that we make no symmetry assumption on J . We choose to treat
the general case due to its richer behaviour. In particular, the phenomena described in
Theorem 1.2 never occur in the symmetric setting.

The nonlinear “reaction” f in (1.1) is KPP [30], meaning:

(F1) f ∈ C1([0, 1]) and f ∈ C1,γ near 0 for some γ ∈ (0, 1);

(F2) f(0) = f(1) = 0 and f |(0,1) > 0;

(F3) f(u) ≤ f ′(0)u for all u ∈ [0, 1].

If we replace the nonlocal diffusion J ∗ u− u in (1.1) by the Laplacian, we obtain the
classical Fisher–KPP equation [19,30]

∂tυ = µ∆υ + f(υ). (1.2)

This equation models numerous invasion phenomena and the propagation of the solution
is a subject of intense study. We expect similar propagation in (1.1), and are thus
interested in the “position” of u as t → ∞. Precisely, define

σθ(t) := sup{x ∈ R | u(t, x) ≥ θ} (1.3)

for θ ∈ (0, 1). Then σθ tracks the leading edge of u at level θ. In this work, we study
the long-time asymptotics of σθ.

We are motivated by the delicate behaviour exhibited by solutions υ to the classical
Fisher–KPP Equation (1.2). Broadly speaking, solutions to reaction-diffusion equations
tend to resemble constant-speed “travelling waves”. However, when the reaction f is
KPP, solutions with step initial data lag behind such waves. Let σ̊θ denote the leading
edge of υ. The precise structure of σ̊θ was first determined by Bramson [10, 12], who
exploited a connection with branching Brownian motion to show that

σ̊θ(t) = c̊∗t−
3

2̊λ∗
log t+ Cθ + O(1) as t → ∞

for explicit constants c̊∗, λ̊∗ > 0 depending only on µ and f ′(0). See also [39] for a
shorter proof of this result to order O(1). We prove an analogous result for “typical”
integro-differential Equations (1.1):

σθ(t) = c∗t−
3

2λ∗
log t+Oθ(1) as t → ∞, (1.4)

where c∗ ∈ R and λ∗ > 0 depend on µ, J , and f ′(0). We note that u propagates quite
differently if J has sufficiently fat tails; see, for instance, [8, 15,20,22,34].

The leading-order speed c∗ in (1.4) is related to travelling wave solutions to (1.1).
These have the form Uc(x− ct) for a speed c ∈ R and profile Uc satisfying

µ(J ∗ Uc − Uc) + cU ′
c + f(Uc) = 0,

0 ≤ Uc ≤ 1, Uc(−∞) = 1, Uc(+∞) = 0.
(1.5)

Under mild conditions on J , Coville, Dávila, and Mart́ınez [18] prove the existence of a
minimal speed c∗ ∈ R such that a monotone front Uc exists for each speed c ≥ c∗. The
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minimal speed is given by

c∗ = inf
λ>0

Γ(λ) for Γ(λ) :=
1

λ

[
µ

∫
R
eλx J(dx)− µ+ f ′(0)

]
. (1.6)

A few comments are in order.
Remark 1.1.

(i) The fronts in [18] connect 0 to 1 rather than 1 to 0, so our spatial signs are
opposite theirs.

(ii) The infimum in (1.6) is bounded due to (J1).

(iii) We make no symmetry assumption on J , so c∗ can be nonpositive.

(iv) We assume a finite first-moment in (J1) to use [18]. However, in [18], J has a
continuous density with respect to Lebesgue measure. We drop this assumption,
so we require extensions of the results of [18]. We collect these observations in
Proposition 3.1, which we prove in Appendix B.

The dynamics of (1.1) depend on whether the infimum in (1.6) is attained. We
begin by classifying these cases:

Proposition 1.1. Let J satisfy (J1)–(J2) and f satisfy (F1)–(F3). If J(R+) > 0 or
f ′(0) < µ, then Γ uniquely attains its infimum. Otherwise, if J(R+) = 0 and f ′(0) ≥ µ,
then Γ does not attain its infimum and c∗ = 0.

We can now present our main results. First, we show that (1.4) holds whenever the
infimum in (1.6) is attained. This determines the constant λ∗ in (1.4).

Theorem 1.1. Suppose that J satisfies (J1)–(J3) and f satisfies (F1)–(F3). Assume
that J(R+) > 0 or f ′(0) < µ, so that Γ is uniquely minimised at some λ∗ > 0. Then for
all θ ∈ (0, 1), there exists a constant C(µ, J, f, θ) > 0 such that∣∣∣σθ(t)− c∗t+

3

2λ∗
log t

∣∣∣ ≤ C for all t ≥ 1.

This result is closely related to the work of Addario-Berry and Reed [3] on branching
random walks; we describe this connection in Appendix A. Theorem 1.1 is also similar
to results of Gao [21], who considers (1.1) with an additional term of the form ε∂2

xu.
Our methods, however, are quite different.

To prove Theorem 1.1, we use the framework developed by Hamel, Nolen, Roquejoffre,
and Ryzhik [25] for the classical Fisher–KPP equation. We shift to a moving frame and
relate the equation to a nonlocal linear Dirichlet problem on R+. We then constrain
the position σθ using super- and subsolutions constructed from this linear problem.
Ultimately, the method relies on key estimates for the long-time behaviour of the
linear Dirichlet problem. We prove these estimates using probabilistic arguments via a
Feynman–Kac representation.

In a certain sense, Theorem 1.1 is the generic case: “typical” nonlocal kernels J
admit a minimizer in (1.6). However, Proposition 1.1 shows that the infimum in (1.6)
need not be attained when J is strongly asymmetric. Then, several behaviours are
possible.

Theorem 1.2.

(i) Suppose that J satisfies (J1)–(J2) and f satisfies (F1)–(F3). Assume that
J(R+) = 0 and f ′(0) > µ. Then for all θ ∈ (0, 1), there exists a constant
C(µ, J, f, θ) > 0 such that |σθ(t)| ≤ C for all t ≥ 0.
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(ii) Fix µ > 0 and p > 1. Let f(u) = µ(u−up) and J = δ−1. Then for all θ ∈ (0, 1),
there exists C(µ, p, θ) > 0 such that∣∣∣σθ(t) +

log log t

log p

∣∣∣ ≤ C for all t ≥ 2.

Suppose J(R+) = 0, so the nonlocal diffusion in (1.1) only involves leftward jumps.
Then by Theorem 1.1, a weak reaction with f ′(0) < µ leads to a leftward drift at speed
c∗ < 0 with a logarithmic delay. In contrast, Theorem 1.2(i) shows that a strong reaction(
f ′(0) > µ

)
prevents the drift: solutions remain a bounded distance from the origin. We

note that this result does not require the hypothesis (J3). In the critical case f ′(0) = µ,
irregular modes of propagation should be possible. Theorem 1.2(ii) details one such case.
This example is closely related to the main result of Bramson in [11].

Using the comparison principle, we can extend our results to solutions evolving
from “step-like” initial data u(0, · ) = u0. Indeed, if 0 ≤ u0 ≤ 1 and u0 − 1R− is
compactly supported, then we can sandwich u between translations of the special step
solution considered above. Thus Theorems 1.1 and 1.2 both apply to u, with constants
C depending also on the initial data u0.

Finally, we note that our model (1.1) is distinct from the well-studied “nonlocal
Fisher–KPP equation”, which involves a nonlocal nonlinearity rather than nonlocal
diffusion. The nonlocal Fisher–KPP equation has garnered much attention in the last
decade. See [6] for travelling waves, [9, 37] for the Bramson correction to propagation,
and [1] for a recent probabilistic interpretation. There are two principal differences
between (1.1) and the nonlocal Fisher–KPP Equation: (1.1) obeys the comparison
principle, but does not enjoy parabolic regularity. The technical challenges in this work
are thus quite different from those overcome in [9].

In Section 2, we detail our solution theory for (1.1) and prove a version of the
comparison principle. In Section 3, we prove Proposition 1.1 and our main result,
Theorem 1.1. We prove Theorem 1.2 in Section 4. In Appendix A, we detail the
connection between (1.1) and branching random walks. We rigorously extend the
construction of travelling waves in [18] to our setting in Appendix B.

2. A mild comparison principle
In this section, we lay the technical groundwork for the remainder of the paper. We

define our solution theory for (1.1) and prove a comparison principle.
For later convenience, we study a wider class of equations in this section. Consider

the integro-differential equation

∂tu = µ(J ∗ u− u) + h(u) (2.1)

with Lipschitz h : R → R. Let T > 0 denote a finite time horizon. We study mild
solutions of (2.1) in L∞([0, T ]×R). Since T is arbitrary, our results extend to solutions
in L∞

loc

(
[0,∞);L∞(R)

)
.

In the proof of Theorem 1.1, we will construct functions that are only super- or
subsolutions of (1.1) on proper subsets of [0, T ]× R. We therefore develop a solution
theory on subsets. Let ς : [0, T ] → R be C1 and define the domain

D :=
{
(t, x) ∈ (0, T )× R | x > ς(t)

}
.

We set Dc :=
(
(0, T )× R

)
\ D. For each (t, x) ∈ D, let

ρ(t, x) := inf
{
s ∈ (0, t) | (s, t)× {x} ⊂ D

}
.
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This function is locally constant in t. We then define the incoming boundary

∂∗D :=
{
(ρ(t, x), x) ∈ D | (t, x) ∈ D

}
.

This is the subset of ∂D on which the vector field ∂t points into D. At small scales, (2.1)
is dominated by its first-order part ∂tv = 0, so we must impose “initial” data on the
incoming boundary ∂∗D.

In this work, we will only use convex D. Then ρ is independent of t and

∂∗D =
(
{0} × [ς(0),∞)

)
∪
{
(t, ς(t)) | t > 0, ς̇(t) < 0

}
. (2.2)

We now define our notion of a solution of (2.1).

Definition 2.1. Given u∗ ∈ L∞(∂∗D) and g ∈ L∞(Dc), we say u ∈ L∞([0, T ]× R) is
a solution of (2.1) in D with initial data u∗ and exterior data g if u = g on Dc and

u(t, x) = u∗(ρ(t, x), x) +

∫ t

ρ(t,x)

[
µ
(
J ∗ u(s, x)− u(s, x)

)
+ h

(
u(s, x)

)]
ds (2.3)

for almost every (t, x) ∈ D.

Abusing terminology, we extend this definition to D = (0, T )× R, which formally
corresponds to ς = −∞. In this case, ρ = 0, ∂∗D = {0} × R, and u∗ ∈ L∞(R) is the
usual initial data at time zero.

Proposition 2.1. For every u∗ ∈ L∞(∂∗D) and g ∈ L∞(Dc), there exists a unique
solution u ∈ L∞([0, T ]× R) of (2.1) in D with initial data u∗ and exterior data g.

Proof. This follows from a standard contraction argument; see [5, §2.2.1] for details.

When we are not concerned with uniqueness, we will often suppress reference to the
exterior data, as it is incorporated in the function u.

