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A GENERAL FRAMEWORK FOR
NONLOCAL NEUMANN PROBLEMS∗

GUY FOGHEM† AND MORITZ KASSMANN‡

Abstract. Within the framework of Hilbert spaces, we solve nonlocal problems in bounded domains
with prescribed conditions on the complement of the domain. Our main focus is on the inhomogeneous
Neumann problem in a rather general setting. We also study the transition from exterior value problems
to local boundary value problems. Several results are new even for the fractional Laplace operator.
The setting also covers relevant models in the framework of peridynamics.
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1. Introduction

1.1. Main results. Over the last years, there have been several studies of non-
local Neumann problems of the following type: Given a bounded open set Ω⊂Rd, one
is interested in well-posedness for

Lu=f in Ω, Nu=g on Rd\Ω, (N)

where L is an integral or integro-differential operator and N is a related integral opera-
tor, which plays the role of some kind of normal derivative on Rd\Ω. The main goal of
this article is to prove well-posedness results for (N) in a general setting. We assume:

Lu(x)=p.v.

ˆ
Rd

(
u(x)−u(y)

)
k(x,y)dy (x∈Rd),

Nu(y)=

ˆ
Ω

(u(y)−u(x))k(x,y)dx (y∈Ωc).

Here, k :Rd×Rd\diag→ [0,∞) is measurable and satisfies

Λ−1ν(y−x)≤k(x,y)≤Λν(y−x) (x,y∈Rd), (E)

where ν :Rd\{0}→ [0,∞) is the density of a symmetric Lévy measure, i.e., ν satisfies

ν(h)=ν(−h) for all h ̸=0 and

ˆ
Rd

(
1∧|h|2

)
ν(h)dh<∞. (L)

The main new contributions of the present article include the following:
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(a) Extending previous results, e.g. from [29,36,65], we treat the inhomogeneous prob-
lem for natural choices of data g. The corresponding results are new for the frac-
tional Laplace operator.

(b) We provide a general framework that includes integrable and singular kernels at the
same time.

(c) We show that the trace spaces introduced in [37] and [13] coincide.

(d) We introduce a new Dirichlet-to-Neumann operator based on the operator N.

(e) Our well-posedness results are aligned with classical results for second order partial
differential operators. We show convergence of nonlocal to local problems, where
we treat singular and bounded kernels together.

Let us explain condition (E). We denote a∧b=min(a,b) for a,b∈R. In the case
k(x,y)=ν(y−x) with ν as above, the operator L is translation invariant and generates
a symmetric Lévy process. The density ν defines the “order” of the operator L, which
becomes apparent in the case of ν(h)=Cd,α|h|−d−α for h ̸=0 where α∈ (0,2) is fixed
and Cd,α is an appropriate constant. The resulting operator is the so-called fractional

Laplace operator (−∆)α/2. The choice of Cd,α ensures the relation ̂(−∆)α/2u(ξ)=

|ξ|αû(ξ) for all functions u in C∞
c (Rd). Let us mention that asymptotically one has

Cd,α≍α(2−α). This will play an important role for our analysis. Further details about
the fractional Laplacian (−∆)α/2 and the constant Cd,α can be found in [47,68]. Finally,
let us mention that, the assumptions (E) and (L) are not sufficient in order to guarantee
the existence of the pointwise expression Lu(x) in the general case, even if u is smooth.
The Hilbert space approach used in Section 4 avoids this issue because we only deal with
the corresponding quadratic forms. It is worth to mention that the nonlocal operator
N was initially introduced by [29] and is called the nonlocal normal derivative operator
across the boundary of Ω with respect to ν. Another type of such an operator appeared
earlier in the literature, see for instance [32].

Let us quickly review the classical Neumann problem, for the reader’s convenience.
Let Ω⊂Rd be a bounded open subset whose boundary ∂Ω is sufficiently regular. Given
f :Ω→R and g :∂Ω→R measurable, the classical inhomogeneous Neumann problem
associated to the data f and g consists in finding a function u :Ω→R satisfying

−∆u=f in Ω and
∂u

∂n
=g on ∂Ω. (1.1)

Here ∂u
∂n denotes the outward normal derivative of u on ∂Ω. From a weak formulation

point of view, u is said to be a weak solution of (1.1) if u∈H1(Ω) satisfiesˆ
Ω

∇u(x) ·∇v(x)dx=
ˆ
Ω

f(x)v(x)dx+

ˆ
∂Ω

g(y)v(y)dσ(y), for all v∈H1(Ω).

The Neumann boundary problem has received considerably less attention in the litera-
ture compared to the Dirichlet boundary problem. Classical textbooks like [64] treat the
basic aspects. A rigorous treatment including regularity up to the boundary, Schauder
estimates, Lp estimates and the variational formulation can be found in the lecture
notes [61]. A recent article covering classical results for elliptic equations in divergence
form is [30].

