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CONVERGENCE ANALYSIS ON SEISMIC TOMOGRAPHY FOR
INVERSE PROBLEMS OF ACOUSTIC WAVE PROPAGATION∗
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Abstract. In this paper, we provide a rigorous convergence analysis for the inverse problems of
acoustic wave propagation arising from seismic tomography. Specifically, we obtain the error estimates
for three cases: 1. Standard seismic tomography; 2. Seismic tomography with approximation to
sensitivity kernel; 3. Seismic tomography with Tikhonov regularization.
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1. Introduction
Seismic tomography has been widely used for imaging the subsurface structures of

the Earth at a variety of scales, including but not limited to, plate tectonics, volcanism,
and geodynamics [1, 6, 13, 16, 23]. The seismic image can be obtained by minimizing a
misfit functional which measures the difference of the observed seismic data and that
from synthetic simulations. The travel-time tomography based on ray theory is the main
tool used at the beginning of the development of the methodology, where it assumes
that the travel-time information is only determined by the infinitely thin ray paths, but
this is only valid for the extremely high-frequency regime [15].

On the other hand, the wave-equation-based seismic tomography [20–22] is consid-
ered to be able to include the influence of off-ray structures that are missing in the
ray theory. The adjoint method [8, 13, 21] is one of the most widely used tools in the
wave-equation-based tomography. In this case, the minimization problem may be solved
iteratively by the Newton method or other gradient-based methods. Nevertheless, these
methods require the computation of the Fréchlet derivatives of the misfit function, or
in other words, the sensitivity kernels, which are computed by solving synthetic wave
equations [19]. The sensitivity kernel can be written in the form of a cross-correlation of
the so-called forward and adjoint wavefields [21]. We remark that, although it provides
accurate synthetic seismograms and sensitivity kernels, fully solving wave-equations
in 3D is usually time demanding and even computationally unaffordable. The recent
development of modern scientific computing and numerical methods for seismic wave
equations, such as the pseudo-spectral method [9, 12] and hybrid method [20], make
the wave-equation-based seismic tomography feasible and successfully applicable in a
variety of realistic situations [11,17,18,24].

In previous works [4, 5, 10], the authors have developed the frozen Gaussian ap-
proximation (FGA)-based seismic tomography method for high-frequency seismic wave
imaging. The FGA is an asymptotic method which approximates the seismic wave-

∗Received: April 10, 2021; Accepted (in revised form): January 16, 2022. Communicated by Gang
Bao.

†Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China (wanghaoy17@
mails.tsinghua.edu.cn).

‡School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China (chailihui@mail.
sysu.edu.cn).

§Corresponding author. Department of Mathematical Sciences, Tsinghua University, Beijing 100084,
China (zhongyih@tsinghua.edu.cn).

¶Department of Mathematics, University of California, Santa Barbara, CA 93106, USA (xuyang@
math.ucsb.edu).

1551

mailto:wanghaoy17@mails.tsinghua.edu.cn
mailto:wanghaoy17@mails.tsinghua.edu.cn
mailto:chailihui@mail.sysu.edu.cn)
mailto:chailihui@mail.sysu.edu.cn)
mailto:zhongyih@tsinghua.edu.cn
mailto:xuyang@math.ucsb.edu
mailto:xuyang@math.ucsb.edu


1552 CONVERGENCE ANALYSIS ON SEISMIC TOMOGRAPHY

field by a superposition of fixed-width Gaussian wavepackets where the Gaussians are
determined by a set of decoupled ordinary differential equation (ODE) systems propa-
gating along the classical ray paths and thus can be solved drastically fast. The rigorous
asymptotic analysis [3,14] guarantees the accurate approximation of the wavefield in the
high-frequency regime. Thus, the FGA may serve as an efficient and accurate forward
modeling solver for seismic wave propagation and computing the sensitivity kernels.
In [5,10], FGA is applied to wave-equation-based seismic tomography using the Newton
method with synthetic tests on both travel-time and full-waveform as the observed data.

Despite the fact that the wave-equation-based seismic tomography has shown its
successes in many realistic situations and FGA has been tested as a promising forward
modeling solver for computing the wavefields and sensitivity kernels, the convergence
property of seismic tomography is still unclear. First, due to the complexity of the
seismic wave equations, to the best of the authors’ knowledge, there are no systematic
studies on the convergence rate of the iterative methods; second, numerical approxima-
tion such as FGA gives an asymptotic solution to acoustic wave propagation with an
error proportional to the ratio of the wave-length over the domain size, and it is unclear
how this kind of error will affect the total accuracy of seismic tomography.

In this paper, we analyze the convergence of seismic tomography for the following
three cases: 1. standard setup; 2. with approximation to sensitivity kernel; 3. with
Tikhonov regularization. By a careful estimate of the minimization problem, we show
that the method converges linearly to a velocity model, and gives an explicit dependence
of the accuracy on the error of observed data and numerical approximation.

The rest of the paper is organized as follows: In Section 2, we describe the standard
setup of seismic tomography. We present the accuracy estimate for standard seismic
tomography in Section 3 and seismic tomography with numerical approximation to
sensitivity kernel in Section 4. In Section 5, we analyze the convergence of seismic
tomography with Tikhonov regularization. We give conclusive discussions in Section 6.