Suppose u solves (2.1) in D with initial data u∗ ∈ L∞(∂∗D). We claim that u
agrees almost everywhere (a.e.) with a measurable function that is continuous in t.
Indeed, because u ∈ L∞, there is a full-measure set E ⊂ R such that for all x ∈ E,
|u(t, x)| ≤ ∥u∥∞ and |J ∗ u(t, x)| ≤ ∥u∥∞ for a.e. t ∈

(
(0, T ) × {x}

)
∩ D. Hence for

all x ∈ E, the integral in (2.3) is continuous (in fact, Lipschitz) in t. Since ρ is locally
constant in t, u∗(ρ(t, x), x) is also continuous in t. Thus, the right side of (2.3) is
continuous in t for all x ∈ E. By definition, u agrees with this function a.e., as claimed.

Now suppose ς ′ ≥ ς and define D′ ⊂ D with corresponding incoming boundary ∂∗D′.
If u solves (2.1) in D, it agrees with a measurable continuous-in-t function a.e. in D.
Hence it has a well-defined trace u|∂∗D′ in L∞(∂∗D′). We can easily check that u is a
solution to (2.1) in D′ with initial data u|∂∗D′ . Thus, our notion of solution is compatible
with restriction.

Next, we define super- and subsolutions.

Definition 2.2. We say u± ∈ L∞([0, T ]× R) is a supersolution (resp. subsolution)
of (2.1) in D with initial data u±

∗ ∈ L∞(∂∗D) if

G±(t, x) := u±(t, x)−u±
∗ (ρ(t, x), x)

−
∫ t

ρ(t,x)

[
µ
(
J ∗ u±(s, x)− u±(s, x)

)
+ h

(
u±(s, x)

)]
ds
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agrees a.e. with a measurable function that is nonnegative (resp. nonpositive) and
nondecreasing (resp. nonincreasing) in t.

Next, recall Λ,M > 0 from (J3) and define the strip

B :=
{
(t, x) ∈ (0, T )× R | ς(t)−M ≤ x ≤ ς(t)

}
.

We can now state our comparison principle on D.

Proposition 2.2. Let u± be a supersolution (resp. subsolution) of (2.1) in D with
initial data u±

∗ . Suppose u+
∗ ≥ u−

∗ a.e. on ∂∗D and u+ ≥ 0 a.e. Moreover, suppose
there exists a function ϖ ∈ L∞([0, T ]) such that ϖ ≥ 0 a.e., u− ≤ ϖ a.e. in Dc, and
u+ ≥ (Λ + 1)ϖ a.e. in B. Then u+ ≥ u− a.e. in D.

Remark 2.1. The principal novelty of this statement is the fact that u+ and u− need
not be ordered in Dc \ B. Instead, u+ is large on the strip B. Due to the structural
assumption (J3), this compensates for a lack of control elsewhere in Dc.

Remark 2.2. Taking ς = −∞, we obtain the traditional comparison principle on the
whole line. Formally, u+ ≥ u− a.e. if u+(0, · ) ≥ u−(0, · ) a.e.

Remark 2.3. We have chosen to formulate our theory in familiar L∞ spaces, which
are quotients based on the essential supremum seminorm. We could instead work in
the space L ∞ of bounded measurable functions under the supremum norm. We can
evaluate functions in L ∞ pointwise, and the proof of Proposition 2.2 goes through
without the need to avoid pathological null sets. For this reason, we omit the phrase
“almost everywhere” from (in)equalities in the other sections of the paper. It is implied if
one works in L∞ and unnecessary in L ∞. The same convention applies to suprema and
infima, which are implicitly essential in the L∞ theory.

Proof. (Proof of Proposition 2.2.) Let v := u− − u+ and v∗ := u−
∗ − u+

∗ . Since
u+ is a supersolution of (2.1) in D and u− is a subsolution,

G(t, x) := v(t, x)− v∗(ρ(t, x), x)

−
∫ t

ρ(t,x)

[
µ
(
J ∗ v(s, x)− v(s, x)

)
+ h

(
u−(t, x)

)
− h

(
u+(t, x)

)]
ds

is nonpositive and nonincreasing in t a.e. in D. Define

q :=

{
h(u−)−h(u+)

u−−u+ if u+ ̸= u−,

0 if u+ = u−.

Then we obtain a linear equation

v(t, x) = v∗(ρ(t, x), x) +G(t, x) +

∫ t

ρ(t,x)

[
µ
(
J ∗ v(s, x)− v(s, x)

)
+ q(s, x)v(s, x)

]
ds

in D. By hypothesis, v∗(ρ(t, x), x) ≤ 0 a.e. in D.
Define κ := Liph+ µ, so that κ− q ≥ µ, and let z := e−κtv. Integrating by parts,

we can check that z satisfies

z(t, x) = z∗(ρ(t,x), x) +H(t, x)

+

∫ t

ρ(t,x)

[
µ
(
J ∗ z(s, x)− z(s, x)

)
−
(
κ− q(s, x)

)
z(s, x)

]
ds

(2.4)
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a.e. in D, where z∗ := e−κtv∗ on ∂∗D and

H(t, x) := e−κtG(t, x) +

∫ t

0

e−κsG(s, x) ds.

Recall that G agrees almost everywhere with a measurable function that is nonincreasing
in t. Replacing G by this function and integrating by parts, we see that H is nonpositive
and nonincreasing in t a.e. in D.

Now, suppose for the sake of contradiction that A := ess supD z > 0. We have shown
that there exist a full-measure set E ⊂ [0, T ]× R and bounded measurable functions u±

on [0, T ]×R, u±
∗ on ∂∗D, ϖ on [0, T ], and H on D such that if z := e−κt

(
u− −u+

)
and

z∗ := e−κt
(
u−
∗ − u+

∗
)
, the following hold:

(P1) u± = u± on E , H = H on E ∩D, ϖ = ϖ a.e. in [0, T ], and (2.4) holds on E ∩D
with z, z∗, and H in place of z, z∗, and H;

(P2) H is nonpositive and nonincreasing in t, z∗ ≤ 0, and u+ ≥ 0;

(P3) z−H is continuous in t;

(P4) z ≤ A in D;

(P5) ϖ ≥ 0, u− ≤ ϖ on Dc, and u+ ≥ (Λ + 1)ϖ in B.

Let E :=
{
x ∈ R | (t, x) ∈ E for a.e. t ∈ [0, T ]

}
, which is full measure by Fubini.

Fix ε := A/4. Since z = z a.e., we have ess supD z = ess supD z = A. Hence there
exists (t0, x0) ∈ ([0, T ] × E) ∩ D such that z(t0, x0) > A − ε. Let ρ0 := ρ(t0, x0) and
E0 := ([ρ0, T ] × {x0}) ∩ E , which is full measure because x0 ∈ E. By (P2) and (P3),
z( · , x0) only has downward jump discontinuities. In particular, its left and right limits
exist. Since [ρ0, T ] is compact, there exists t∗ ∈ [ρ0, T ] with a left or right limit z(t∗±, x0)
that attains the supremum sup[ρ0,T ] z( · , x0) > A−ε. Now, taking the limit t → 0 within
the set E0 and using (P1) and (2.4), we find

z(ρ0+, x0) = z∗(ρ0, x0) +H(ρ0+, x0) ≤ 0.

Thus t∗ ̸= 0. Now, since z only jumps down, z(t∗+, x0) = sup[ρ0,T ] z( · , x0) would
imply z(t∗−, x0) = sup[ρ0,T ] z( · , x0). That is, the left limit attains the supremum at
t∗ ∈ (ρ0, T ].

In particular, there exists δ ∈ (0, t∗ − ρ0) such that t∗ − δ ∈ E0 and

z(t, x0) > A− ε for all t ∈ [t∗ − δ, t∗). (2.5)

Also, because z(t∗−, x0) = sup[ρ0,T ] z( · , x0), there exists t1 ∈ (t∗ − δ/2, t∗) ∩ E0 such
that

z(t1, x0)− z(t, x0) > −µδA

4
for all t ∈ [ρ0, T ]. (2.6)

Now, (P1) and (2.4) yield

z(t1,x0) = z(t∗ − δ, x0) +H(t1, x0)−H(t∗ − δ, x0)

+

∫ t1

t∗−δ

[
µ
(
J ∗ z(s, x0)− z(s, x0)

)
−
(
κ(s, x0)− q(s, x0)

)
z(s, x0)

]
ds.

(2.7)

We consider this identity term by term. First, (P2) yields

H(t1, x0)−H(t∗ − δ, x0) ≤ 0.
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Next, we claim that J ∗ z(s, x0) ≤ A for all s ∈ (ρ0, T ). We let y0 := x0 − ς(s) > 0
and write

J ∗ z(s, x0) =

∫
(−∞,y0)

z(s, x0 − y) J(dy) +

∫
[y0,y0+M ]

· · · +

∫
(y0+M,∞)

· · ·

and denote these integrals by I1, I2, and I3. In I1, we have x0−y > ς(s), so (s, x0−y) ∈ D.
By (P4), z(s, x0−y) ≤ A. Since J is a probability measure, I1 ≤ A. For I2, (s, x0−y) ∈ B,
so (P5) implies that u− ≤ ϖ and u+ ≥ (Λ + 1)ϖ ≥ 0. Hence∫

[y0,y0+M ]

z(s, x0 − y) J(dy) ≤ −Λe−κsϖ(s)J
(
[y0, y0 +M ]

)
.

For I3, we use u− ≤ ϖ and u+,ϖ ≥ 0 from (P5):∫
(y0+M,∞)

z(s, x0 − y) J(dy) ≤ e−κsϖ(s)J
(
(y0 +M,∞)

)
.

Combining these bounds, we find

J ∗ z(s, x0) ≤ A− e−κsϖ(s)
[
ΛJ

(
[y0, y0 +M ]

)
− J

(
(y0 +M,∞)

)]
.

Since y0 > 0, (J3) implies that J ∗ z(s, x0) ≤ A as claimed.
Finally, the definition (2.5) of δ implies z(s, x0) > A−ε for all s ∈ [t∗ − δ, t1). Hence

µ
(
J ∗ z(s, x0)− z(s, x0)

)
< µε.

On the other hand, κ(s, x0)− q(s, x0) ≥ µ, so

−
(
κ(s, x0)− q(s, x0)

)
z(s, x0) < −µ(A− ε). (2.8)

Collecting (2.7)–(2.8), t∗ − t1 < δ/2 and A− 2ε = A/2 yield

z(t1, x0)− z(t∗ − δ, x0) < −µ(t1 − t∗ + δ)(A− 2ε) < −µδA

4
. (2.9)

However, (2.9) contradicts (2.6). It follows that, in fact, ess supD z ≤ 0. Therefore
ess supD(u

− − u+) ≤ 0, as desired.

3. The generic logarithmic delay
In this section, we use the comparison principle and probabilistic arguments to prove

Theorem 1.1. First, we characterise the generic equations that exhibit this logarithmic
delay.