Following [42,72,73] we introduce a bilinear form E by

E(u,v)= 1

2

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)(
v(x)−v(y)

)
ν(x−y)dxdy (1.2)
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for all smooth functions with compact support. As in the local case, a main tool in
the study of Neumann problems, is a Gauss-Green type formula for u,v∈C∞

c (Rd), see
Proposition B.1: ˆ

Ω

Lu(x)v(x)dx=E(u,v)−
ˆ
Ωc

Nu(y)v(y)dy. (1.3)

Relation (1.3) motivates us to introduce an energy space Vν(Ω|Rd) as the vector space
of all measurable functions u :Rd→R such that the restriction u|Ω belongs to L2(Ω)
and E(u,u) is finite. See Subsection 2.2 for more details. The energy space Vν(Ω|Rd)
can be seen as a nonlocal analog of H1(Ω). Let us make an interesting observation.
Let f ∈L2(Ω) and u∈Vν(Ω|Rd) be a minimizer of the functional v 7→ 1

2 E(v,v)−
´
Ω
fv in

the space Vν(Ω|Rd). Then E(u,v)=0 for all smooth functions with compact support in
Rd\Ω. Since u,v∈Vν(Ω|Rd), the Fubini theorem impliesˆ

Ωc

Nu(y)v(y)dy=E(u,v)=0,

which implies Nu=0 in Ωc, see Corollary 4.1. On the one hand, this observation is
aligned with the classical theory where the normal derivative appears naturally when
minimizing the energy. On the other hand, and this is interesting, here we do not need
to assume any regularity of the kernel k(x,y) and the boundary ∂Ω.

Let us summarize the main results of this work.

(1) The first step is to define a base space L2(Rd, ν̃), in which we can define the exterior
value problems. We define ν̃ and two alternative options ν,ν∗ in Definition 2.3. In
Section 2.2 we study embedding results of corresponding function spaces.

(2) The next step is to introduce Tν(Ω
c) as the trace space of Vν(Ω|Rd) in Section 2.6.

In this section, we study equivalent norms of the trace space and a density result.

(3) An important tool in the proof of well-posedness results is the compact embedding
Vν(Ω|Rd) ↪→L2(Ω), which is a core result in Section 3, see Theorem 3.2.

(4) Section 4 is dedicated to well-posedness results. We focus on the Neumann problem
in Section 4.1. An existence result for problem (N) is given in Theorem 4.2. We
also discuss a more general Robin-type exterior value problem.

(5) The setup of this work allows to define a fully nonlocal Dirichlet-to-Neumann map
with the help of the nonlocal Neumann-type derivative N. For Ω⊂Rd, the Dirichlet
data are given on Ωc and mapped to Nu on Ωc, where u satisfies the nonlocal
equation in Ω. Thus, this map can be viewed as a nonlocal analog of the well-
known Dirichlet-to-Neumann operator given in [20]. Basic properties are formulated
in Theorem 4.8 together with spectral properties in Theorem 4.10.

(6) The analogy between the classical Neumann problem and problem (N) leads to
a convergence result when considering a sequence of exterior value problems for
the fractional Laplace operator (−∆)α/2 where α→2. Theorem 5.1 establishes the
convergence of the corresponding sequence of solutions uα as α→2.

1.2. Related literature. Nonlocal complements value problems have been stud-
ied in several works. In particular, the Dirichlet problem is studied in many articles. For
translation invariant problems, see the survey [5,71] for fine regularity results and [18,42]
for the Hilbert space approach in a similar setting as in this work.

An early contribution to nonlocal Neumann problems is [29], where also the Gauss-
Green formula appears for a special case. There is a difference between our ap-
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proach and the one in [29], which explains why we are able to study the inhomoge-
neous Neumann problem. Let us explain our approach for the simplest setup of the
fractional Laplace operator (−∆)α/2, i.e., ν(h)=Cd,α|h|−d−α. Given f ∈L2(Ω) and
g∈L2(Ωc,(1+ |x|)d+αdx), motivated by the Gauss-Green formula (1.3) we say that
u∈Vν(Ω|Rd) is a weak solution or a variational solution of the inhomogeneous Neu-
mann problem (N) if

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)dy for all v∈Vν(Ω|Rd). (V )

By testing (V ) with v=1 gives the following necessary compatibility condition
ˆ
Ω

f(x)dx+

ˆ
Ωc

g(y)dy=0. (C)

Equality (V ) should be contrasted with the variational formulation of (1.1) in the clas-
sical case: Given f ∈L2(Ω) and g∈L2(∂Ω), find u∈H1(Ω) such that

ˆ
Ω

∇u(x) ·∇v(x)dx=
ˆ
Ω

f(x)v(x)dx+

ˆ
∂Ω

g(y)v(y)dσ(y) for all v∈H1(Ω).

Note that [29, Def. 3.6] and subsequent definitions like [65, Definition 2.7] look very
similar to (V ) at first glance. However, the norm of the test space defined in [29, Eq.
(3.1)], [65, Section 2] depends on the Neumann data g, which is not natural. Our test
space Vν(Ω|Rd) in the weak formulation (V ) does not depend on the Neumann data
g. For the general case, we refer the reader to Definition 4.2. It is worth mentioning
that the weighted space L2(Ωc,(1+ |x|)d+αdx) is the natural function space for the
Neumann data g. In fact in Theorem 4.4 we are able to find some g not belonging to
L2(Ωc,(1+ |x|)d+αdx), Ω=B1(0) for which the variational Neumann problem (V ) with
f =0 does not have any weak solution in Vν(Ω|Rd).

The aforementioned issue does not show up for homogeneous nonlocal Neumann
problems. For such problems, several results have been proved, e.g., regularity up to a
boundary of a domain for the fractional Laplace operator in [5]. A particular observation
linking the homogeneous Neumann problem to the regional fractional Laplace operator
is provided in [1]. Eigenvalues of nonlocal mixed problems are studied in [62]. Various
nonlinear Neumann problems are studied in [3, 6, 22, 24, 65, 66]. Some higher order
nonlocal Neumann problems are treated in [8]. The classical Neumann problem is closely
linked to reflected diffusions. It turns out to be a challenging problem to establish
a similar link between the nonlocal Neumann problem and a Markov jump process
together with its reflection. An attempt is made in [75], which we comment on in detail
in Remark 2.11.