2. Acoustic wave propagation and standard seismic tomography
We consider the inverse problem for the acoustic wave propagation modeled by

∂2u
∂t2 −c2(x)∆xu=f(t,x),

u|t=0=0,
∂u
∂t |t=0

=0,

(2.1)

where c is the velocity model, u is the wavefield, f is the external forcing term and
usually takes the form of f(t,x)=s(t)δd(x−xs) with s being the source-time function at
position xs, and δd being the Dirac delta function. We assume that the equation in (2.1)
is valid in t∈ (0,T ],x∈Ω, where Ω is a smooth bounded domain. As for the boundary
condition, since the velocity is bounded, we can enlarge Ω so that the boundary condition
will not affect the domain in concern, at least before t=T . We can then assume the
null Dirichlet boundary, i.e. u(t,x)=0, for all t∈ [0,T ] ,x∈∂Ω. 1

Denote dobs as the recorded seismic data at receivers and dsys(c) as the synthetic
data by simulation. The inverse problem aims to seek a velocity model c to minimize the
following misfit function χ(c) under a certain metric (e.g. the discrepancy of travel-time
and full waveforms as studied in [5, 10]),

min
velocity c

∥dobs−dsys(c)∥L2 , (2.2)

1We should point out that, in practical cases where Ω is not enlarged, the boundary condition does
affect the whole equation, and some techniques like the Perfectly Matching Layer (PML) should be
applied.
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where we denote the velocity model as c, and the corresponding wavefield u(t,x)=
u(t,x;c). Let dsys=dsys(c) be the synthetic data computed numerically (e.g., by Frozen
Gaussian Approximation [4]), which can be either the travel-time Tsys for travel-time
adjoint tomography, or usys(t,xr;c), for full waveform inversion. We also denote the
perfect (error-free) data as dexact=dexact(c), given by the analytical solution to (2.1).

The observed data is limited to the waveform(s) u(t,xr) at certain receivers xr.
The travel-time at xr means the infimum of time that u(t,xr) is nonzero. Ideally, one
aims to recover the true velocity model c∗ corresponding to the observation data, and
∥c−c∗∥L2 describes the accuracy of the solution to the inverse problem (2.2). Here L2

can be replaced by other norms of Hilbert spaces, such as W 3,2 (Ω).

We consider the full waveform inversion case, i.e., dexact(t;c)=u(t,xr;c) and
dsys(t;c)=usys(t,xr;c). Both dexact and dsys can be viewed as functionals mapping
c∈W 3,2 (Ω) to a function (t 7→d(t;c))∈L2 ([0,T ]), so we can define its Frechet deriva-
tives. We suppose that, the second variation of dexact and dsys exists, and that∥∥∥∥δ2dexactδc2

∥∥∥∥≤C2,

∥∥∥∥δ2dsysδc2

∥∥∥∥≤C2;

∥∥∥∥δdexactδc

∥∥∥∥≤C1,

∥∥∥∥δdsysδc

∥∥∥∥≤C1;∥∥∥∥∥
((

δdexact
δc

)∗(
δdexact

δc

))−1
∥∥∥∥∥≤C−1,

∥∥∥∥∥
((

δdsys
δc

)∗(
δdsys
δc

))−1
∥∥∥∥∥≤C−1, (2.3)

where the ∥·∥ refers to the induced operator norm, and C2,C1, and C−1 are con-
stants independent of c. The ∗ on an operator means the adjoint operator, i.e.
F := δd

δc ,F
∗(δc1)(δd2)=(F (δc1),δd2)L2([0,T ]). Unless otherwise specified, for a linear op-

erator between Hilbert spaces, ∥·∥ always refers to the induced operator norm. As-
sumption (2.3) is a strong assumption. It describes the well-posedness of the equation,
including the continuous dependence on c, which is needed in the convergence analysis
when solving c from our data. The bound C−1 requires that enough data should be
recorded to recover c∗. For a linear operator F , F ∗F maps δc1 to F ∗F (δc1) which
satisfies (F ∗F (δc1) ,δc2)=(F (δc1) ,F (δc2)). We will also denote F ∗F as (F,F ).

We shall justify the assumptions above before our analysis. Generally, those con-
stants would not exist if the space of c were too arbitrary. It is this reason that we
choose to consider a special family of the velocity models. We assume that the velocity
model depends on finite number of parameters. We take c(x)= c(x;θ1,θ2,...,θm), and
we assume that c depends on them “uniformly smoothly” of order 3, in the sense that

∥c∥W 3,∞(Ω)≤Cm0,

∥∥∥∥ ∂c

∂θj

∥∥∥∥
W 2,∞(Ω)

≤Cm1,

∥∥∥∥ ∂2c

∂θj∂θk

∥∥∥∥
W 1,∞(Ω)

≤Cm2, (2.4)

where the constants Cm0,Cm1,Cm2 do not depend on all θj . We also need to assume
that the velocity should not be too high or too low, i.e. cmax≥ c(x)≥ cmin>0 uniformly,
where cmax and cmin are known priori.

It is the nature of wave equation (or other hyperbolic equation) that the solution
has poor regularity unless the initial condition, the boundary condition and the external
force are all sufficiently smooth and possess high order compatibility. Thus, we replace
the external force in (2.1) by f , which is assumed to be smooth in order 3 in timespace,

f ∈L2
(
[0,T ];H3 (Ω)

)
,ft∈L2

(
[0,T ];H2 (Ω)

)
,

ftt∈L2
(
[0,T ];H1 (Ω)

)
,fttt∈L2

(
[0,T ];L2 (Ω)

)
. (2.5)
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When we say f ∈H3 ([0,T ]×Ω), we actually refer to the four conditions above. And
also, when H3 ([0,T ]×Ω) is taken as a norm in an inequality, we actually mean the sum
of the four norms above.

For the sake of compatibility, we also assume that the support of f (t,x) is compact

and lies inside
{
(t,x) : t∈ (0,T ],Bx (cmaxT −cmaxt)⊂Ω

}
. In this case, with null initial

and null Dirichlet boundary conditions, compatibility is assured on arbitrary order, at
least up to time T .

It is well known (e.g., [7]) that the energy estimation

sup
t∈[0,T ]

(
∥u∥H1(Ω)+∥ut∥L2(Ω)

)
≤C ∥f∥L2([0,T ];L2(Ω)) , (2.6)

and higher regularity estimation

sup
t∈[0,T ]

(
∥u∥H4(Ω)+ ...+∥utttt∥L2(Ω)

)
≤C ∥f∥H3([0,T ]×Ω) , (2.7)

hold, where C is a constant that may depend on the velocity model c. Actually, C
only depends on cmin,T,Ω, and the constants Cm0 in (2.4), which will be shown in the
appendix. We note that the left-hand side of (2.7) can be replaced by any mixed space-
time partial derivative of order n≤4, with the right-hand side ∥f∥Hn−1 . Generally, the
order could be arbitrarily large if enough regularity conditions on f,c and Ω were given,
yet 4 is enough for our purpose.