3.1. Proof of Proposition 1.1.
Proof. First, we observe that λ is a critical point of Γ precisely when

µ

∫
R
eλx(λx− 1) J(dx) = f ′(0)− µ.

The left side is strictly increasing in λ, so Γ has at most one critical point. That is, the
minimizer of Γ is unique when it exists.

To understand existence, we proceed on a case by case basis. First suppose that
J(R+) > 0, i.e. that the measure J has positive mass on R+. Then the integral term in



COLE GRAHAM 571

Γ will grow exponentially as λ → ∞, while Γ(λ) ∼ f ′(0)λ−1 as λ → 0+. It follows that
the infimum is attained at some intermediate λ∗ ∈ R+.

Now suppose that J(R+) = 0. Then the normalisation (J2) implies that the integral
term in Γ vanishes as λ → ∞. If f ′(0) < µ, we have Γ(λ) < 0 for λ sufficiently large.
Then the limits Γ(0+) = +∞ and Γ(+∞) = 0 imply that Γ attains its (negative)
minimum.

Finally, suppose that J(R+) = 0 and f ′(0) ≥ µ. Then Γ > 0 and Γ(+∞) = 0. Hence
Γ does not attain its infimum and c∗ = 0.

3.2. Proof outline for Theorem 1.1.
Proof. In the remainder of this section, we assume that Γ is minimised at λ∗ > 0

and that J satisfies (J1)–(J3). To prove Theorem 1.1, we follow the approach of Hamel,
Nolen, Roquejoffre, and Ryzhik in [25].

To begin, let σ denote the expected position of the leading-edge of u:

σ(t) := c∗t−
3

2λ∗
log

t+ t0
t0

(3.1)

for some regularising time-shift t0 ≥ 1. We analyse (1.1) in a frame moving with σ. We
expect, although do not show, that u eventually resembles a travelling front Uc∗ in this
moving frame. As shown in [18] under some additional assumptions,

Uc∗(x) ≍ xe−λ∗x when x ≥ 1.

We thus broadly expect u to decay like e−λ∗x in the moving frame. It is convenient to
preemptively remove this decay. Therefore, let

v(t, x) := eλ∗xu
(
t, x+ σ(t)

)
.

Next, define the tilted measure K ∈ P(R) by

K = Z−1
0 eλ∗xJ, Z0 :=

∫
R
eλ∗x J(dx).

By standard manipulations, v satisfies

∂tv = νK ∗ v + σ̇
(
∂xv − λ∗v

)
+
[
f ′(0)− µ

]
v + eλ∗xF

(
e−λ∗xv

)
, (3.2)

where ν := µZ0 and F (u) := f(u)− f ′(0)u ≤ 0 denotes the “nonlinear part” of f .
By the definition of the shift σ,

σ̇(t) = c∗ −
3

2λ∗(t+ t0)
.

Extracting its leading order c∗, we define the linear operator

Lv := νK ∗ v + c∗∂xv +
[
f ′(0)− µ− c∗λ∗

]
v.

Then we can write (3.2) as

∂tv = Lv + 3

2(t+ t0)
v − 3

2λ∗(t+ t0)
∂xv + eλ∗xF

(
e−λ∗xv

)
. (3.3)

Using the definition of c∗ and λ∗, we can check that

ν = c∗λ∗ + µ− f ′(0) and ν

∫
R
xK(dx) = c∗. (3.4)
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Let m := c∗
ν denote the mean of the probability distribution K. Then we can write

Lv = ν (K ∗ v +m∂xv − v) .

It follows that L1 = Lx = 0 and Lx2 = ν VarK > 0. Thus L resembles a multiple of
the Laplacian to second order, and the principal part of (3.3) is a nonlocal analogue of
the heat equation.

The remaining linear terms in (3.3) are due to the logarithmic delay in σ. The
zeroth-order term 3

2(t+t0)
v corresponds to multiplication by the factor (t + t0)

3/2. It

could be removed by replacing v by (t+ t0)
−3/2 v. The first-order term − 3

2λ∗(t+t0)
∂xv

should be negligible, but it is technically more difficult to handle. We therefore study
the Dirichlet problem 

∂tz = Lz + D
t+1∂xz on R+,

z = 0 on (−∞, 0],

z(0, x) = 1(L,2L)(x),

(3.5)

for some fixed D ∈ R and L ≫ 1 to be determined. Note that we have replaced the
time-shift t0 by 1 in (3.5). We will use the degree of freedom afforded by t0 to relate a
time-shift of (3.5) to (3.2).

To rigorously construct z, define

σD(t) := c∗t+D log(t+ 1) (3.6)

Then

Z(t, x) := e−λ∗(x−c∗t)z
(
t, x− σD(t)

)
should solve the linearization

∂tZ = µ(J ∗ Z − Z) + f ′(0)Z (3.7)

in the domain D = {x > σD(t)} with Z = 0 on (R+ ×R) \D. Recalling the definition of
∂∗D from Section 2, define Z∗ : ∂∗D → R by Z∗ = 1{0}×(L,2L)(t, x). By Proposition 2.1,

there exists a unique Z ∈ L∞
loc

(
[0,∞);L∞(R)

)
solving (3.7) in D with initial data Z∗

and exterior data 0. We then let

z(t, x) := (t+ 1)λ∗Deλ∗xZ
(
t, x+ σD(t)

)
. (3.8)

The Dirichlet model (3.5) is closely related to a random walk with killing. Let K∗

denote the spatial reverse of the measure K, so that K∗(A) = K(−A) for every Borel
set A ⊂ R. Then let (Xs)s≥0 perform a continuous-time random walk with jump rate ν,
jump law K∗, and constant drift c∗ starting from 0. By (3.4), EXs = 0 for all s ≥ 0.
The process (Xs)s≥0 is a centred walk with jump law K viewed backwards in time. We
use it in a Feynman–Kac representation of (3.5).

To do so, we must account for the logarithmic drift caused by D
t+1∂x. Given

(t, x) ∈ [0,∞)× R+, we define the log-drifting walk

Y x
s := Xs + x+D log

t+ 1

t− s+ 1
for 0 ≤ s ≤ t.



COLE GRAHAM 573

Then the Itô formula for jump processes implies the following Feynman–Kac formula for
(3.5):

z(t, x) = P
[
Y x
t ∈ (L, 2L), Y x

s > 0 for all 0 ≤ s ≤ t
]
. (3.9)

To construct super- and subsolutions for (3.2), we use the behaviour of Y to control
z. The following lemma is the key to our comparison arguments.

Lemma 3.1. There exist L > 0 and C∗ ≥ 1 depending on µ, J, f ′(0), and D such that
for all (t, x) ∈ R+ × R+,

(x− C∗)

C∗(t+ 1)
3
2

1x≤
√
t ≤ z(t, x) ≤ C∗(x+ 1)

(t+ 1)
3
2

. (3.10)

We recall that L is the width of the initial data 1(L,2L) in (3.5). Throughout the proof
of Theorem 1.1, we let it assume the value given by Lemma 3.1.

Before proving Lemma 3.1, we use it to establish Theorem 1.1. We follow the
strategy of [25] closely.

3.3. An upper bound. With Lemma 3.1, we can construct a supersolution for
v. Recall Λ,M > 0 from (J3). Take D = − 3

2λ∗
in (3.5) and let C∗ be the constant given

by Lemma 3.1. Then the lower bound in Lemma 3.1 implies the existence of δ, T > 0
such that

(t+ 1)
3
2 z(t, x) ≥ δ (3.11)

for all (t, x) ∈ [T,∞)× [C∗ + 1, C∗ +M + 1]. We define

w(t, x) :=
(
Λ + 1

)
δ−1(t+ T + 1)

3
2 z(t+ T, x+ C∗ +M + 1) (3.12)

so that (3.11) becomes

w ≥ Λ + 1 on [0,∞)× [−M, 0]. (3.13)

By the upper bound in Lemma 3.1, there exists C > 0 such that

w(t, x) ≤ C(x+ 1) for all (t, x) ∈ [0,∞)× [0,∞). (3.14)

Using (3.5), we can check that w satisfies

∂tw = Lw +
3

2(t+ T + 1)
w − 3

2λ∗(t+ T + 1)
∂xw (3.15)

on R+ × (−C∗ −M − 1,∞). Let t0 = T + 1. By (3.15), w nearly solves (3.3). It is only
missing the negative nonlinearity F , so w is a supersolution of (3.3).

We will use the comparison principle to show that w ≥ v when x > 0. To apply
Proposition 2.2, we return to the original coordinates. Define

W (t, x) := e−λ∗(x−σ(t))w
(
t, x− σ(t)

)
. (3.16)

Since D = − 3
2λ∗

and t0 = T + 1, we can use σD from (3.6) to write (3.1) as

σ(t) = σD(t+ T )− σD(T ). (3.17)
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By (3.8) and (3.12),

W (t, x) = (Λ + 1)δ−1eλ∗(C∗+M+1)Z(t+ T, x+ σD(T ) + C∗ +M + 1), (3.18)

where Z solves (3.7) on {x > σD(t)} with nonnegative initial data and zero exterior
data. Because (3.7) is linear and translation-invariant, (3.17) and (3.18) imply that W
solves (3.7) on

D := {x > σD(t+ T )− σD(T )− C∗ −M − 1} = {x > σ(t)− C∗ −M − 1}.

We will apply Proposition 2.2 to W and u on the subdomain D′ := {x > σ(t)} ⊂ D.
To do so, we verify the hypotheses of Proposition 2.2. Restricting, W solves (3.7) in

D′. Hence (F3) implies that W is a supersolution of (1.1). Of course, u solves (1.1) in
D′, so it is also a subsolution.

Next, applying Proposition 2.2 to Z and 0 on D, we see that Z ≥ 0; hence W ≥ 0.
Recall that we have well-defined restrictions W ∗ := W |∂∗D′ and u∗ := u|∂∗D′ . We claim
that W ∗ ≥ u∗. To see this, we use (2.2) to write ∂∗D′ = ∂0D′ ∪ ∂+D′ for

∂0D′ := {t = 0} ∩ ∂∗D′ = {0} × [0,∞)

and

∂+D′ := {t > 0} ∩ ∂∗D′ =
{
(t, σ(t)) | t > 0 σ̇(t) < 0

}
.

Then W ∗ ≥ 0 ≥ u on ∂0D′ since u(0, · ) = 1R− . Now take (t, σ(t)) ∈ ∂+D′, so that

σ̇(t) < 0. In Section 2, we showed that W is continuous in t in D ⊃ ∂+D′. Thus (3.13)
and (3.16) imply that

W ∗(t, σ(t)) = lim
s→t−

W (s, σ(t)) ≥ lim sup
s→t−

w
(
s, σ(t)− σ(s)

)
≥ Λ + 1

because σ̇(t) < 0. On the other hand, u ≤ 1 everywhere, so W ∗ ≥ u on ∂+D′. We
conclude that W ∗ ≥ u∗, as claimed.