1.3. Peridynamics and volume constraints on bounded sets. In the liter-
ature, several nonlocal problems are studied in the area of peridynamics. Most of these
models require complement conditions (a.k.a. volume constraints) not necessarily on
the whole complement of the domain Ω but only often on a part of the complement.
Here, we would like to point out that our setting can be adapted to fit such require-
ments. Let us exemplify this with a simple model. Consider the symmetric kernel of the
form k(x,y)=ν(x−y) with ν supported around the origin, say supp ν⊂Bδ(0) for some
δ>0. A popular example of a kernel in peridynamic models is given by ν(h)=1Bδ

(h).
In this case it is natural to assume the complement condition not on the whole comple-
ment Rd\Ω but only on Ω(δ)={x∈Rd\Ω:dist(x,∂Ω)<δ}. A nonlocal problem of the
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form Lu=f in Ω is then supplemented with a complement condition prescribed on the
volume constraint Ω(δ), e.g., u=g on Ω(δ) for a Dirichlet problem or Nu=g on Ω(δ)
for a Neumann problem. Here, f :Ω→R and g :Ω(δ)→R are given data. Our approach
can easily be adopted to cover this case. In comparison to the weak formulation (V ),
one would need to replace Vν(Ω|Rd) by the space Vν(Ω|E) defined as in (2.3), with
E=Ω∪Ω(δ) and recall that ν(h)=1Bδ

(h). Indeed, assuming for simplicity that Ω is
bounded Lipschitz and connected, the well-posedness of the Neumann and the Dirichlet
problem can be formulated as follows.

Corollary 1.1. Let f ∈L2(Ω) and g∈L2(Ω(δ)). Then there is a unique variational
solution u∈Vν(Ω|E)⊥=Vν(Ω|E)∩{

´
Ω
udx=0} to the Neumann problem Lu=f in Ω

and Nu=g on Ω(δ), i.e.,

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ω(δ)

g(y)v(y)dy for all v∈Vν(Ω|E)⊥. (1.4)

Moreover, there is a constant C>0 independent of f and g such that

∥u∥Vν(Ω|E)≤C
(
∥f∥L2(Ω)+∥g∥L2(Ω(δ))

)
.

Corollary 1.2. Let f ∈L2(Ω) and g∈Vν(Ω|E). Then there is a unique variational
solution u∈Vν(Ω|E) to the Dirichlet problem Lu=f in Ω and u=g on Ω(δ), i.e.,

u−g∈Vν,0(Ω|E) and E(u,v)=
ˆ
Ω

f(x)v(x)dx for all v∈Vν,0(Ω|Rd). (1.5)

Here we denote Vν,0(Ω|E)=Vν(Ω|E)∩{u|Ω(δ)=0}. Moreover, there is a constant C>0
independent of f and g such that

∥u∥Vν(Ω|E)≤C
(
∥f∥L2(Ω)+∥g∥Vν(Ω|E)

)
.

The proofs of Corollary 1.1 and Corollary 1.2 are analogous to the ones of Theorem
4.2 and Theorem 4.7; we also refer to [45] for a more general setting. Both results are well
known for special cases of ν in the area of peridynamics, see [36, Section 3.2] and [59]. We
refer the reader to the exposition and the references in [31]. Let us mention some related
results. An early work is [19] where several nonlocal exterior value problems are studied
for integrable kernels with fixed support (horizon). Problems for nonlocal nonlinear
problems involving nonlocal operators of regional type are studied in [11,12]. Nonlocal
Dirichlet problems driven by nonsymmetric singular kernels are considered in [42] for
scalar functions and in [59] for vector-valued functions. The vanishing-horizon limit
has been considered in several works, see Section 5. For references related to numerical
results see [26]. We provide Γ-convergence results for vanishing horizons in Example 5.2
and mention related results from peridynamics. Our systematic approach in terms of
functional analysis allows to treat general cases of ν resp. general data g in comparison
with [36].

The paper is organized as follows. In Section 2 we introduce some nonlocal function
spaces and the corresponding trace spaces that will be used in the sequel. In Section
3 we establish global compact embedding of nonlocal Sobolev spaces in to L2-spaces.
This allows us to prove Poincaré type inequalities for various ranges of Lévy integrable
kernel ν. Section 4 is devoted to the study of the well-posedness of nonlocal problems
with Dirichlet, Neumann and Robin conditions associated with the Lévy operator L.
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Afterwards, we investigate the Dirichlet-to-Neumann map for the Lévy operator L. In
Section 5 we show that local elliptic problems can be viewed as the limit of the nonlocal
ones. Last, in Section 5 we highlight some elementary properties of the Lévy operator
L.

Further remarks: Several results of this work are based on the PhD thesis of the
first author [47]. Recently, equivalent norms of the trace space Tν(Ω

c) in case of the
fractional Laplace operator have been identified in [54] together with convergence results
that recover H1/2(∂Ω) in the limit α→2−. The current work has some overlap with
the recent preprint [49] on nonlocal Neumann-type problems.

2. Lévy measures and nonlocal function spaces
In this section we introduce generalized Sobolev-Slobodeckij-like function spaces

with respect to a Lévy measure ν and an open subset Ω⊂Rd, in particular Vν(Ω|Rd)
and nonlocal trace spaces Tν(Ω

c). The function spaces are tailor-made for nonlocal
elliptic exterior value problems including the Neumann problem. We prove the existence
of an embedding of Vν(Ω|Rd) into weighted spaces L2(Rd,ν′) for different measures ν′

and into the nonlocal trace space Tν(Ω
c). We are able to compare Tν(Ω

c) with known
trace spaces, see Proposition 2.9. A main result of this section is Theorem 2.4, which
proves that the bilinear form (E ,Vν(Ω|Rd)) is a regular Dirichlet form on L2(Rd,ν′).
This result allows to construct jump processes with some sort of reflection.