We denote the solution u of the wave equation as S (c,f). This functional is linear
on f . As we have assumed, c relies on those θjs smoothly, and we can calculate with
the method of variation that

∂u

∂θj
=S

(
c,2c(∆u)

∂c

∂θj

)
, (2.8)

∂2u

∂θj∂θk
=S

(
c,2c

(
∆

∂u

∂θj

)
∂c

∂θk

)
+S

(
c,2c

(
∆

∂u

∂θk

)
∂c

∂θj

)
+S

(
c,2(∆u)

(
∂c

∂θj

∂c

∂θk
+c

∂2c

∂θj∂θk

))
. (2.9)

As the inequality (2.7) implies, the norm of any fourth derivative of u is bounded
by the norm of the third derivative of f up to a uniform constant C. In the following
contents, the notation C may differ by a constant which may depend on the region Ω,
the range of time T and the number of parameters m, but it will still be uniform over all
our possible models. In order to make the relation clear, we will still use the notations
Cm0,Cm1,Cm2 in (2.4) and will not abbreviate them into C.

We have the following theorem:

Theorem 2.1. Under the assumption (2.4), we have∥∥∥∥ ∂2u

∂θj∂θk

∥∥∥∥
L∞([0,T ]×Ω)

≤ C̃ ∥f∥H3 , (2.10)

where the definition of the constant C̃ is in the proof. It only depends on Ω, T , Cm0,
Cm1, Cm2, cmin and does not depend on any particular c.
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Proof. As ∥∆u∥H2([0,T ]×Ω)≤C ∥f∥H3([0,T ]×Ω), we can know∥∥∥∥2c(∆u)
∂c

∂θj

∥∥∥∥
H2([0,T ]×Ω)

≤2Cm0Cm1∥∆u∥H2

≤2Cm0Cm1C ∥f∥H3 , (2.11)

so with the third regularity, we get by (2.8),∥∥∥∥ ∂u

∂θj

∥∥∥∥
H3(Ω×[0,T ])

≤2Cm0Cm1C
2∥f∥H3 . (2.12)

Now we can move on the estimation of (2.9).

Since
∥∥∥2c(∆ ∂u

∂θj

)
∂c
∂θk

∥∥∥
H1

≤2Cm0Cm1

∥∥∥ ∂u
∂θj

∥∥∥
H3

, we get

∥∥∥∥S(c,2c(∆ ∂u

∂θj

)
∂c

∂θk

)∥∥∥∥
L∞([0,T ],H2(Ω))

≤C

∥∥∥∥2c(∆ ∂u

∂θj

)
∂c

∂θk

∥∥∥∥
H1

≤2Cm0Cm1C

∥∥∥∥ ∂u

∂θj

∥∥∥∥
H3

≤4C2
m0C

2
m1C

3∥f∥H3 , (2.13)

and the same holds for the second term in (2.9). Inside the third term,∥∥∥2(∆u)
(

∂c
∂θj

∂c
∂θk

+c ∂2c
∂θj∂θk

)∥∥∥
H1

does not exceed 2
(
C2

m1+Cm0Cm2

)
C ∥f∥H3 , so we can

get∥∥∥∥S(c,2(∆u)

(
∂c

∂θj

∂c

∂θk
+c

∂2c

∂θj∂θk

))∥∥∥∥
L∞(H2)

≤2
(
C2

m1+Cm0Cm2

)
C2∥f∥H3 . (2.14)

With (2.13) (twice) and (2.14), we finally know that∥∥∥∥ ∂2u

∂θj∂θk

∥∥∥∥
L∞([0,T ],H2(Ω))

≤C ′∥f∥H3([0,T ]×Ω) , (2.15)

where C ′=
(
8C2

m0C
2
m1C

3+2
(
C2

m1+Cm0Cm2

)
C2
)
. Since H2 (Ω) can be (continu-

ously) embedded into L∞ (Ω) in dimension 3, we know that
∥∥∥ ∂2u
∂θj∂θk

∥∥∥
L∞([0,T ]×Ω)

≤

C ′CSobolev ∥f∥H3 . The Sobolev’s constant only depends on Ω. Let C̃ :=C ′CSobolev

and then the assertion follows.

For a receiver at xr ∈Ω, we should get the data dexact (t)=u(t,xr;c(θ)) (error ig-
nored). Obviously ∥dexact∥L2(0,T )≤

√
T ∥u∥L∞ , and similar relationship holds for their

second derivative with respect to θ. In this point of view, the constant C2 can be taken
as C̃

√
T ∥f∥H3 under the parameter model assumption (2.3) 2, at least for dexact.

2Variation with respect to c and w.r.t. θ is different, and we only prove the bound for the variation
(or differential) w.r.t. θ, i.e. the parameters. Considering the fact that c is determined by the
parameters, we still write c in (2.3) and later paragraphs. If we want to justify (2.3) rigorously, here
and in later sections, every c should be taken by θ.
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3. Convergence of standard seismic tomography
First, we consider the standard seismic tomography, with the synthetic data given

perfectly by the analytical solution to (2.1), where the iteration formula is given by the
equation (8) in [5],

cn+1= cn+

(
δdexact

δc
(cn),

δdexact
δc

(cn)

)−1(
δdexact

δc
(cn),dobs−dexact(cn)

)
, (3.1)

where dobs=dexact(c
∗) is the (error-free) synthetic data, and c∗ is the exact velocity

model. We will prove that the iteration converges at the second order (near c∗), as
stated in the following theorem.

Theorem 3.1. Under the assumption of (2.3), and suppose that cn is sufficiently
close to c∗, we have

cn+1−c∗=O(∥cn−c∗∥2), (3.2)

i.e. cn→ c∗ at the second order.