Finally, (3.13) implies that W ≥ Λ + 1 in the strip B := {σ(t) −M ≤ x ≤ σ(t)}.
Since u ≤ 1 everywhere, we have verified the hypotheses of Proposition 2.2 with ϖ ≡ 1.
Applying the proposition, we conclude that W ≥ u in D′. By (3.14) and (3.16), this
implies

u
(
t, x+ σ(t)

)
≤ W

(
t, x+ σ(t)

)
= e−λ∗xw(t, x) ≤ C(x+ 1)e−λ∗x

for all (t, x) ∈ R+ × R+. Since the right side vanishes in the x → ∞ limit,

σθ(t) ≤ σ(t) + Cθ

for all θ ∈ (0, 1) and some Cθ > 0, where σθ is the leading edge from (1.3).

3.4. A lower bound. We now construct a subsolution to (1.1) to establish the
lower bound in Theorem 1.1. For the upper bound, we studied eλ∗xu in the moving
frame c∗t − 3

2λ∗
log t+t0

t0
. This was chosen so that solutions to a corresponding linear

Dirichlet problem remain bounded in time away from 0 and ∞ (locally in space).
We consider a similar transformation in this section, but must now contend with

the nonlinear absorption. To make the nonlinearity negligible, we’d like u to be small.
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Following [9], we use a different logarithmic shift to induce polynomial decay in time.
Fix

Dγ > max

{
1

λ∗

(
1

γ
− 3

2

)
, 0

}
,

where γ ∈ (0, 1) is the Hölder exponent from (F1). Then we study

v(t, x) := eλ∗xu (t, x+ c∗t+Dγ log(t+ 1)) , (3.19)

which satisfies

∂tv = Lv + Dγ

t+ 1

(
∂xv − λ∗v

)
+ eλ∗xF

(
e−λ∗xv

)
. (3.20)

Remark 3.1. We observe that this transformation breaks down as γ → 0. In the local
case, Bouin and Henderson have shown that the Bramson shift can take quite different
forms when f ′ has a logarithmic modulus of continuity near 0. Thus, some additional
regularity beyond f ∈ C1 is required to recover the classical Bramson shift. We expect
similar behaviour in our nonlocal setting.

Now, let z solve (3.5) with D = Dγ . By Lemma 3.1,

z(t, x) ≤ C∗(x+ 1)

(t+ 1)
3
2

on [0,∞)× [0,∞).

Thus

ζ(t, x) := (t+ 1)−λ∗Dγz(t, x) (3.21)

solves the linearisation of (3.20) and satisfies

ζ(t, x) ≤ C∗(x+ 1)

(t+ 1)β
(3.22)

for

β :=
3

2
+ λ∗Dγ >

1

γ
.

We cannot simply use ζ as a subsolution, since the nonlinearity F in (3.20) is
negative. Therefore define

w+(t, x) := a(t)ζ(t, x+ 2L) (3.23)

for some decreasing temporal profile a to be determined. For w+ to be a subsolution to
(3.20) on R+ × (−2L,∞), we require

ȧ

a
w+ ≤ eλ∗xF

(
e−λ∗xw+

)
. (3.24)

By (F1), there exists CF > 0 such that

|F (s)| ≤ CF s
1+γ .
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By (3.22),

w−1
+ eλ∗x

∣∣F (
e−λ∗xw+

)∣∣ ≤ CF e
−γλ∗xwγ

+

≤ CFC
γ
∗ e

−γλ∗x(x+ 2L+ 1)γa(t)γ(t+ 1)−βγ

≤ Ca(t)γ(t+ 1)−βγ

for some C > 0 and all x > −2L. Recalling (3.24), it thus suffices to let a solve

ȧ = −Ca1+γ(t+ 1)−βγ .

Because βγ > 1, positive solutions will remain uniformly bounded away from 0. We
choose the solution with a(0) = e−λ∗L, so that

w+(0, x) ≤ v(0, x) for all x ∈ R. (3.25)

Of course, we also have

w+(t, x) = 0 ≤ v(t, x) for all t ≥ 0, x ≤ −2L. (3.26)

To apply our comparison principle, define D+ := {x > σDγ (t) − 2L} with σDγ (t)
from (3.6). Inverting (3.19), we have

u(t, x) = e−λ∗(x−σDγ (t))v
(
t, x− σDγ (t)

)
.

We therefore define

W+(t, x) = e−λ∗(x−σDγ (t))w+

(
t, x− σDγ (t)

)
.

Using (3.8), (3.21), and (3.23), we can compute

W+(t, x) = a(t)e2λ∗LZ(t, x+ 2L).

By the choice of a, W+ is a subsolution of (1.1) on D+. Moreover, (3.25) and (3.26)
imply that W+ ≤ u on ∂∗D+ and W+ = 0 on (R+ × R) \ D+. Therefore, u and W+

satisfy the hypotheses of Proposition 2.2 on D+ with ϖ ≡ 0. It follows that u ≥ W+ in
D+.

We now use the lower bound in Lemma 3.1. By (3.10), (3.21), and (3.23), there
exist δ, T > 0 such that

u
(
t, c∗t+

√
t
)
≥ W+

(
t, c∗t+

√
t
)
= a(t)e−λ∗

√
tz
(
t,
√
t−Dγ log(t+ 1) + 2L

)
≥ δ

t
e−λ∗

√
t

for all t ≥ T . That is, we can control u at the diffusive scale. Now,

u(0, · + h) = 1(−∞,−h) ≤ 1R− = u(0, · ) for every h ≥ 0.

Applying the comparison principle, we find u(t, · + h) ≤ u(t, · ) for all t, h ≥ 0. That is,
u is nonincreasing in x at each fixed t ≥ 0. So in fact

u
(
t, c∗t+

√
t− y

)
≥ δ

t
e−λ∗

√
t (3.27)

for all t ≥ T and y ≥ 0.
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Before using (3.27), we need a lower bound on u on the left. This is much simpler.
We extend f by zero to [−1, 1]. Then f is a reaction of ignition type on this extended
interval. In [17], Coville shows the existence of a non-increasing front U solving

µ(J ∗ U − U ) + cU ′ + f(U) = 0,

−1 ≤ U ≤ 1, U(−∞) = 1, U(+∞) = −1

for a unique speed c. Hence U(x − ct) solves (1.1). If we shift U so that u(0, · ) ≥ U ,
the comparison principle implies that

u(t, x) ≥ U(x− ct) for all (t, x) ∈ [0,∞)× R.

It follows that there exists B ≥ 0 such that

u(T, x) ≥ 1

2
for all x ∈

(
−∞, c∗T +

√
T −B

]
. (3.28)

We leverage these bounds to construct a travelling wave subsolution to (1.1). We rely
on the following proposition, which is essentially due to Coville, Dávila, and Mart́ınez [18]:

Proposition 3.1. Let J satisfy (J1) and f satisfy (F1)–(F3). Then there exists a
monotone travelling wave U satisfying (1.5) with speed c∗ given by (1.6). Moreover, if
the rate function Γ in (1.6) attains its infimum at λ∗, then there exists C > 0 such that

U(x) ≤ Cxe−λ∗x for all x ≥ 1. (3.29)

We note that U need not be continuous or unique up to translation when c∗ = 0.
Proposition 3.1 differs from results stated in [18] only in its assumptions: it applies to
kernels J that are Borel measures. We defer its proof to Appendix B.

Here, we need a subsolution wave with speed c∗. Let f̃ : [0, 1/2] → [0,∞) satisfy
f̃ ≤ f , f̃ ′(0) = f ′(0), and (F1)–(F3) with [0, 1/2] in the place of [0, 1]. Then f̃ is a KPP
reaction on a restricted interval. Applying Proposition 3.1 to f̃ , we obtain a travelling
wave Ũ satisfying

µ
(
J ∗ Ũ − Ũ

)
+ c∗Ũ

′ + f̃
(
Ũ
)
= 0,

0 ≤ Ũ ≤ 1

2
, Ũ(−∞) =

1

2
, Ũ(+∞) = 0,

and

Ũ(x) ≤ Cx e−λ∗x for all x ≥ 1.

Hence, we can translate Ũ so that

Ũ
(√

t+
3

2λ∗
log(t+ 1)−B −M

)
≤ δ

(Λ + 1)t
e−λ∗

√
t (3.30)

for all t ≥ T , recalling Λ,M > 0 from (J3). We define

w(t, x) := Ũ
(
x− c∗t+

3

2λ∗
log(t+ 1)

)
.

Let

D :=
{
(t, x) ∈ R+ × R | t > T, x < c∗t+

√
t−B −M

}
,
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and define the strip

B :=
{
(t, x) ∈ R+ × R | t > T, x ∈ [c∗t+

√
t−B −M, c∗t+

√
t−B]

}
.

We wish to apply Proposition 2.2 to u and w on D. This is not immediate, because
D has the form {x < ς(t)} rather than {x > ς(t)}. However, because (J3) extends to J∗,
Proposition 2.2 applies to the spatial reverse of (1.1) as well. We can therefore reverse
space, apply the comparison principle, and reverse back. It thus suffices to verify the
hypotheses of Proposition 2.2 for D.

First, w is a subsolution of (1.1) because f̃ ≤ f and Ũ is decreasing in x. As a
solution, u is also a supersolution. Next, (3.28) and Ũ ≤ 1/2 imply that u ≥ w at the
“initial” time T when x ≤ c∗T +

√
T −B. Moreover, by (3.27) and (3.30), we have u ≥ w

on ∂∗D. Finally, let

ϖ(t) :=
δ

(Λ + 1)t
e−λ∗

√
t.

Since w is nonincreasing in space, (3.30) implies that w ≤ ϖ in ((T,∞) × R) \ D.
Similarly, (3.27) implies that u ≥ (Λ + 1)ϖ in B. Thus u and w satisfy the hypotheses
of Proposition 2.2 on D. It follows that

u ≥ w in D. (3.31)

Now take θ ∈ (0, 1/2). If we let

σθ(t) := c∗t−
3

2λ∗
log(t+ 1) + Ũ−1(θ),

we have w
(
t, σθ(t)

)
= θ. Evidently,

(
t, σθ(t)

)
∈ D once t is sufficiently large. Hence (1.3)

and (3.31) yield

σθ(t) ≥ σθ(t)

for t sufficiently large. This is a lower bound for Theorem 1.1. For θ ∈ [1/2, 1), we can
repeat the above argument using a different f̃ defined instead on [0, (1 + θ)/2]. This
completes the proof of Theorem 1.1.

3.5. Proof of key estimate. To close this section, we present a proof of
Lemma 3.1. By the Feynman–Kac representation (3.9), we must control the probability
that the log-drifting continuous-time random walk Y x

s moves from x to (L, 2L) in time t
while remaining positive. Lemma 3.1 thus belongs to a family of “ballot theorems” widely
used in the theory of branching processes; see, for instance, the survey [2]. In particular,
our lemma is a continuous-time version of Lemma 3.2 in [32]. Since the continuous-time
theory is far less developed, it seems useful to record a proof of Lemma 3.1.