Throughout this work, let ν be a Lévy measure whose density is a measurable
symmetric function ν :Rd\{0}→ [0,∞) satisfying (L). We will impose further conditions
on ν where needed. For simplicity, we assume in our main results that ν has full support.
See Section 1.3 for a discussion on how this can be relaxed.

2.1. Lévy condition and energy forms. Before we begin, let us make an
observation that nicely links (L) with nonlocal energies.

Theorem 2.1. Assume ν :Rd \{0}→ [0,∞) is measurable and radial 1. Then the
energy

¨
RdRd

(
u(y)−u(x)

)2
ν(x−y)dydx

is finite for every u∈C∞
c (Rd) if and only if ν satisfies (L).

Proof. By (2.7), it is easy to see that condition (L) implies finiteness of the energy
for u∈C∞

c (Rd). For the converse, let u∈C∞
c (Rd) be nontrivial and ε>0, then there is

δ>0 such that

∥∇u(·+h)−∇u∥2L2(Rd)<ε if |h|≤ δ.

Using the fundamental theorem of calculus, 1
2b

2≤a2+(b−a)2 and polar coordinates
yields

¨
RdRd

(
u(y)−u(x)

)2
ν(x−y)dydx≥

ˆ
Rd

ˆ
Bδ(0)

∣∣∣ˆ 1

0

∇u(x+ th) ·hdt
∣∣∣2ν(h)dhdx

≥1

2

ˆ
Rd

ˆ
Sd−1

|∇u(x) ·w|2dσd−1(w)
(ˆ δ

0

rd+1ν(r)dr
)
dx−ε

ˆ
Bδ(0)

|h|2ν(h)dh

1Note added in proof: As we learned from Florian Grube, the assertion of the theorem holds true
for any Borel measure ν. The Lp-setting is treated in [45].
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≥
(1
2
Kd,2∥∇u∥2L2(Rd)−ε

)ˆ
Bδ(0)

|h|2ν(h)dh.

Recall that, invariance of the Lebesgue measure under rotations implies for all z∈Rd

 
Sd−1

|w ·z|2dσd−1(w)=Kd,2|z|2 with Kd,2=

 
Sd−1

|w ·e|2dσd−1(w)=
1

d
.

Therefore, choosing ε= 1
4Kd,2∥∇u∥2L2(Rd)

, we obtain

¨
RdRd

(
u(y)−u(x)

)2
ν(x−y)dydx≥ 1

4
Kd,2∥∇u∥2L2(Rd)

ˆ
Bδ(0)

|h|2ν(h)dh.

It remains to show that ν is integrable away from the origin. Consider another u∈
C∞

c (Rd) with suppu⊂Bτ (0) and 0<τ <δ/2. For all x∈Bτ (0) we have Bτ (0)⊂Bδ(x)
and hence

¨
RdRd

(
u(y)−u(x)

)2
ν(x−y)dydx≥2

ˆ
Bτ (0)

|u(x)|2dx
ˆ
Rd\Bτ (0)

ν(x−y)dy

≥2

ˆ
Bτ (0)

|u(x)|2dx
ˆ
Rd\Bδ(0)

ν(h)dh.

This together with the previous estimate implies that ν ∈L1(Rd,1∧|h|2dh), i.e., ν sat-
isfies condition (L).

2.2. Sobolev-Slobodeckij-like spaces. Let Ω⊂Rd be open. Define the space
Hν(Ω) by

Hν(Ω)=
{
u∈L2(Ω) : EΩ(u,u)<∞

}
,

equipped with the norm ∥u∥2Hν(Ω)=∥u∥2L2(Ω)+EΩ(u,u), where

EΩ(u,v)=

¨

ΩΩ

(
u(x)−u(y)

)(
v(x)−v(y)

)
ν(x−y)dxdy. (2.1)

When ν ∈L1(Rd), e.g., in the case ν(h)=1B1(h), the space Hν(Ω) equals L2(Ω).
Following [42,72,73] we introduce the vector space Vν(Ω|Rd) as follows:

Vν(Ω|Rd)=
{
u :Rd→R meas. : u|Ω∈L2(Ω), |u|2Vν(Ω|Rd)<∞

}
,

where the seminorm is defined by

|u|2Vν(Ω|Rd)=

¨

ΩRd

(
u(x)−u(y)

)2
ν(x−y)dxdy<∞.

We endow the vector space Vν(Ω|Rd) with the norm ∥·∥Vν(Ω|Rd) given by

∥u∥2Vν(Ω|Rd)=∥u∥2L2(Ω)+ |u|2Vν(Ω|Rd).
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Next, given functions u,v∈Vν(Ω|Rd), we define a bilinear form E by

E(u,v)= 1

2

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)(
v(x)−v(y)

)
ν(x−y)dxdy.

Lemma 2.1. We have |u|2
Vν(Ω|Rd)

≤E(u,u)≤2|u|2
Vν(Ω|Rd)

for any measurable function
u.

Proof. On the one hand, the inequality¨

ΩRd

(
u(x)−u(y)

)2
ν(x−y)dydx ≤

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)2
ν(x−y)dydx=2E(u,u)

holds trivially true. On the other hand,

E(u,u)= 1

2

¨

RdRd

(
u(x)−u(y)

)2 [
1Ω(x)∨1Ω(y)

]
ν(x−y)dydx

≤ 1

2

¨

RdRd

(
u(x)−u(y)

)2 [
1Ω(x)+1Ω(y)

]
ν(x−y)dydx

=

¨

ΩRd

(
u(x)−u(y)

)2
ν(x−y)dydx,

which completes the proof.