Proof. By applying Taylor’s expansion at c∗,

dexact(cn)−dobs=
δdexact

δc
(c∗)(cn−c∗)+O

(
∥cn−c∗∥2

)
, (3.3)

δdexact
δc

(cn)=
δdexact

δc
(c∗)+O(∥cn−c∗∥) , (3.4)

we can get(
δdexact

δc
(cn),dexact(cn)−dobs

)
=

(
δdexact

δc
(c∗),

δdexact
δc

(c∗)(cn−c∗)

)
+O

(
∥cn−c∗∥2

)
,

(3.5)(
δdexact

δc
(cn),

δdexact
δc

(cn)

)−1

=

(
δdexact

δc
(c∗),

δdexact
δc

(c∗)

)−1

+O(∥cn−c∗∥) . (3.6)

So, considering the iteration (3.1), we have

cn+1−c∗= cn−c∗+

(
δdexact

δc
(cn),

δdexact
δc

(cn)

)−1(
δdexact

δc
(cn),dobs−dexact(cn)

)
= cn−c∗−

(
δdexact

δc
(c∗),

δdexact
δc

(c∗)

)−1(
δdexact

δc
(c∗),

δdexact
δc

(c∗)(cn−c∗)

)
+O

(
∥cn−c∗∥2

)
=O

(
∥cn−c∗∥2

)
, (3.7)

which shows that cn→ c∗ at the second order.

4. Seismic tomography with approximation to sensitivity kernel
In realistic cases, the observation as well as the algorithm induce some error. We

suppose that they are considerably small,

∥dsys(c)−dexact(c)∥≤ed,

∥∥∥∥δdsysδc
(c)− δdexact

δc
(c)

∥∥∥∥≤eδd, ∥dobs−dexact(c
∗)∥≤eobs.

(4.1)
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When applying the iteration (3.1), we will replace dexact with dsys, i.e.

cn+1= cn+

(
δdsys
δc

(cn),
δdsys
δc

(cn)

)−1(
δdsys
δc

(cn),dobs−dsys(cn)

)
. (4.2)

We cannot expect cn→ c∗ when error exists. Instead, we are going to find c to
minimize |dsys(c)−dobs|2. Denote the minimizing c as c∗e.

In the case with error, we have the following theorem instead of (3.1).

Theorem 4.1. Suppose (2.3) and (4.1), and that cn is sufficiently close to c∗e, we
have

limsup
n→∞

∥cn+1−c∗e∥
∥cn−c∗e∥

≤C−1C2(ed+eobs), (4.3)

i.e. cn→ c∗e linearly, as long as C−1C2(ed+eobs)<1.

Proof. With the help of the method of variation, we know from the minimality of
c∗e that (

dsys(c
∗
e)−dobs,

δdsys
δc

(c∗e)

)
=0. (4.4)

Now we apply the Taylor’s expansion at c∗e on (4.2).

cn+1−c∗e =cn−c∗e+

(
δdsys
δc

(cn),
δdsys
δc

(cn)

)−1(
δdsys
δc

(cn),dobs−dsys(cn)

)
=cn−c∗e+

(
δdsys
δc

(cn),
δdsys
δc

(cn)

)−1

·(
δdsys
δc

(c∗e)+
δ2dsys
δc2

(c∗e)(cn−c∗e),dobs−dsys(cn)

)
+o(∥cn−c∗e∥). (4.5)

By writing dobs−dsys(cn) as dobs−dsys(c
∗
e)+dsys(c

∗
e)−dsys(cn) and applying (4.4), we

can get (
δdsys
δc

(cn),dobs−dsys(cn)

)
=

(
δdsys
δc

(c∗e)+
δ2dsys
δc2

(c∗e)(cn−c∗e),dobs−dsys(c
∗
e)

)
+

(
δdsys
δc

(c∗e),−
δdsys
δc

(c∗e)(cn−c∗e)

)
+o(∥cn−c∗e∥)

=

(
δ2dsys
δc2

(c∗e)(cn−c∗e),dobs−dsys(c
∗
e)

)
−
(
δdsys
δc

(c∗e),
δdsys
δc

(c∗e)(cn−c∗e)

)
+o(∥cn−c∗e∥), (4.6)

which is O(∥cn−c∗e∥). Returning to (4.2), we know,

cn+1−c∗e = cn−c∗e+

(
δdsys
δc

(cn),
δdsys
δc

(cn)

)−1((
δdsys
δc

(cn),dobs−dsys(cn)

))
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=cn−c∗e+

(
δdsys
δc

(c∗e),
δdsys
δc

(c∗e)

)−1((
δdsys
δc

(cn),dobs−dsys(cn)

))
+o(∥cn−c∗e∥)

=

(
δdsys
δc

(c∗e),
δdsys
δc

(c∗e)

)−1(
δ2dsys
δc2

(c∗e)(cn−c∗e),dobs−dsys(c
∗
e)

)
+o(∥cn−c∗e∥), (4.7)

where we apply (4.6) in the last equality.
We need to give an estimate of (dobs−dsys(c

∗
e)). In fact,

∥dobs−dsys(c
∗
e)∥≤∥dobs−dsys(c

∗)∥
≤∥dobs−dexact(c

∗)∥+∥dexact(c∗)−dsys(c
∗)∥≤eobs+ed. (4.8)

Then we know from (4.7) that

∥cn+1−c∗e∥≤C−1C2∥cn−c∗e∥(eobs+ed)+o(∥cn−c∗e∥), (4.9)

which shows the linear convergence cn→ c∗e when C−1C2(eobs+ed)<1.

The above result ensures the convergence of the iteration as long as the errors are
reasonably bounded. What we also hope is that the result c∗e can be close to c∗. In fact,

∥dexact(c∗e)−dexact(c
∗)∥≤∥dexact(c∗e)−dsys(c

∗
e)∥+∥dsys(c∗e)−dobs∥+∥dobs−dexact(c

∗)∥
≤ed+(eobs+ed)+eobs=2(eobs+ed), (4.10)

and also,

∥dsys(c∗e)−dsys(c
∗)∥≤∥dsys(c∗e)−dobs∥+∥dobs−dexact(c

∗)∥+∥dexact(c∗)−dsys(c
∗)∥

≤ (eobs+ed)+eobs+ed=2(eobs+ed). (4.11)

If either dexact or dsys has a Lipschitz-continuous inverse near c∗, ∥c∗e−c∗∥ will be
bounded by 2L(eobs+ed) then.