We begin by recalling the definitions of our random walks. Our central character is
(Xs)s≥0, a continuous-time random walk with jump rate ν, jump law K∗ (the spatial
reverse of K), and constant drift c∗ starting from 0. Let X be distributed according to
K∗. Then Xs − c∗s is a Poissonisation of X with rate νs, i.e.

Law(Xs − c∗s) = e−νs
∞∑
k=0

(νs)k

k!
J∗k.
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We use this special form to compute the characteristic function φXs of Xs:

φXs
(ξ) := E eiξXs = e−νs+ic∗sξ

∞∑
k=0

1

k!

(
νsEeiξX

)k
= eνs[φX (ξ)−1+imξ], (3.32)

recalling that m = c∗
ν is the expectation of −X . By (J1), φX (and hence φXs

) is
analytic in an open strip containing 0. From (3.32), we can compute

EXs = 0 and EX2
s = νEX 2s. (3.33)

Since Xs has mean zero, the process (Xs)s≥0 is a martingale.
Next, we introduce a logarithmic drift. Given D ∈ R and t ≥ 0, define

H(s) := D log
t+ 1

(t− s)+ + 1
for s ≥ 0.

Here (t− s)+ denotes the positive part of t− s. Of course, H also depends on t, but we
suppress this dependence to minimise notation. We will also have cause to consider the
random walk and drift in reverse. We therefore define

Xs := Xt−s −Xt and H(s) := H((t− s)+)−H(t) = D log
1

s ∧ t+ 1
.

Note that X is a continuous-time random walk with jump rate ν, jump law K, and
constant drift −c∗. Finally, given x, y > 0, we define the log-drifting walks

Y x
s := Xs + x+H(s) and Y y

s := Xs + y +H(s) for s ≥ 0

and the stopping times

Sx := inf
{
s ≥ 0 | Y x

s < 0
}

and Sy := inf
{
s ≥ 0 | Y y

s < 0
}
.

With this notation, (3.9) becomes

z(t, x) = P [Y x
t ∈ (L, 2L), Sx > t] .

We adapt the proof of Theorem 1 in [2] to handle the continuous-time walk Y with
logarithmic drift. To do so, we rely on two lemmas. The first controls the dispersal of X
on the line.

Lemma 3.2. For each X ∈
{
X,X

}
and h > M , there exists CS ≥ 1 depending on

h,K, and ν such that

P[x ≤ Xs ≤ x+ h] ≤ CS√
s
exp

(
− x2

2νEX 2 s

)
+ Oh

(
s−

1
2

)
(3.34)

and

P[x ≤ Xs ≤ x+ h] ≥ 1

CS
√
s
exp

(
− x2

2νEX 2 s

)
+ Oh

(
s−

1
2

)
(3.35)

for all (s, x) ∈ R+ × R. The error terms satisfy s
1
2 Oh

(
s−

1
2

)
→ 0 as s → ∞ uniformly

over x ∈ R and h in a compact subset of (M,∞).
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Moreover, for all a > 0, s ≥ 1, and x ∈
[
0, a

√
s
]
,

P
[

inf
r∈[0,s]

Xr ≤ −x

]
≤

[
1 +Oa

(
s−

1
2

)]
exp

(
− x2

2νEX 2 s

)
. (3.36)

Proof. The bounds (3.34) and (3.35) are forms of Stone’s local limit theorem. This
classical result is typically proved by Fourier analytic methods. Because Xs has a simple
characteristic function (3.32), the original proof extends to continuous time; we direct
the reader to [41] for details. The condition h > M ensures that (3.35) remains true
even if X is supported on a lattice. Indeed, hypothesis (J3) implies that the cell size of
such a lattice can be no larger than M .

To prove (3.36), we note that Jensen’s inequality implies that exp(λXs) is a sub-
martingale for all |λ| < λ. Thus Doob’s inequality for submartingales yields

P
[

inf
r∈[0,s]

Xr ≤ −x

]
= P

[
sup

r∈[0,s]

exp(−λXr) ≥ eλx

]
≤ E exp

[
− λ(Xs + x)

]
.

Let MZ(λ) := EeλZ denote the moment generating function of a random variable Z,
noting that MZ(λ) = φZ(−iλ). Evaluating (3.32) at complex ξ, we find

P
[

inf
r∈[0,s]

Xr ≤ −x

]
≤ e−λxMXs

(−λ)

≤ exp
{
−λx+ νs

[
M±X (−λ)− 1± λm

]}
,

(3.37)

recalling that LawX = K∗. (The sign before X depends on the identity of X .) Because
EX = −m,

M±X (−λ)− 1± λm =
1

2
EX 2 λ2 +O

(
λ3

)
as λ → 0. (3.38)

We choose

λ :=
x

νEX 2 s
≤ a

νEX 2
s−

1
2

when λ < λ. Then (3.37) and (3.38) imply

P
[

inf
r∈[0,s]

Xr ≤ −x

]
≤ exp

[
− x2

2νEX 2 s
+Oa

(
s−

1
2

)]
,

and (3.36) follows. If λ ≥ λ, s = O(a2), and we make the implied constant in (3.36)
large enough that the right side exceeds 1. Then (3.36) holds vacuously.

Our second lemma extends several bounds of Pemantle and Peres [36] to continuous
time with log-drift. It controls the stopping times S and S, and shows that Y and Y
disperse diffusively.

Lemma 3.3. There exist C1, c2 > 0 and L ≥ 1 depending on K, ν, and D such that
for each S ∈

{
S, S

}
and all s ≥ 0:

(i) P[Sx > s] ≤ C1 max{x, 1} s− 1
2 for all x ≥ 0;

(ii) P[Sx > s] ≥ c2 min
{
xs−

1
2 , 1

}
for all x ≥ L.

Moreover, there exist C3, β > 0 and s0 ≥ 1 depending on K, ν, and D such that for each
(Y,S) ∈

{
(Y, S),

(
Y , S

)}
and all s ≥ s0:
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(iii) P
[
Yx
s ≥ β

√
s
]
≥ 1

3 for all x ≥ 0;

(iv) E
[(
Yx′

s

)2 | Sx > s, Yx′

s ≥ β
√
s
]
≤ C3s for all x ∈

[
L, 2

√
s
]
, x′ ∈

[
0, 2

√
s
]
.

We show Lemma 3.3 using discrete-time arguments of Pemantle and Peres [36].
Before presenting its proof, we use Lemmas 3.2 and 3.3 to establish Lemma 3.1. As
mentioned above, we follow the proof of Theorem 1 in [2].

Proof. (Proof of Lemma 3.1.) Take L from Lemma 3.3. If necessary, increase it
so that L > M , and let I := (L, 2L).

We wish to control P[Y x
t ∈ I, Sx > t] as a function of x and t. We begin with the

upper bound. We condition on the final value y := Y x
t = Y x

t/3 +
(
Y x
2t/3 − Y x

t/3

)
− Y 0

t/3. If
Y x
t ∈ I and Sx > t, the following three events must occur:{

Sx ≥ t/3
}
,

{
Sy ≥ t/3

}
, and

{
Y x
2t/3 − Y x

t/3 ∈ Y 0
t/3 − Y x

t/3 + I
}
.

Using the independence of disjoint increments of X, we have

P
[
Y x
t ∈ I, Sx > t

]
≤ P

[
Sx ≥ t

3

]
sup
y∈I

P
[
Sy ≥ t

3

]
sup
z∈R

P
[
Y x
2t/3 − Y x

t/3 ∈ z + I
]
. (3.39)

Here y and z represent Y x
t and Y 0

t/3 − Y x
t/3, respectively. We bound the first two terms

using Lemma 3.3(i):

P
[
Sx ≥ t

3

]
≤ Cmax{x, 1}t−1/2 and sup

y∈I
P
[
Sy ≥ t

3

]
≤ Ct−1/2. (3.40)

For the third term in (3.39), we use an elementary consequence of Lemma 3.2: the

probability that Xs lands in any interval of bounded width is at most Cs−
1
2 . Hence the

stationarity of increments of X implies that

P
[
Y x
2t/3 − Y x

t/3 ∈ z + I
]
= P

[
Xt/3 ∈ z +H(t/3)−H(2t/3) + I

]
≤ Ct−1/2.

Here C is a large constant that may change from expression to expression. Combining
this estimate with (3.40), (3.39) yields P

[
Y x
t ∈ I, Sx > t

]
≤ C(x+ 1)t−3/2. This implies

the upper bound in (3.10) because probabilities are bounded by 1.
We employ a similar strategy for the lower bound, but the argument is significantly

more technical. We may assume that L ≤ x ≤
√
t, since the lower bound in (3.10) is

vacuous otherwise (taking C∗ ≥ L). Also, it suffices to prove the lower bound after some
fixed time t depending on K, ν, and D. After all, by increasing C∗, we can ensure that
the left side of (3.10) is nonpositive when t < t. We begin with t = 4s0 for s0 as in
Lemma 3.3, but we will steadily increase t over the course of the proof.

Recalling the constants CS and β from Lemmas 3.2 and 3.3, we define α by

23C2
S exp

(
− β2

25νEX 2(1− 2α)

)
=

1

4
(3.41)

or α = 1/4, whichever is greater. Thus α ∈ [1/4, 1/2). Recall also C3 from Lemma 3.3.
If all of the following events occur, we will have Y x

t ∈ I and Sx > t:

E1 := {Sx > αt}
E2 :=

{
Sy > αt

}
E3 :=

{
β
√
αt ≤ Y x

αt ≤
√

C3t
}
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E4 :=
{
β
√
αt ≤ Y 0

αt ≤
√

C3t
}

E5 :=
{
Y x
(1−α)t − Y x

αt ∈ Y 0
αt − Y x

αt + I
}

E6 :=

{
inf

αt≤s≤(1−α)t

(
Y x
s − Y x

αt

)
≥ −Y x

αt

}
By the independence of disjoint increments of X,

P
[
Y x
t ∈ I, Sx > t

]
≥ P[E1, E3] inf

y∈I
P[E2, E4]P[E5, E6 | E3, E4]. (3.42)

Lemma 3.3(ii) implies that P[E1] ≥ cxt−1/2 for some c > 0 that may change from
line to line. Combining this with αt ≥ t/4 ≥ s0, Lemma 3.3(iii), and the FKG inequality
(see, for instance, [24, §2.2]), we have

P
[
E1, Y

x
αt ≥ β

√
αt

]
≥ cxt−1/2. (3.43)

Also, L ≤ x ≤
√
t ≤ 2

√
αt, Lemma 3.3(iv), and Chebyshev’s inequality imply

P
[
Y x
αt >

√
C3t

∣∣ E1, Y
x
αt ≥ β

√
αt

]
≤

E
[
(Y x

αt)
2 | E1, Y

x
αt ≥ β

√
αt

]
C3t

≤ C3αt

C3t
<

1

2
.