Some authors find it convenient to work with the smaller space Vν(Ω|Rd)∩L2(Rd)
equipped with its corresponding norm. For the study of nonlocal Dirichlet problems this
restriction is not necessary, though. On the other hand, the requirement u|Ω∈L2(Ω)
for u∈Vν(Ω|Rd) is natural as shown by the following observation.

Proposition 2.1. Let ν be a unimodal Lévy measure and Ω⊂Rd be a bounded
open set. Assume Ω⊂BR/2(0) for some R≥1 with ν(R) ̸=0. Then E(u,u)<∞ implies
u|Ω∈L2(Ω).

The condition that ν is unimodal is not restrictive at all and we recall its definition
for the readers’ convenience.

Definition 2.1. A Lévy density ν is called unimodal if it is radial with an almost
decreasing profile, i.e., there is a constant c≥1 such that ν(r)≤ cν(s) for all r,s>0 with
s≤ r.
Remark 2.1. There are radial Lévy measures, which are not almost decreasing such
as

ν(x)= |x|−d−1
( 2+cos(|x|)

3

)|x|4
.

Proof. (Proof of Proposition 2.1.) First, since Ω⊂BR/2(0), then for all x,y∈Ω
we have ν(x−y)≥ c′ with c′= cν(R)>0. By Jensen’s inequality, we have

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)2
ν(x−y)dxdy≥ c′

¨

ΩΩ

(|u(x)|−|u(y)|)2dxdy

≥ c′|Ω|
ˆ
Ω

(
|u(x)|−

ffl
Ω
|u|

)2

dx.
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This shows that the mean value
ffl
Ω
|u| is finite. We conclude u∈L2(Ω) because of

ˆ
Ω

|u(x)|2dx≤2

ˆ
Ω

(
|u(x)|−

ffl
Ω
|u|

)2

dx+2|Ω|
(ffl

Ω
|u|

)2

.

Definition 2.2. We define Vν,0(Ω|Rd) as follows:

Vν,0(Ω|Rd)={u∈Vν(Ω|Rd) | u=0 a.e. on Rd\Ω}
={u∈Hν(Rd) | u=0 a.e. on Rd\Ω}. (2.2)

Remark 2.2. The nonlocal Sobolev spaces Hν(Ω), Vν(Ω|Rd) and Vν,0(Ω|Rd) are well
suited for nonlocal linear problems. Interested readers may consult [44–47, 54, 55] for
further expositions on this type of nonlocal function spaces including the Lp-setting and
trace resp. extension results.

Remark 2.3. The function space
(
Hν(Ω),∥·∥Hν(Ω)

)
is a separable Hilbert space,

see [42, 48]. The norms ∥·∥Vν(Ω|Rd) and ∥·∥Hν(Rd) agree on Vν,0(Ω|Rd) and Vν,0(Ω|Rd)

is a closed subspace of Hν(Rd), hence a Hilbert space.

Proposition 2.2. If ν has full support, then
(
Vν(Ω|Rd),∥·∥Vν(Ω|Rd)

)
is a separable

Hilbert space.

We refer the reader to [29,42] for a proof in a special setting and to [47, Thm 3.46]
for the general case.

It is worthwhile noticing that ∥·∥Vν(Ω|Rd) is always a norm on Vν,0(Ω|Rd), but not

in general a norm on Vν(Ω|Rd) if ν is not fully supported. A simple counterexample
is given by ν(h)=1B1(0)(h) and Ω=B1(0). For the function u(x)=1Bc

2(0)
(x) we have

∥u∥Vν(Ω|Rd)=0 whereas u ̸=0. With regard to this comment and the discussion in

Section 1.3 let us define Vν(Ω|E) for Ω⊂E⊂Rd:

V (Ω|E)=
{
u :E→R meas. : u|Ω∈L2(Ω), |u|2Vν(Ω|E)<∞

}
, (2.3)

where the seminorm is defined by

|u|2Vν(Ω|E)=

¨

ΩE

(
u(x)−u(y)

)2
ν(x−y)dydx<∞.

The space Vν(Ω|E) is a seminormed space with respect to the seminorm ∥u∥2Vν(Ω|E)=

∥u∥2L2(Ω)+ |u|2Vν(Ω|E). We refer to [45] for the proof of the next result.

Proposition 2.3. If E=Ω+supp(ν) and 0∈ supp(ν) then
(
Vν(Ω|E),∥·∥Vν(Ω|E)

)
is

a separable Hilbert space, whenever and ω>0 a.e. on E \Ω where we put

ω(x)=

ˆ
Ω

(1∧ν(x−y))dy.

As already seen in Theorem 2.1, the condition (L) is important for the properties
of the spaces Hν(Ω) and Vν(Ω|Rd).

Proposition 2.4. Let ν :Rd→ [0,∞] be symmetric. The following assertions hold true.

(1) If ν ∈L1(Rd), then Hν(Rd)=L2(Rd) with equivalence in norm.
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(2) If ν ∈L1(Rd,1∧|h|2dh) and Ω is bounded, then Hν(Ω) and Vν(Ω|Rd) contain all
bounded Lipschitz functions.

(3) If ν is radial and
´
B1

|h|2ν(h)dh=∞ and
´
B1\Bδ

ν(h)dh<∞ for every δ>0, then

u∈C1(Rd)∩Hν(Rd) implies that u is constant.