5. Seismic tomography with Tikhonov regularization
In reality, the assumption of the bound C−1 in (2.3) is difficult to get quantified.

It is the nature of inverse problems that most of them are ill-posed, and that some
techniques about regularization are needed. Here we consider the misfit loss function
with a Tikhonov regularization as follows

χ(c)=
1

2

(
dobs−dsys(c),dobs−dsys(c)

)
+ε∥c−c0∥2L2 , (5.1)

where c0 is a reference solution of the velocity model. We denote the minimizing c as
c∗e,ε. The iteration formula becomes

cn+1= cn

+

((
δdsys
δc

(cn),
δdsys
δc

(cn)

)
+2εidc

)−1((
δdsys
δc

(cn),dobs−dsys(cn)

)
−2ε(cn−c0)

)
.

(5.2)

Similar with (4.4), we have

−
(
δdsys
δc

(c∗e,ε),dobs−dsys(c
∗
e,ε)

)
+2ε(c∗e,ε−c0)=0. (5.3)
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Then, like (4.7), we obtain

cn+1−c∗e,ε

=

((
δdsys
δc

(c∗e,ε),
δdsys
δc

(c∗e,ε)

)
+2εidc

)−1(
δ2dsys
δc2

(c∗e,ε)(cn−c∗e,ε),dobs−dsys(c
∗
e,ε)

)
+O(∥cn−c∗e,ε∥2), (5.4)

and then we gain an estimate free from C−1 in (2.3), namely

∥cn+1−c∗e,ε∥≤
C2∥dobs−dsys(c

∗
e,ε)∥

2ε
∥cn−c∗e,ε∥+O(∥cn−c∗e,ε∥2). (5.5)

We also need an estimate of ∥dobs−dsys(c
∗
e,ε)∥. With minimality, we have

∥dobs−dsys(c
∗
e,ε)∥2+2ε∥c∗e,ε−c0∥2≤∥dobs−dsys(c

∗)∥2+2ε∥c∗−c0∥2, (5.6)

and we also know, as for the assumption (4.1),

∥dobs−dexact(c
∗)∥≤eobs,∥dsys(c∗)−dexact(c

∗)∥≤eu, (5.7)

then we know

∥cn+1−c∗e,ε∥≤
C2

(√
(eu+eobs)2+2ε(∥c∗−c0∥2−∥c∗e,ε−c0∥2)

)
2ε

∥cn−c∗e,ε∥

+O(∥cn−c∗e,ε∥2), (5.8)

which is the regularization case of (4.9). Like (4.10) and (4.11), we also get

∥dsys(c∗)−dsys(c
∗
e,ε)∥≤

√
(eu+eobs)2+2ε(∥c∗−c0∥2−∥c∗e,ε−c0∥2)+eu+eobs, (5.9)

and

∥dexact(c∗)−dexact(c
∗
e,ε)∥≤

√
(eu+eobs)2+2ε(∥c∗−c0∥2−∥c∗e,ε−c0∥2)+eu+eobs,

(5.10)

which also bounds the error supposing either dexact or dsys has Lipschitz-continuous
inverse near c∗.

Unfortunately, up to our effort, there is no satisfactory a priori estimation of∥∥dobs−dsys
(
c∗e,ε
)∥∥ if the bound of

(
δdsys

δc ,
δdsys

δc

)−1

is removed. We still need an ex-

tra assumption on
δdsys

δc . Let δ=eobs+esys in short. According to [2], if one assumes
that

c∗−c0=

(
δdsys
δc

,
δdsys
δc

)ν

c=c∗
v,ν≥ 1

2
, (5.11)

where v lies in the same space as c∗ and c0 and should be small enough, then it has been
shown that there exist ε(δ), N (δ) such that, if the result of N iterations of the ε(δ)-
regularization Gauss-Newton Method is denoted as cN(δ),ε(δ), one has

∥∥cN(δ),ε(δ)−c∗
∥∥=

O
(
δ

2ν
2ν+1

)
. To be rigorous, we need to replace ε in (5.2) by εn= r−n for some r>1 to
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apply the result in [2]. The stopping N is chosen such that δ∼ε
ν+ 1

2

N . Also, we can let

ν≥0 in (5.11) if we assume in addition that
δdsys

δc ≡F ′ is nearly linear near c∗, in the
sense that

F ′ (c2)=R(c,c2)F
′ (c)+Q(c,c2) ,

∥I−R(c,c2)∥≤CR,

∥Q(c,c2)∥≤CQ∥F ′ (c∗)(c−c2)∥ , (5.12)

for all c, c2 such that ∥c−c∗∥≤2ρ, ∥c2−c∗∥≤2ρ, and the constants CR, CQ and ρ need
to be sufficiently small.

For the sake of completeness, we show the result in [2] (Theorem 2.4) for the case
ν≥ 1

2 in our notation.

Theorem 5.1. Suppose ∥c∗−c0∥≤ρ. We assume (4.1) and denote δ=eobs+ed. Sup-

pose (5.11) holds, and v is chosen in the perpendicular space of the kernel of
δdsys

δc (c∗),

and
∥∥∥ δ2dsys

δc2

∥∥∥≤C2=L, at least for c such that ∥c−c0∥≤2ρ. We also choose a sequence

{εn} of regularization parameters such that

εn>0, εn→0, 1<
εn

εn+1
≤ r, (5.13)

for a constant r>1.
For a fixed δ, we choose N =N (δ) such that

ηε
ν+ 1

2

N <δ≤ηε
ν+ 1

2

N−1, (5.14)

for some η>0. Once δ and {εn} are fixed, N is unique.
If the following closeness conditions hold:

B+2
√
AC<1,

∥c0−c∗∥
εν0

≤
1−B+

√
(1−B)

2−4AC

2C
,

εν0Cγ ≤ρ,

A := rν
(
∥v∥+ η

2

)
,

B := rν

(
ε
ν− 1

2
0

2
∥v∥+

∥∥∥(F ′ (c∗)
∗
F ′ (c∗)