By (3.43), we obtain

P[E1, E3] ≥ cxt−1/2. (3.44)

By identical reasoning,

inf
y∈I

P[E2, E4] ≥ ct−1/2. (3.45)

In light of (3.42), it thus suffices to show that P[E5, E6 | E3, E4] ≥ ct−1/2.
Let m := (1−2α)t denote the length of the middle period [αt, (1−α)t]. For s ∈ [0,m],

we define

Rs := Y x
αt+s − Y x

αt and Rs := Y x
(1−α)t−s − Y x

(1−α)t.

Then Y x
t ∈ I is equivalent to

Rm ∈ Y 0
αt − Y x

αt + I.

By the independence of disjoint increments of X,

P[E5, E6 | E3, E4] ≥ inf
p,q∈[β

√
αt,

√
C3t]

P
[
Rm ∈ q − p+ I, inf

s∈[0,m]
Rs ≥ −p

]
.

Here p and q represent Y x
αt and Y 0

αt, respectively. It is convenient to separate the cases
p ≥ q and q > p. We first assume that p ≥ q and define the events

Ap,q :=
{
Rm ∈ q − p+ I

}
,
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Bp :=

{
inf

s∈[0,m]
Rs ≥ −p

}
.

We will exploit the identity

P[Ap,q, Bp] = P[Ap,q]− P
[
Ap,q, B

c
p

]
.

We control the first term with Stone’s local limit theorem, i.e. Lemma 3.2:

P[Ap,q] ≥
1

CS
√
m

exp

{
− [q − p+ L−H((1− α)t) +H(αt)]2

2νEX 2m

}
+ O

(
m−1/2

)
. (3.46)

Recall that H(t) = O
(√

t
)
. Perhaps after increasing t, we can thus assume that

Σ := |H(t)|+ L ≤ β
√
αt

2
≤ 1

2
min{p, q}. (3.47)

Also, because |H| is monotone increasing and p ≥ q,

|q − p+ L−H((1− α)t) +H(αt)| ≤ |q − p|+ L+ |H(t)| = p− q +Σ.

Now Σ ≲
√
t, while p, q ≍

√
t and m ≍ t. Hence the argument of the exponential in

(3.46) is bounded. It follows that we can absorb the O
(
m−1/2

)
error into the main term,

perhaps after increasing t. Then

P[Ap,q] ≥
1

2CS
√
m

exp

[
− (p− q +Σ)2

2νEX 2m

]
. (3.48)

We will argue that Ap,q ∩Bc
p is significantly more unlikely than Ap,q, for then R is

forced to make a large excursion. We write

Ap,q ∩Bc
p ⊂ Ap,q ∩

(
Up ∪ Uq

)
(3.49)

for

Up :=

{
inf

s∈[0,m/2]
Rs < −p

}
, Uq :=

{
inf

s∈[0,m/2]
Rs < −q

}
.

If the event Up occurs, X drops by at least p− Σ over a period of length at most m/2.
By (3.36) in Lemma 3.2,

P[Up] ≤
[
1 +O

(
s−

1
2

)]
exp

[
− (p− Σ)2

νEX 2 m

]
≤ 2 exp

[
− (p− Σ)2

νEX 2 m

]
, (3.50)

provided t is sufficiently large. Now, if Ap,q also occurs, our walk X must later climb by
at least q−Σ, which is positive by (3.47). Using the independence of disjoint increments
of X and Lemma 3.2,

P[Ap,q | Up] ≤ sup
r∈[0,m/2]

{
CS√
m− r

+ O
(
(m− r)−1/2

)}
≤ 2CS√

m
, (3.51)

again provided t is sufficiently large. Here, we have implicitly conditioned on the time r
of the infimum of Xs in [0,m/2].
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Combining (3.50) and (3.51), we find

P[Ap,q ∩ Up] ≤
22CS√

m
exp

[
− (p− Σ)2

νEX 2 m

]
.

Now (3.47), p ≥ β
√
αt, and α ≥ 1/4 imply that

(p− Σ)2 − 1

2
(p− q +Σ)2 ≥ 1

2
(p− Σ)2 ≥ β2t

25
.

By (3.48), m = (1− 2α)t, and our choice (3.41) of α,

P[Ap,q ∩ Up] ≤ 23C2
S exp

(
− β2

25νEX 2(1− 2α)

)
P[Ap,q] ≤

1

4
P[Ap,q]. (3.52)

Next, consider Ap,q ∩ Uq. In this case, X drops by at least q − Σ in [0,m/2], and
eventually rises by at least p− Σ. Arguing from Lemma 3.2 as before,

P
[
Uq

]
≤ 2 exp

[
− (q − Σ)2

νEX 2 m

]
,

provided t is sufficiently large. Next, we retain more information from Lemma 3.2:

P
[
Ap,q | Uq

]
≤ sup

r∈[0,m/2]

{
CS√
m− r

exp

[
− (p− Σ)2

2νEX 2(m− r)

]
+ O

(
(m− r)−1/2

)}
≤ 2CS√

m
exp

[
− (p− Σ)2

2νEX 2m

]
,

again provided t is sufficiently large. Thus

P
[
Ap,q ∩ Uq

]
≤ 22CS√

m
exp

[
− (q − Σ)2

νEX 2 m

]
exp

[
− (p− Σ)2

2νEX 2m

]
.

Using (3.41), (3.47), (3.48), and p ≥ q ≥ β
√
αt, we find

P
[
Ap,q ∩ Uq

]
≤ 23C2

S exp

(
− β2

25νEX 2(1− 2α)

)
P[Ap,q] ≤

1

4
P[Ap,q]. (3.53)

In light of (3.49), we see that (3.48), (3.52), and (3.53) yield

P[Ap,q, Bp] ≥
1

2
P[Ap,q] ≥

1

22CS
√
m

exp

[
− (p− q +Σ)2

2νEX 2m

]
.

So far, we have assumed that p ≥ q. The case q > p can be handled similarly, so in fact

P[Ap,q, Bp] ≥
1

22CS
√
m

exp

[
− (p+ q +Σ)2

2νEX 2m

]
for any p, q ∈

[
β
√
αt,

√
C3t

]
. The argument of the exponential is uniformly bounded

and m ≍ t, so

P[E3, E4 | E1, E2] ≥ inf
p,q∈[β

√
αt,

√
C3t]

P[Ap,q, Bp] ≥
c√
t
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for some c > 0 depending on K, ν, and D. In combination with (3.44) and (3.45), the
lower bound in (3.10) follows.

Remark 3.2. Our use of Doob’s inequality (3.36) patches a small gap in the proof of
Theorem 1 in [2]. In particular, (13) in [2] is false if, say, p ≥ 3q. In this case, the bound
(3.36) gives sufficient smallness in (3.50).

We must now prove Lemma 3.3. We rely on two further lemmas that control various
stopping times for X and Y . To state the first result, define the stopping times

Tx := inf{s ≥ 0 | Xs + x < 0} and T x := inf{s ≥ 0 | Xs + x < 0}

parameterized by x ≥ 0.

Lemma 3.4. There exist C ′
1, c

′
2 > 0 depending on K and ν such that for each

(T ,X ) ∈ {(T,X), (T ,X)} and all s > 0:

(i) P[Tx > s] ≤ C ′
1 max{x, 1}s− 1

2 for all x ≥ 0;

(ii) P[Tx > s] ≥ c′2 min
{
xs−

1
2 , 1

}
for all x ≥ 1.

Proof. We claim that these bounds are straightforward when x ≥ C
√
s for

C :=
√
2νEX 2. Indeed, (i) is vacuous in this regime if we take C ′

1 = C−1. Moreover,
EX 2

s = EX2
s , (3.33), and Kolmogorov’s inequality imply

P[Tx > s] ≥ P
[
max

s′∈[0, s]
|Xs′ | ≤ x

]
≥ 1− EX 2

s

x2
≥ 1

2

if x ≥ C
√
s. This yields (ii) for such x with c′2 = min{C, 1}/2.

We may therefore assume that x ≤ C
√
s. In this regime, the “gambler’s ruin” bounds

(i) and (ii) are well known in discrete time. For instance, they follow from Theorem 5.1.7
in [31]. That proof extends to continuous time, so we do not repeat it. There is only
one wrinkle worth mentioning: we forbid x to approach 0 in (ii), to prevent the drift
from immediately sweeping X into R−.

To adapt these arguments to prove Lemma 3.3, we need estimates on the hitting
times S and S. This is the content of Theorem 3.2(ii) in [36]; in continuous time, it
reads in part:

Lemma 3.5. Let H : [0,∞) → [0,∞) be increasing and satisfy∫ ∞

0

H(s)

(s+ 1)3/2
ds < ∞. (3.54)

Then there exists C4 > 0 depending on H, K, and ν such that for each X ∈
{
X,X

}
and

all s > 0,

P[Xr ≥ −H(r) for all 0 ≤ r ≤ s] ≤ C4√
s
. (3.55)

The discrete-time proof of Theorem 3.2 in [36] relies on Lemma 3.3 in [36]. Our
Lemma 3.4 is an analogue of that lemma in continuous time, so the proof of Theorem 3.2
in [36] extends to continuous time.

To close this section, we prove Lemma 3.3.

Proof. (Proof of Lemma 3.3.) Let (X , T ,H,Y,S) be either the “forward” case
(X,T,H, Y, S) or the “backward” case

(
X,T ,H, Y , S

)
.
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Part (i). Fix s > 0. Taking C1 ≥ 1, it suffices to consider 0 ≤ x ≤
√
s. Also, if H ≤ 0,

we have P[Sx > s] ≤ P[Tx > s], so (i) follows from Lemma 3.4(i). We can therefore
assume that H ≥ 0. We follow the proof of Lemma 3.3(i) in [36].

By the central limit theorem, there exists C ≥ 1 such that

P
[
XC(x2+1) > x

]
≥ 1

3
.

Thus by Lemma 3.4(ii) and the FKG inequality,

P
[
XC(x2+1) > x, T1 > C(x2 + 1)

]
≥ 1

3
P
[
T1 > C(x2 + 1)

]
≥ cmin

{
x−1, 1

}
(3.56)

for some c > 0 that may change from line to line. We now form a new drift

H̃(s) :=

{
0 for s < C(x2 + 1),

H
(
s− C(x2 + 1)

)
for s ≥ C(x2 + 1).

Let S̃1 := inf{s ≥ 0 | Xs + 1 + H̃(s) < 0} and define the events

A :=
{
XC(x2+1) > x, T1 > C(x2 + 1)

}
,

B :=
{
XC(x2+1)+r −XC(x2+1) ≥ −x−H(r) for all 0 ≤ r ≤ s

}
,

noting that (3.56) is a lower bound on P[A]. Now, disjoint increments of X are indepen-
dent and the increments are stationary. It follows that

P[A]P
[
Sx > s

]
= P[A]P[B] = P[A,B] ≤ P

[
T̃1 > C(x2 + 1) + s

]
. (3.57)

Lemma 3.5 applies to H̃+ 1, so (3.55) implies that

P
[
T̃1 > C(x2 + 1) + s

]
≤ C4√

C(x2 + 1) + s
≤ C4s

− 1
2 .