(4) If ν is radial, then for every u∈H1(Rd) there is δ= δ(u)>0, such that

1

4d

(ˆ
Bδ(0)

|h|2ν(h)dh
)
∥∇u∥2L2(Rd)≤|u|2Hν(Rd)≤4∥ν∥L1(Rd,1∧|h|2dh)∥u∥

2
H1(Rd). (2.4)

The proof is analogous to the one of Theorem 2.1. See also [46, Proposition 2.14]
or [47, Proposition 3.46] for a general setting.

For many results it is crucial that smooth functions with compact support are dense
in the function space under consideration. Let us summarize some important results in
this direction.

Theorem 2.2. Let ν satisfies (L) with full support and let Ω⊂Rd be open.

(1) C∞(Ω)∩Hν(Ω) is dense in Hν(Ω).

(2) If Ω has a compact continuous boundary ∂Ω, then C∞
c (Ω) is dense in Hν(Ω).

(3) If Ω has a compact continuous boundary ∂Ω, then C∞
c (Ω) is dense in Vν,0(Ω|Rd).

(4) If Ω has a compact Lipschitz boundary ∂Ω, then C∞
c (Rd) is dense in Vν(Ω|Rd) with

respect to the norms ∥·∥Vν(Ω|Rd) and |||·|||Vν(Ω|Rd) with |||u|||2Vν(Ω|Rd)=∥u∥2
L2(Rd)

+

|u|2
Vν(Ω|Rd)

.

The proofs of the first and second statement can be found in [47] and [39]. The first
statement is similar to a Meyers-Serrin density type result. Note that C∞

c (Ω) is defined
as {v|Ω :v∈C∞

c (Rd)}. The proof of the third statement is given in [43,53] for a special
choice of ν and in [13,47] for the general case. The proof of the fourth assertion is given
in [48].

Remark 2.4. Concerning the question, whether is is necessary to assume the con-
tinuity of ∂Ω for the density of C∞

c (Ω) in Vν,0(Ω|Rd) or not, it is interesting to com-
pare [43, Remark 7] with [23, Theorem 3.3.9].

Remark 2.5. For the kernel ν(h)= |h|−d−α, α∈ (0,2), let V α/2(Ω|Rd), V
α/2
0 (Ω|Rd)

and Hα/2(Ω) be the spaces Vν(Ω|Rd), Vν,0(Ω|Rd) and Hν(Ω) respectively. It is worth
nothing that, see [53], if Ω has a compact Lipschitz boundary and α ̸=1 then

V
α/2
0 (Ω|Rd)=C∞

c (Ω)
V α/2(Ω|Rd)

=C∞
c (Ω)

Hα/2(Rd)
=C∞

c (Ω)
Hα/2(Ω)

,

where the first and the second equality follow from Theorem 2.2 (2). Furthermore, if

0<α<1 then we also have Hα/2(Ω)=C∞
c (Ω)

Hα/2(Ω)
.

2.3. Weighted L2-spaces. In order to set up the Dirichlet problem in L2-spaces
over Rd, we define a Borel measure on Rd that captures the behavior of ν at infinity.
There are several possibilities.

Definition 2.3. Let ν satisfies (L) with full support and B⊂Rd be non-empty and
open. Define the weights ν,ν̃ :Rd→ [0,∞] by

ν̃(x)=

ˆ
B

(1∧ν(x−y))dy,
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ν(x)=essinf
y∈B

ν(x−y).

If ν is a unimodal Lévy measure, then we define the Borel measure ν∗ :Rd→ [0,∞] by

ν∗(x)=ν(R(1+ |x|)),

where R>1 is an arbitrary fixed number.

Example 2.1. Let ν(h)= |h|−d−α for h ̸=0, 0<α<2 . Let B⊂Rd be open and
bounded, and R>1. Then

ν̃(x)≍ν(x)≍ν∗(x)≍ (1+ |x|)−d−α,

where the constants behind the relation ≍ depend on the choice of B and R. See
Theorem 2.3 for the general case.

Let us discuss important properties of the three measures ν̃, ν, and ν∗. The fol-
lowing lemmas show that it is possible to define certain norms on Vν(Ω|Rd) (with nice
properties), which are equivalent to the norm ∥·∥Vν(Ω|Rd).

Lemma 2.2 (Properties of ν̃). Let Ω⊂Rd be open and ν satisfies (L) with full support.
Assume B⊂Ω.

(1) We have ν̃ ∈L∞(Rd). Moreover, if |B|<∞, then ν̃ ∈L1(Rd).

(2) The embedding Vν(Ω|Rd) ↪→L2(Rd, ν̃) is continuous. If |B|<∞, then L2(Rd, ν̃) ↪→
L1(Rd, ν̃) is continuous.

(3) If ν is unimodal and B is bounded, then on Vν(Ω|Rd), the norms ∥·∥#
Vν(Ω|Rd)

and

∥·∥∗
Vν(Ω|Rd)

are equivalent, where

∥u∥∗2Vν(Ω|Rd)=

ˆ
Rd

|u(x)|2ν̃(x)dx+
¨

(Ωc×Ωc)c

(u(x)−u(y))2ν(x−y)dxdy,

∥u∥#2

Vν(Ω|Rd)
=

ˆ
Ω

|u(x)|2ν̃(x)dx+
¨

(Ωc×Ωc)c

(u(x)−u(y))2ν(x−y)dxdy.

Furthermore, if Ω is bounded then the norms ∥·∥Vν(Ω|Rd) and ∥·∥∗
Vν(Ω|Rd)

are also equiv-

alent.

Proof. Firstly, we observe 1∧ν ∈L1(Rd). It follows ν̃(x)≤∥1∧ν∥L1(Rd) for almost

every x∈Rd. If |B|<∞, then Fubini’s theorem implies

ˆ
Rd

ν̃(x)dx≤|B|∥1∧ν∥L1(Rd)<∞.