)ν− 1
2 v
∥∥∥) ,

C :=
rνLε

ν− 1
2

0

4
,

Cγ :=max

∥c0−c∗∥
εν0

,
2A

1−B+

√
(1−B)

2−4AC

 , (5.15)

then we have, as δ→0,
∥∥cN(δ)−c∗

∥∥→0. More accurately,∥∥cN(δ)−c∗
∥∥=O

(
δ

2ν
2ν+1

)
, (5.16)
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where cn= cn,δ is defined through

cn+1=cn−
((

δdsys
δc

(cn)

)∗
δdsys
δc

(cn)+εnid

)−1

·
((

δdsys
δc

(cn)

)∗

(dsys (cn)−dobs)+εn (cn−c0)

)
. (5.17)

6. Conclusion and discussion
In this paper, we provide a rigorous analysis for the accuracy of seismic tomography

for inverse problems of acoustic wave propagation for three cases: 1. Standard seismic
tomography; 2. Seismic tomography with approximation to sensitivity kernel; 3. Seismic
tomography with Tikhonov regularization. Specifically, we first give a uniform bound
of the second order variation of the observation data over the velocity model, and
then analyze the convergence rate of the iteration. Under appropriate assumptions,
we prove second order convergence in the standard seismic tomography case, and first
order convergence in the case with approximation to sensitivity kernel. Moreover, when
we take the Tikhonov regularization into consideration, we can show the convergence
under more general assumptions. In the future work, we shall continue to look for
alternatives of the uniform invertibility conditions to make the convergence hold for
weaker assumptions, and analyze the convergence of seismic tomography with stochastic
approximations.
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No. 11901601. X.Y. was partially supported by the NSF grants DMS-1818592 and
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Appendix. Here we consider the wave equation

utt−c2 (x)∆u=f, ∀t∈ [0,T ], x∈R3;

u(0,x)=ut (0,x)=0, ∀x∈R3, (A.1)

where c represents the velocity model. We assume that 0<cmin≤ c(x)≤ cmax, and

f is compactly supported inside Π :=
{
(t,x) : t∈ (0,T ] ,Bx (cmaxT −cmaxt)⊂Ω

}
(so u

vanishes outside [0,T ]×Ω), where Ω is a smooth region. What we want is the regularity
of u with a “uniform” constant, in the sense that it only depends on cmin,T,Ω and the
bound of the derivative of c.

We first assume that ∥∇c∥∞≤M1and f ∈L2
(
[0,T ];L2 (Ω)

)
. We multiply the Equa-

tion (A.1) with ut, and integrate on x∈Ω, to get

1

2

∂

∂t

∫
Ω

(
u2
t +c2 |∇u|2

)
dx=

∫
Ω

(fut−2cut∇c ·∇u)dx, (A.2)

where |·| means the Euclidean norm of a vector.
Then, we integrate on t from 0 to τ , where τ <T,[∫

Ω

(
u2
t +c2 |∇u|2

)
dx

]
t=τ

=

∫ τ

0

dt

(∫
Ω

(fut−2cut∇c ·∇u)dx

)
, (A.3)

and with the help of the AM-GM inequality, for any ε1,ε2>0,[∫
Ω

(
u2
t +c2 |∇u|2

)
dx

]
t=τ

≤
∫ τ

0

dt

(∫
Ω

(
f2

ε1
+ε1u

2
t +

4M2
1

ε2
c2 |∇u|2+ε2u

2
t

)
dx

)
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≤ 1

ε1

∫ τ

0

dt

(∫
Ω

f2dx

)
+max

{
ε1+ε2,

4M2
1

ε2

}∫ τ

0

dt

(∫
Ω

(
u2
t +c2 |∇u|2

)
dx

)
.

(A.4)

With the help of Gronwall’s inequality, we know[∫
Ω

(
u2
t +c2 |∇u|2

)
dx

]
t=τ

≤ 1

ε1
exp

(
max

{
ε1+ε2,

4M2
1

ε2

}
τ

)
∥f∥2L2

≤ 1

ε1
exp

(
max

{
ε1+ε2,

4M2
1

ε2

}
T

)
∥f∥2L2 , (A.5)

thus, we can choose arbitrary ε1,ε2>0 and know that
∫
Ω

(
u2
t +c2min |∇u|2

)
dx is

bounded by C ∥f∥2L2 , where the constant C only depends on T and M1. With the
help of Poincare’s inequality (where there is a constant depending on Ω), we can know[

∥ut∥L2(Ω)+∥u∥H1(Ω)

]
L∞([0,T ])

≤C ∥f∥L2([0,T ];L2(Ω)) , (A.6)

where the constant C here only depends on T,M1,cmin and Ω, not on concrete c(x).
Thus, the first order regularity is proved. We will apply the inequality (A.6) for several
times in the proof of the higher order regularity.

Now we assume that f ∈L2
(
[0,T ];H1 (Ω)

)
and ft∈L2

(
[0,T ];L2 (Ω)

)
. By taking

the partial derivative ∂
∂t on (A.1), we know

(ut)tt−c2∆ut=ft, (A.7)

thus we can apply (A.6) to get[
∥utt∥L2(Ω)+∥ut∥H1(Ω)

]
L∞([0,T ])

≤C ∥ft∥L2([0,T ];L2(Ω)) . (A.8)

Now we need a uniform estimation of ∥u∥H2(Ω). It suffice to bound ∥ux∥H1(Ω), since

the estimation for ∥uy∥H1(Ω) and ∥uz∥H1(Ω) should be the same. Now we take ∂
∂x on

(A.1),

(ux)tt−c2∆(ux)=fx+2ccx∆u, (A.9)

here we solve ∆u out of the Equation (A.1) to get

(ux)tt−c2∆(ux)=fx−
2cx
c

f+
2cx
c

utt≜g, (A.10)

and we apply (A.6) again[
∥ux∥H1(Ω)

]
L∞([0,T ])

≤C ∥g∥L2([0,T ];L2(Ω))

≤C

(
∥fx∥+

2M1

cmin
∥f∥+ 2M1

cmin
∥utt∥

)
, (A.11)
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where the norm in the last inequality is also L2
(
[0,T ];L2 (Ω)

)
. We see in (A.8) that we

have already bounded ∥utt∥ in the norm of L∞([0,T ];L2 (Ω)
)
, which is stronger, in the

sense that ∥utt∥L2 ≤
√
T ∥utt∥L∞ . Hence, we get[

∥ux∥H1(Ω)

]
L∞([0,T ])

≤C

(
1+

2M1

cmin

)
∥f∥L2([0,T ];H1(Ω))+

2C2M1

√
T

cmin
∥ft∥L2([0,T ];L2(Ω)) .