Combining this with (3.56) and (3.57), we obtain

P[Sx > s] ≤ C ′
1 max{x, 1}s− 1

2

for some C ′
1 > 0 depending on K, ν, and D.

Part (ii). Fix s > 0. The lower bound for S follows from Lemma 3.4(ii) if H ≥ 0, so we
may assume that H ≤ 0. Also, the continuous-time random walk X obeys the invariance
principle; see, for instance, [28, Theorem 19.25]. Therefore, since H(s) = O

(√
s
)
,

P
[
Sx > s

]
≥ 1

2
if x ≥ C

√
s (3.58)

for some C > 0. It thus suffices to consider L ≤ x ≤ C
√
s. We adapt the proof of

Theorem 3.2(i) in [36] to handle such x.
For m ∈ N, we define the event

Vm :=
{
Xr + x ≥ |H(r)| for all r ∈ (2m−1, 2m]

}
.

We claim that there exists C̃ > 0 such that

P
[
V c
m | Tx > 4N

]
≤ C̃ |H(2m)| 2−m/2 (3.59)
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for any N ≥ 2m−1. To see this, we condition on the time of the first violation:

r∗ := inf
{
r ∈ (2m−1, 2m] | Xr + x < |H(r)|

}
.

Since |H| is increasing and disjoint increments of X are independent,

P
[
V c
m, Tx > 4N

]
≤ sup

r∈(2m−1,2m]

P
[
V c
m, Tx > 4N | r∗ = r

]
≤ P

[
Tx > 2m−1

]
sup
r

P
[
Xu −Xr ≥ − |H(2m)| for u ∈ [r, 4N ]

]
≤ P

[
Tx > 2m−1

]
P
[
T|H(2m)| > 2N

]
.

By Lemma 3.4(i),

P
[
V c
m, Tx > 4N

]
≤ (C ′

1)
2x |H(2m)|

(
2mN

)− 1
2 .

Dividing by P
[
Tx > 4N

]
and using Lemma 3.4(ii), we obtain (3.59) with the constant

C̃ = 2(C ′
1)

2(c′2)
−1.

Since |H| satisfies (3.54) and is increasing, there exists m0 ∈ N such that

∞∑
m=m0

|H(2m)| 2−m/2 ≤ 1

2C̃
.

By (3.59),

m∑
m=m0

P
[
V c
m

∣∣ Tx > 2m+1
]
≤ 1

2

for any m ≥ m0. Therefore

P

[
m⋂

m=m0

Vm

∣∣∣∣ Tx > 2m+1

]
≥ 1

2
.

Multiplying by P
[
Tx > 2m+1

]
and using Lemma 3.4(ii), we find

P

[
m⋂

m=m0

Vm

]
≥ cx2−

m
2

for some c > 0 that may change from line to line. Now, the FKG inequality implies

P
[
Sx > 2m

]
= P

[
m⋂

m=m0

Vm, Sx > 2m0

]
≥ cx2−

m
2 P

[
Sx > 2m0

]
. (3.60)

Finally, we choose L := C 2
m0
2 . Then x ≥ L and (3.58) imply that P

[
Sx > 2m0

]
≥ 1

2 .
Taking m = ⌈log2 s⌉, (3.60) yields (ii).
Part (iii). By the central limit theorem, there exist β > 0 and s0 ≥ 1 such that

P
[
Xs ≥ 2β

√
s
]
≥ 1

3
for all s ≥ s0.
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Since H(s) = O
(√

s
)
, we can increase s0 to ensure that H(s) ≥ −β

√
s for all s ≥ s0.

Then

P
[
Yx
s ≥ β

√
s
]
≥ P

[
Xs ≥ 2β

√
s
]
≥ 1

3
for all s ≥ s0, x ≥ 0.

Part (iv). Fix s ≥ s0, x ∈
[
L, 2

√
s
]
, and x′ ∈

[
0, 2

√
s
]
. Since x′ ≤ 2

√
s and

H(s) = O
(√

s
)
, Young’s inequality shows that it suffices to bound

E
[
X 2

s | Sx > s, Yx′

s ≥ β
√
s
]
.

We then follow the proofs of Lemma 3.3(ii) in [36] and Corollary 4 in [2]. First, we claim
that

E
[
X 2

s | Sx > s
]
≤ Cs (3.61)

for some C > 0. Indeed, by (i),

E[Sx ∧ s] =

∫ s

0

P[Sx ≥ r] dr ≤ 2C1x
√
s.

Thus by Wald’s identity and (3.33),

E
[
X 2

s 1Sx>s

]
≤ EX2

Sx∧s = νEX 2 E
[
Sx ∧ s

]
≤ 2C1νEX 2x

√
s.

Dividing by P[Sx > s], (ii) implies (3.61).
Next, the FKG inequality and (iii) imply

P
[
Yx′

s ≥ β
√
s | Sx > s

]
≥ 1

3
.

Combining this with (3.61), we have

E
[
X 2

s | Sx > s, Yx′

s ≥ β
√
s
]
=

E
[
X 2

s 1{Yx′
s ≥β

√
s} | Sx > s

]
P
[
Yx′
s ≥ β

√
s | Sx > s

]
≤ 3E

[
X 2

s | Sx > s
]
≤ 3Cs.

This completes the proof of Lemma 3.3.

4. Proof of Theorem 1.2
We now turn to Theorem 1.2. By Proposition 1.1, c∗ = 0, so we are interested in the

behaviour of stationary waves. It is important to note that the continuity and uniqueness
of stationary waves is a delicate issue [18]. As we shall see, both these pleasant properties
can fail in this setting.

Proof. (Proof of Theorem 1.2(i).) We assume that J(R+) = 0 and f ′(0) > µ.
By Proposition 1.1, we necessarily have c∗ = 0. Our minimal-speed wave U thus satisfies

µ(J ∗ U − U) + f(U) = 0.

Such waves need not be unique up to translation, but by Proposition 3.1, they do exist.
Define

F := {s ∈ [0, 1] | f(s) > µs}.
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Since f ′(0) > µ, F contains a nontrivial interval of the form (0, θ0). But

µU − f(U) = µJ ∗ U ≥ 0,

so U cannot assume any value in F . Since U(+∞) = 0, the profile U must jump
discontinuously down to 0 at a finite position. By shifting U , we may assume that
U(x) = 0 for all x ≥ 0.

Now consider the evolution of u from 1R− . The initial condition 1R− is a supersolution
of (1.1). On the other hand, the stationary front U is a solution to (1.1), and U ≤
1R− = u(0, · ). By the comparison principle,

U(x) ≤ u(t, x) ≤ 1R−(x) for all (t, x) ∈ [0,∞)× R.

So U−1(θ) ≤ σθ(t) ≤ 0 for all θ ∈ (0, 1) and t ≥ 0. Here U−1 denotes the left-continuous
pseudo-inverse of U , i.e. U−1(θ) := sup{x ∈ R | U(x) ≥ θ}.

We now study a special family of equations satisfying f ′(0) = µ.

Proof. (Proof of Theorem 1.2(ii).) By rescaling time, we can reduce to the case
µ = 1. Then J = δ−1 and f(u) = u− up for p > 1 fixed. A stationary front U satisfies

U(x+ 1) = U(x)p for all x ∈ R.

In this case, we can explicitly construct a monotone front:

U(x) := exp
(
− px

)
.

In fact, there is a discontinuous alternative:

Ũ(x) := U
(
⌊x⌋

)
.

This equation thus admits nonunique monotone stationary fronts. For analytic conve-
nience, we work with U.

As in previous proof, 1R− is a supersolution of (1.1), so u = 0 on [0,∞) × [0,∞).
Furthermore, we can explicitly compute the solution on [0,∞)× [−1, 0). Indeed,

J ∗ u(t, x) = u(t, x+ 1) = 0

for all x ∈ [−1, 0), so

∂tu = −up, u(0, x) = 1.

Solving this Riccati-type equation, we obtain

u(t, x) =
[
(p− 1)t+ 1

]− 1
p−1 for all (t, x) ∈ [0,∞)× [−1, 0). (4.1)

In principle, u can be found by iteratively solving ODEs for its values on [−n, 1 − n)
with n ∈ N, but we need not perform such calculations.

Instead, we construct super- and subsolutions to (1.1) on R−. Combining these
with the explicit solution (4.1) on the “buffer zone” [−1, 0), we can control u via the
comparison principle. We begin with the subsolution. Define the decreasing shift

σ−(t) := −U−1(u(t,−1))− 1
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and

w(t, x) := U
(
x− σ−(t)

)
.

Note that

∂tw − J ∗ w + wp = ∂tw = −σ̇−U
′ < 0,

so w is a subsolution to (1.1) on R−. By construction,

w(0, · ) = 1 = u(0, · ) on R−

and

w(t, x) ≤ w(t,−1) = u(t,−1) = u(t, x) on [0,∞)× [−1, 0).

Thus by the comparison principle on (−∞,−1), we have

u(t, x) ≥ w(t, x) for all (t, x) ∈ [0,∞)× R−. (4.2)

We now construct a supersolution. Define

σ+(t) := − log log(t+ 1)

log p
+ 1

and

w(t, x) := ΩU(x− σ+(t)) = Ω(t+ 1)−px−1

for some Ω = Ω(p) > 1 to be determined. Then

∂tw = −px−1

t+ 1
w

and

J ∗ w − wp = −(1− Ω1−p)wp = −(Ωp−1 − 1)(t+ 1)−(p−1)px−1

w.

So

∂tw − J ∗ w + wp =
[
(Ωp−1 − 1)(t+ 1)−(p−1)px−1

− px−1(t+ 1)−1
]
w.

Suppose x ≤ 0. Then

(Ωp−1 − 1)(t+ 1)−(p−1)px−1

− px−1(t+ 1)−1 ≥
(
Ωp−1 − 1− p−1

)
(t+ 1)−1.

We thus choose

Ω =

(
p+ 1

p

) 1
p−1

,

so that w is a supersolution to (1.1). Also,

w(0, · ) = Ω > 1 ≥ u(0, · ).
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When p ≥ 2,

w(t, x) ≥ w(t, 0) = Ω(t+ 1)−
1
p ≥

[
(p− 1)t+ 1

]− 1
p > u(t, x)

for x ∈ [−1, 0). When p ∈ (1, 2), the function (t+ 1)p−1 is concave in t, so

(t+ 1)p−1 ≤ (p− 1)t+ 1.

It follows that

w(t, x) > (t+ 1)−1 ≥ [(p− 1)t+ 1]−
1

p−1 = u(t, x)

for x ∈ [−1, 0). Since this holds for all p > 1, the comparison principle implies

w(t, x) ≥ u(t, x) for all (t, x) ∈ [0,∞)× R−. (4.3)

By construction, w and w are fixed profiles drifting by σ− and σ+, respectively. Further-
more, there exists C(p) > 0 such that∣∣∣∣σ±(t) +

log log t

log p

∣∣∣∣ ≤ C for all t ≥ 2.