The continuous embedding L2(Rd, ν̃) ↪→L1(Rd, ν̃) follows directly. The continuity
of the embedding Vν(Ω|Rd) ↪→L2(Rd, ν̃) is obtained as follows

ˆ
Rd

|u(x)|2ν̃(x)dx

≤2

ˆ
B

|u(y)|2
(ˆ

Rd

1∧ν(x−y)dx
)
dy+2

¨

BRd

(u(x)−u(y))21∧ν(x−y)dxdy
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≤C1

ˆ
Ω

|u(y)|2dy+C1

¨

ΩRd

(u(x)−u(y))2ν(x−y)dxdy=C1∥u∥2Vν(Ω|Rd).

Here C1=2∥1∧ν∥L1(Rd)+2. The following inequalities obviously hold√
C1+1∥u∥Vν(Ω|Rd)≥∥u∥∗Vν(Ω|Rd)≥∥u∥#

Vν(Ω|Rd)
.

Next if ν is unimodal and B is bounded, then there is a constant c′>0 such that
ν̃(x)≥ c′ for all x∈B. The following estimates hold

ˆ
Ω

|u(x)|2ν̃(x)dx+
¨

ΩΩc

(u(x)−u(y))2ν(x−y)dydx

≥c′
ˆ
B

|u(x)|2dx+
¨

ΩΩc

(u(x)−u(y))2ν(x−y)dydx

≥c′∥1∧ν∥−1
L1(Rd)

¨

BΩc

|u(x)|21∧ν(x−y)dydx+
¨

BΩc

(u(x)−u(y))2ν(x−y)dydx

≥(1∧c′∥1∧ν∥−1
L1(Rd)

)

¨

ΩcB

[
|u(x)|2+(u(x)−u(y))2

]
1∧ν(x−y)dxdy

≥1

2
(1∧c′∥1∧ν∥−1

L1(Rd)
)

ˆ
Ωc

u2(y)ν̃(y)dy.

The first and the last line imply that ∥u∥∗
Vν(Ω|Rd)

≤C∥u∥#
Vν(Ω|Rd)

for some constant

C>0. Thus the norms ∥·∥∗
Vν(Ω|Rd)

and ∥·∥#
Vν(Ω|Rd)

are equivalent. If in addition Ω is

bounded, then ∥1∧ν∥L1(Rd)≥ ν̃(x)≥ c′ for all x∈Ω for some c′>0. The equivalence of

the norms ∥·∥Vν(Ω|Rd)and ∥·∥#
Vν(Ω|Rd)

is thus proved.

Lemma 2.3 (Properties of ν). Assume Ω⊂Rd is open. Let ν satisfies (L) with full
support. Assume B⊂Ω is open and nonempty.

(1) ν ∈L1(Rd) and, if ν is unimodal, then ν ∈L∞(Rd).

(2) The embeddings Vν(Ω|Rd) ↪→L2(Rd,ν) ↪→L1(Rd,ν) are continuous.

(3) If ν is unimodal and B is bounded then the norms ∥·∥#
Vν(Ω|Rd)

and ∥·∥∗
Vν(Ω|Rd)

are

equivalent, where ∥u∥∗
Vν(Ω|Rd)

and ∥u∥#
Vν(Ω|Rd)

are defined as in Lemma 2.2(iii) with

ν̃ replaced by ν.
Furthermore, if Ω is bounded then the norms ∥·∥Vν(Ω|Rd) and ∥·∥∗

Vν(Ω|Rd)
are equiv-

alent.

Proof. To prove (1), select x0∈B and r>0 such that B8r(x0)⊂B. Note that, for
x∈B2r(x0) and y∈Bc

4r(x0)∩B or for x∈Bc
2r(x0) and y∈Br(x0) we have |h|≥ r where

h=x−y. Therefore, for almost all ξ∈Bc
4r(x0) and z∈Br(x0) we find that

ˆ
B2r(x0)

essinf
y∈Bc

4r(x0)∩B
ν(x−y)dx≤

ˆ
|x−y|≥r

ν(x−ξ)dx=
ˆ
|h|≥r

ν(h)dh,

ˆ
Bc

2r(x0)

essinf
y∈Br(x0)

ν(x−y)dx≤
ˆ
|x−z|≥r

ν(x−z)dx=
ˆ
|h|≥r

ν(h)dh.
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The integrability of ν follows since
ˆ
Rd

ν(x)dx≤
ˆ
B2r(x0)

essinf
y∈Bc

4r(x0)∩B
ν(x−y)dx

+

ˆ
Bc

2r(x0)

essinf
y∈Br(x0)

ν(x−y)dx≤2

ˆ
|h|≥r

ν(h)dh<∞.

Analogously, assume ν is unimodal. Since for (x,y)∈B2r(x0)×Bc
4r(x0)∩B or for

(x,y)∈Bc
2r(x0)×B2r(x0) we have |x−y|≥ r, it follows that νB(x)≤ν(x−y)≤ cν(r).

Next, consider K ′⊂B to be a measurable subset such that 0< |K ′|<∞, then we have
ˆ
Rd

|u(x)|2ν(x)dx

≤2|K ′|−1∥ν∥L1(Rd)

ˆ
K′

|u(y)|2dy+2|K ′|−1

¨

K′Rd

(u(x)−u(y))2ν(x−y)dxdy

≤C∥u∥2Vν(Ω|Rd),

where C=2|K ′|−1(∥ν∥L1(Rd)+1). This together with the previous step imply the con-

tinuity of the embeddings Vν(Ω|Rd) ↪→L2(Rd,ν) ↪→L1(Rd,ν). The rest of the proof is
analogous to that of Lemma 2.2.