(A.12)

With the result (A.8) and (A.12), we conclude that[
∥utt∥L2(Ω)+∥ut∥H1(Ω)+∥u∥H2(Ω)

]
L∞([0,T ])

≤C(2)
(
∥f∥L2([0,T ];H1(Ω))+∥ft∥L2([0,T ];L2(Ω))

)
, (A.13)

where the constant C(2) only depends on M1,T,cmin and Ω. Note that we sometimes
use the notation ∥f∥H1([0,T ]×Ω) for the sum of the two norms on the right-hand side of

(A.13), for the sake of brevity.
Thus, the uniform estimation of the second order derivative has been built.
For the third order, we need the assumption

∥∥∇2c
∥∥
∞≤M2 and f ∈H2 ([0,T ]×Ω)

in addition. Here ft∈H1 ([0,T ]×Ω), so by (A.7) and (A.13), replacing f with ft and u
with ut, we have [

∥uttt∥L2(Ω)+∥utt∥H1(Ω)+∥ut∥H2(Ω)

]
L∞([0,T ])

≤C(2)
(
∥ft∥L2([0,T ];H1(Ω))+∥ftt∥L2([0,T ];L2(Ω))

)
. (A.14)

To build an estimation of ∥u∥H3(Ω), we consider to take ∂
∂y on (A.10). Here y can

be replaced by z, or even x itself.

(uxy)tt−c2∆(uxy)=2ccy∆ux+fxy−
2cxy
c

f+
2cxcy
c2

f− 2cx
c

fy

+
2cxy
c

utt−
2cxcy
c2

utt+
2cx
c

utty, (A.15)

and we can solve ∆ux out of (A.10). Hence

(uxy)tt−c2∆(uxy)=2cy
uxtt−fx+

2cx
c f− 2cx

c utt

c
+fxy

− 2cxy
c

f+
2cxcy
c2

f− 2cx
c

fy+
2cxy
c

utt−
2cxcy
c2

utt+
2cx
c

utty,

(A.16)

and by checking every term, we know their L2 ([0,T ]×Ω)-norms are all bounded by
K ∥f∥H2([0,T ]×Ω) andK ∥ut∥H2([0,T ]×Ω) for someK=K (M1,M2,cmin). However, (A.14)

says that ∥ut∥H2([0,T ]×Ω)≤
√
TC(2)∥f∥H2([0,T ]×Ω), so the right-hand side of (A.16) is

bounded by ∥f∥H2 up to a constant K̃, which only depends on M1,M2,cmin,T and Ω.

With the help of (A.6) again, we get
[
∥uxy∥H1(Ω)

]
L∞([0,T ])

≤CK̃ ∥f∥H2 . With (A.14),

we conclude[
∥uttt∥L2(Ω)+∥utt∥H1(Ω)+∥ut∥H2(Ω)+∥u∥H3(Ω)

]
L∞([0,T ])

≤C(3)
(
∥f∥H2([0,T ]×Ω)

)
, (A.17)
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where C(3)=C(3) (M1,M2,cmin,T,Ω).
For the fourth order, we assume

∥∥∇3c
∥∥
∞≤M3 and f ∈H3 ([0,T ]×Ω). By (A.7)

and (A.17), replacing f with ft and u with ut, we have[
∥utttt∥L2(Ω)+∥uttt∥H1(Ω)+∥utt∥H2(Ω)+∥ut∥H3(Ω)

]
L∞([0,T ])

≤C(3)
(
∥f∥H3([0,T ]×Ω)

)
,

(A.18)

hence we only need to bound ∥u∥H4(Ω). This comes from taking ∂
∂z on (A.16) and

solving ∆(uxy) out of it, we get

(uxyz)tt−c2∆(uxyz)= ...≜h, (A.19)

where h is the sum of a lot of terms, which concern f ’s derivatives (up to order 4) and ut’s
derivatives (up to order 3). For example, from the last term in (A.16), namely 2cx

c utty,

we get 2cxz

c utty, − 2cxcz
c2 utty, and

2cx
c uttyz. Thus, the L

2 ([0,T ]×Ω)-norm of h is bounded
by K ∥f∥H3([0,T ]×Ω) and K ∥ut∥H3([0,T ]×Ω), where K=K (M1,M2,M3,cmin). Since

(A.17) shows ∥ut∥H3([0,T ]×Ω)≤
√
TC(3)∥f∥H3([0,T ]×Ω), we know that ∥h∥L2([0,T ]×Ω) is

bounded by ∥f∥H3 up to a constant K̃, which only depends on M1,M2,M3,cmin,T and

Ω. Again, with (A.6), we know
[
∥uxyz∥H1(Ω)

]
L∞([0,T ])

≤CK̃ ∥f∥H3 . Thus, we finally

conclude the fourth order uniform estimation[
∥utttt∥L2(Ω)+∥uttt∥H1(Ω)+∥utt∥H2(Ω)+∥ut∥H3(Ω)+∥u∥H4(Ω)

]
L∞([0,T ])

≤C(4)
(
∥f∥H3([0,T ]×Ω)

)
, (A.20)

where C(4)=C(4) (M1,M2,M3,cmin,T,Ω).
Actually, we can continue this process to prove that, as long as c’s derivatives are

uniformly bounded up to order (m−1), we have the estimation with a uniform constant
up to order m. However, the fourth regularity is enough for our purpose.