Thus (4.2) and (4.3) imply Theorem 1.2(ii).
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Appendix A. The probabilistic connection. In this appendix, we examine
the close relationship between integro-differential Fisher–KPP equations and branching
random walks (BRWs).

A.1. Continuous time. A continuous-time BRW is a growing collection of
particles on R, each jumping and reproducing independently with exponential rates µ
and r, respectively. When particles jump, we assume that they obey a law J ∈ P(R)
satisfying (J1) and (J2). When they reproduce, the particles have a random number
of offspring distributed according to a law κ ∈ P(N≥2). For a detailed description and
construction of branching random walks, we refer the reader to Harris [27]. Throughout,
X and Z will denote random variables with laws J and κ, respectively. We will assume

EZ 1+γ < ∞ (A.1)

for some γ > 0. This condition is nearly sharp, as BRWs behave quite differently when
EZ = ∞; see, for instance, [23,38].

To understand the spreading of the population in a BRW, we study the particle
with maximal position. That is, if X1

t , . . . , X
Zt
t denote the particle positions at time t,

we study the (reversed) cumulative distribution of the maximal particle:

u(t, x) := P
[

max
1≤j≤Zt

Xj
t > x

]
for (t, x) ∈ [0,∞)× R.

Note that the population size Zt is itself random.
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Let g denote the probability generating function of κ, i.e. g(s) = EsZ . Then if

f(s) := r
[
1− s− g(1− s)

]
, (A.2)

a renewal argument along the lines of McKean [33] shows that u satisfies (1.1). Assuming
the process begins from a single individual at the origin, u(0, · ) = 1R− .

Using properties of the moment generating function g and (A.1), one can check that
f satisfies (F1)–(F3), and is thus a KPP reaction. In fact, it is a rather special KPP
reaction; for instance, it is analytic and concave. “Generic” KPP reactions are neither,
and thus do not correspond to continuous-time BRWs.

A.2. Discrete sampling. While continuous-time BRWs are of analytic interest,
the majority of the BRW literature concerns discrete time. In this setting, we replace
each particle by an independent copy of a fixed point process Π when we step forward in
time. For instance, Π might be Z particles independently sampled from J .

We can shift from continuous to discrete time by sampling a continuous BRW at
evenly-spaced times. The point process Π is the set of particles in the continuous-time
BRW after the first time interval. The position of the maximal particle in discrete-time
BRWs is well-understood; see, for instance, [3, 4, 7, 13, 14, 26, 29]. Thus when f is of
the form (A.2), our main results follow from prior work on discrete-time BRWs. In the
remainder of this appendix, we describe this correspondence.

We fix a continuous-time BRW with kernels J and κ, and sample it at the discrete
times Z≥0. Let Π denote the point process at time t = 1. Each particle in Π is
individually distributed according to the law J1 of a continuous-time random walk at
time 1. Thus, J1 is a Poissonisation of J :

J1 = e−µ
∞∑
k=0

µk

k!
J∗k. (A.3)

The total number of particles |Π| is the population size Z1 of the continuous-time BRW
at time 1. Its law is not as easily described as J1, but we can use a renewal argument to
compute its moments. In particular,

EZt = exp
[
r(EZ − 1)t

]
for all t ≥ 0. (A.4)

We note that (A.2) implies

f ′(0) = r(EZ − 1), (A.5)

so f ′(0) is the mean rate of particle production in the continuous-time BRW.
We now compute the asymptotic speed of the maximal particle in the discrete-time

sampled BRW. This speed is related to the logarithmic moment generating function of
Π:

R(λ) := logE

∑
p∈Π

eλX(p)

 , (A.6)

where p denotes a point in Π with position X(p). Using (A.3) and (A.4), a standard
calculation yields:

R(λ) = r(EZ − 1) + µ
(
EeλX − 1

)
.
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As shown in [40], for instance, the asymptotic speed of the maximal particle in the
sampled BRW is

c∗ = inf
λ>0

R(λ)

λ
= inf

λ>0

1

λ

[
r(EZ − 1) + µ

(
EeλX − 1

)]
. (A.7)

In light of (A.5), (A.7) agrees with (1.6).

A.3. Sublinear behaviour. Sublinear corrections to the position of the maximal
particle depend on the structure of the point process Π.

Suppose Π is unbounded from above. Then (A.6) implies that R grows superlinearly

as λ → ∞, so R(λ)
λ attains its minimum. By Theorem 3 of [3], the maximal particle has

position

c∗t−
3

2λ∗
log t+OP(1) as t → ∞ in N, (A.8)

as in our Theorem 1.1. Here OP(1) denotes a tight sequence of random variables.
Now suppose Π is bounded from above. Each particle in Π is distributed according

to J1, the Poissonisation of J . The Poissonisation (A.3) includes arbitrarily high
convolutional powers of J , so it is only bounded from above if J(R+) = 0. In this case,
the sublinear discrete-time behaviour hinges on the value of

Ξ := P[X1 = 0]EZ1 = exp
[
− µ+ r(EZ − 1)

]
= exp

[
f ′(0)− µ

]
.

If f ′(0) < µ, then Ξ < 1, and Corollary 2 in [3] implies that (A.7) has a minimizer;
cf. our Proposition 1.1. Theorem 3 of [3] then implies the log-delay (A.8), as in our
Theorem 1.1.

When Ξ > 1, Theorem 4 in [3] states that the maximal particle remains a bounded
distance from the origin. This corresponds to our Theorem 1.2(i), for then f ′(0) > µ.
The borderline case Ξ = 1 can yield unusual results. Bramson neatly examined such
BRWs in discrete time [11]. Due to the variety of possible behaviours, we do not
comprehensively study the analogous case for (1.1), when J(R+) = 0 and f ′(0) = µ.
Instead, our Theorem 1.2(ii) exhibits one family of “borderline” shifts.

In summary, our main findings parallel well-known results in discrete time. Indeed,
they follow from prior results when f can be written in the form (A.2). However, generic
KPP reactions do not assume this special form, and Theorems 1.1 and 1.2 are new in
this setting.

Appendix B. Travelling waves for irregular kernels. In this appendix, we
draw on [17] and [18] to prove Proposition 3.1.

Proof. (Proof of Proposition 3.1.) We first extend the existence result from [18]
to our setting using an approximation argument of Coville in [17].

Let ρ ∈ C∞
c (R) be an even nonnegative bump function with

∫
R ρ = 1. Define

ρ(n)(x) = nρ (nx) and J (n) := J ∗ ρ(n) for n ∈ N. Let Γ(n) denote the speed functional

corresponding to J (n) as in (1.6), and define c
(n)
∗ := inf Γ(n).

For the moment, fix n ∈ N. For each ε > 0, pick λε > 0 such that

Γ(n)(λε) < c
(n)
∗ + ε.

Then (F3) implies that e−λεx is a supersolution of speed c
(n)
∗ + ε in the sense of

Theorem 1.3 in [18]. Taking ε → 0, the theorem implies the existence of a monotone
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travelling wave U (n) for J (n) of speed c
(n)
∗ . Since U (n) connects 1 to 0, we may shift it

so that

U (n)(0−) ≥ 1

2
and U (n)(0+) ≤ 1

2
. (B.1)

Note that we do not assume that U (n) is continuous.
Next, we take the limit n → ∞. Using the evenness of ρ, standard convolution

identities for the Laplace transform imply that Γ(n) ≥ Γ and Γ(n) → Γ pointwise. Hence

c
(n)
∗ = inf Γ(n) → inf Γ = c∗ as n → ∞.

We claim that there exists a monotone U : R → [0, 1] such that

µ(J ∗ U − U) + c∗ U
′ + f(U) = 0. (B.2)

Our argument splits into two cases.
First, suppose that c∗ ̸= 0. Then we can assume that n is sufficiently large that∣∣c(n)∗
∣∣ ≥ |c∗|/2. Using f ∈ C1 from (F1), we can bootstrap

−c
(n)
∗

(
U (n)

)′
= µ

(
J (n) ∗ U (n) − U (n)

)
+ f

(
U (n)

)
(B.3)

to conclude that U (n) is uniformly bounded in C2. Then Arzelà–Ascoli and diagonalisation
yield a C1

loc-convergent subsequence with limit U satisfying (B.2).
Next, suppose that c = 0. We don’t have a priori regularity, but Helly’s selection

theorem allows us to extract a subsequence along which U (n) and ρ(n) ∗ U (n) both
converge pointwise to limits U and Ũ , respectively. For the remainder of the proof, we
constrain n to lie in this subsequence. Dominated convergence implies that

J (n) ∗ U (n) = J ∗
(
ρ(n) ∗ U (n)

)
→ J ∗ Ũ .

Integrating (B.3) in space and taking n → ∞, we see that

µ(J ∗ Ũ − U) + f(U) = 0 a.e.

Because U is monotone, we can easily check that ρ(n) ∗ U (n) → U wherever U is
continuous. That is, Ũ = U off the countable set of discontinuities of U . Thus

µ(J ∗ U − U) + f(U) = 0 a.e.

Following [16], we define the right-continuous profile U+(x) := U(x+). Then dominated
convergence yields

µ(J ∗ U+ − U+) + f(U+) = 0 on R.

Thus U+ satisfies (B.2). We henceforth refer to U+ as U .
Now, we must verify the limiting behaviour in (1.5). Because U is monotone, the

limits U(±∞) exist, lie between 0 and 1, and satisfy f
(
U(±∞)

)
= 0. Moreover, (B.1)

implies that U(−∞) ≥ 1
2 and U(+∞) ≤ 1

2 . By (F2), we must have U(−∞) = 1 and
U(+∞) = 0, so U is a monotone travelling wave for (1.1) of speed c∗, as desired.

Finally, suppose that Γ attains its infimum at λ∗ > 0. The decay in (3.29) follows
from Theorem 1.6 in [18] under additional regularity conditions on f and J . However, a
careful examination of the proof reveals that (3.29) holds for monotone travelling waves
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without additional assumptions. Indeed, Lemma 5.2 in [18] shows that the integral
V (x) :=

∫∞
x

U(y) dy decays exponentially as x → ∞ (recalling that [18] uses opposite
spatial signs). The proof of Theorem 1.6 in [18] then uses Ikehara’s theorem to conclude
that V satisfies

V (x) ≤ CV xe
−λ∗x for all x ≥ 1. (B.4)

Neither argument makes use of any hypotheses on J or f beyond (J1) and (F1)–(F3).
Now, suppose for the sake of contradiction that there exists a sequence xn → ∞ such
that U(xn) ≥ nxne

−λ∗xn . Then the monotonicity of U implies:

V (xn − 1) ≥
∫ xn

xn−1

U(x) dx ≥ U(xn) ≥ nxne
−λ∗xn ≥ e−λ∗n(xn − 1)e−λ∗(xn−1).

This contradicts (B.4) once n > eλ∗CV , so in fact U satisfies (3.29) for some C > 0.
This completes the proof of Proposition 3.1.
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