REFERENCES

[1] K. Aki and W.H.K. Lee, Determination of the three-dimensional velocity anomalies under a
seismic array using first P arrival times from local earthquakes 1. A homogeneous intial
model, J. Geophys. Res., 81:4381–4399, 1976. 1

[2] B. Barbara, On convergence rates for the iteratively regularized Gauss-Newton method, IMA J.
Numer. Anal., 17:421–436, 1997. 5, 5, 5

[3] L. Chai, J.C. Hateley, E. Lorin, and X. Yang, On the convergence of frozen Gaussian approxi-
mation for linear non-strictly hyperbolic systems, Commun. Math. Sci., 19(3):585–606, 2021.
1

[4] L. Chai, P. Tong, and X. Yang, Frozen Gaussian approximation for 3-D seismic wave propagation,
Geophys. J. Int., 208(1):59–74, 2017. 1, 2

[5] L. Chai, P. Tong, and X. Yang, Frozen Gaussian approximation for 3-D seismic tomography,
Inverse Probl., 34(5):055004, 2018. 1, 2, 3

[6] A.M. Dziewonski, B.H. Hager, and R.J. O’Connell, Large-scale heterogeneities in the lower man-
tle, J. Geophys. Res., 82:239–255, 1977. 1

[7] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 1998. 2
[8] A. Fichtner, H.P. Bunge, and H. Igel, The adjoint method in seismology I. Theory, Phys. Earth

Planet. Inter., 157:86–104, 2006. 1
[9] A. Fichtner, H. Igel, H.P. Bunge, and B.L.N. Kennett, Simulation and inversion of seismic wave

propagation on continental scales based on a spectral-element method, J. Numer. Anal. Indust.
Appl. Math., 4:11–22, 2009. 1

https://doi.org/10.1029/JB081i023p04381
https://academic.oup.com/imajna/article-abstract/17/3/421/652147
https://dx.doi.org/10.4310/CMS.2021.v19.n3.a1
https://academic.oup.com/gji/article-abstract/208/1/59/2452667
https://iopscience.iop.org/article/10.1088/1361-6420/aab2be/meta
https://doi.org/10.1029/JB082i002p00239
https://bookstore.ams.org/gsm-19-r/
https://doi.org/10.1016/j.pepi.2006.03.016
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7830F537AE93BD88A853198F904D030D?doi=10.1.1.412.4281&rep=rep1&type=pdf


H. WANG, L. CHAI, Z. HUANG, AND X. YANG 1565

[10] J.C. Hateley, L. Chai, P. Tong, and X. Yang, Frozen Gaussian approximation for 3-D elastic
wave equation and seismic tomography, Geophys. J. Int., 216(2):1394–1412, 2018. 1, 2

[11] X. Huang, D. Yang, P. Tong, J. Badal, and Q. Liu, Wave equation based reflection tomography
of the 1992 Landers earthquake area, Geophys. Res. Lett., 43(5):1884–1892, 2016. 1

[12] D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation I.
Validation, Geophys. J. Int., 149(2):390–412, 2002. 1

[13] Q. Liu and Y.J. Gu, Seismic imaging: From classical to adjoint tomography, Tectonophysics,
566-567:31–66, 2012. 1

[14] J. Lu and X. Yang, Convergence of frozen Gaussian approximation for high frequency wave
propagation, Commun. Pure Appl. Math., 65:759–789, 2012. 1

[15] N. Rawlinson, S. Pozgay, and S. Fishwick, Seismic tomography: A window into deep Earth, Phys.
Earth Planet. Inter., 178(3-4):101–135, 2010. 1

[16] B. Romanowicz, Seismic tomography of the Earth’s mantle, Annu. Rev. Earth Planet. Sci.,
19:77–99, 1991. 1

[17] C. Tape, Q. Liu, A. Maggi, and J. Tromp, Adjoint tomography of the southern California crust,
Science, 325:988–992, 2009. 1

[18] C. Tape, Q. Liu, A. Maggi, and J. Tromp, Seismic tomography of the southern California crust
based on spectral-element and adjoint methods, Geophys. J. Int., 180(1):433–462, 2010. 1

[19] A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, Geophysics,
49(8):1259–1266, 1984. 1

[20] P. Tong, C.-W. Chen, D. Komatitsch, P. Basini, and Q. Liu, High-resolution seismic array imaging
based on an SEM-FK hybrid method, Geophys. J. Int., 197(1):369–395, 2014. 1

[21] J. Tromp, C. Tape, and Q. Liu, Seismic tomography, adjoint methods, time reversal and banana-
doughnut kernels, Geophys. J. Int., 160(1):195–216, 2005. 1

[22] J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics,
Geophysics, 74:WCC1–WCC26, 2009. 1

[23] D. Zhao, Tomography and dynamics of Western-Pacific subduction zones, Monogr. Environ.
Earth Planets, 1:1–70, 2012. 1

[24] H. Zhu, E. Bozdag, D. Peter, and J. Tromp, Structure of the European upper mantle revealed by
adjoint tomography, Nature Geosci., 5:493–498, 2012. 1

https://academic.oup.com/gji/article-abstract/216/2/1394/5199201
https://doi.org/10.1002/2016GL067717
https://hal.archives-ouvertes.fr/hal-00669061
https://doi.org/10.1016/j.tecto.2012.07.006
https://doi.org/10.1002/cpa.21384
https://doi.org/10.1016/j.pepi.2009.10.002
https://www.annualreviews.org/doi/pdf/10.1146/annurev.ea.19.050191.000453
https://doi.org/10.1126/science.1175298
https://doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1190/1.1441754
https://doi.org/10.1093/gji/ggt508
https://academic.oup.com/gji/article-abstract/160/1/195/712020
http://dx.doi.org/10.1190/1.3238367
https://www.researchgate.net/profile/Dapeng-Zhao-6/publication/258680806_Tomography_and_Dynamics_of_Western-Pacific_Subduction_Zones/links/5bd1a13b45851537f5999506/Tomography-and-Dynamics-of-Western-Pacific-Subduction-Zones.pdf
https://www.nature.com/articles/ngeo1501