Lemma 2.4 (Properties of ν∗). Assume Ω⊂Rd is open and R>1 satisfies |BR(0)∩
Ω|>0 and |BR(0)∩Ωc|>0. Let ν satisfies (L) with full support.

(1) ν∗∈L1(Rd)∩L∞(Rd).

(2) The embeddings Vν(Ω|Rd) ↪→L2(Rd,ν∗) ↪→L1(Rd,ν∗) are continuous.

(3) On Vν(Ω|Rd), the norms ∥·∥#
Vν(Ω|Rd)

and ∥·∥∗
Vν(Ω|Rd)

are equivalent, where

∥u∥∗
Vν(Ω|Rd)

and ∥u∥#
Vν(Ω|Rd)

are defined as in Lemma 2.2(iii) with ν̃ replaced by

ν∗.
Furthermore, if Ω is bounded then the norms ∥·∥Vν(Ω|Rd) and ∥·∥∗

Vν(Ω|Rd)
are equivalent.

The proof of Lemma 2.4 is analogous to that of Lemma 2.2 and can be found in [48]
or [47, Lemma 3.24]. In order to show ν∗∈L1(Rd)∩L∞(Rd), one notes that for all
h∈Rd we have R≤R(1+ |h|) and |h|≤R(1+ |h|) and hence ν∗(h)≤C(1∧ν(h)). This
implies the claim because of 1∧ν ∈L1(Rd)∩L∞(Rd).

The measures ν∗, ν and ν̃ turn out to be comparable if ν satisfies a certain doubling
condition at infinity.

Definition 2.4. A radial Lévy density ν satisfies a doubling condition at infinity if:

For every θ≥1 there exist c1,c2>0 with c1ν(r)≤ν(θr)≤ c2ν(r) for all r≥1. (2.5)

Not that the property (2.5) is indeed equivalent to saying that

There exist c1,c2>0 with c1ν(r)≤ν(2r)≤ c2ν(r) for all r≥1. (2.6)

Remark 2.6. The doubling condition at infinity imposes some decay of ν at infinity.
The example ν(h)= |h|−d−11{|h|≤7} satisfies Definition 2.1 but not (2.5). Unimodality
bounds one-sided oscillations of ν for all values of |x|. Fix 0<α<β<2. Define ν1(r)=
r−d−α for r≥1. Define ν1(r)= r

−d−β for 1
2k+1 ≤ r<

1
2k and ν1(r)= r

−d−α for 1
2k+2 ≤

r< 1
2k+1 for k∈N. Then ν1 is not unimodal but it trivially does satisfy (2.5).
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Theorem 2.3. Assume that ν is unimodal and satisfies (2.5). For B⊂Rd is bounded
(e.g. B is a ball) and R≥1 we have ν̃(x)≍ν(x)≍ν∗(x)≍1∧ν(x).

Proof. Let us observe that, ν̃,ν,ν∗ and 1∧ν are all bounded above. Indeed,
for x∈Rd we have R≤R(1+ |x|) and |x|≤R(1+ |x|) and hence ν∗(x)≤C(1∧ν(x))≤C.
Obviously, ν̃(x)≤∥1∧ν∥L1(Rd). Now, let r>0 sufficiently small and x0∈B such that
B8r(x0)⊂B. If x∈B2r(x0) and y∈Bc

4r(x0)∩B or if x∈Bc
2r(x0) and y∈B2r(x0) then

|x−y|≥ r. In both cases, ν(x)≤ν(x−y)≤ cν(r).
Next, there is no loss of generality if we assume that B⊂BR. Assume |x|≤4R

then |x−y|≤5R for all y∈B. The unimodality and the foregoing boundedness im-
ply that c−1ν(R(1+R))≤ν(R(1+ |x|))≤C, c−1ν(5R)≤ν(x), 1∧ν(4R)≤ c1∧ν(x)≤C
and that 1∧ν(5R)≤ c1∧ν(x−y) that is |B|1∧ν(5R)≤ cν̃(x)≤C. Thus ν̃(x)≍ν(x)≍
ν∗(x)≍1∧ν(x) for |x|≤4R. Now assume that |x|≥4R, then we have 1≤ |x|

2 ≤|x−y|≤
2|x| for all y∈B and |x|≤R(1+ |x|)≤2R|x|. The doubling condition (2.5) implies
that for some constants 0<c1<1<c2, we have c1ν(x)≤ν(R(1+ |x|))≤ c2ν(x) and
c1ν(x)≤ν(x−y)≤ c2ν(x) for all y∈B. We get c1ν(x)≤ν(x)≤ c2ν(x) and integrating
over B implies that c1|B|1∧ν(x)≤ cν̃(x)≤ c2|B|1∧ν(x). Together with the boundedness
implies ν̃(x)≍ν(x)≍ν∗(x)≍1∧ν(x) for |x|≥4R.

Example 2.2. As in Example 2.1, let 0<α<2 and ν(h)= |h|−d−α for h ̸=0.
Then ν̃(x)≍1∧ν(x)≍ (1+ |h|)−d−α and the space Hν(Ω) equals the classical Sobolev-
Slobodeckij space Hα/2(Ω). In this case, we denote the space Vν(Ω|Rd) by V α/2(Ω|Rd).
We have V α/2(Ω|Rd) ↪→L2(Rd,(1+ |h|)−d−α).

Remark 2.7. Note that Lemma 2.2 (1), Lemma 2.3 (1) and Lemma 2.4 (1) imply
that the weights ν̃,ν∗,ν respectively define Radon measures on Rd.

2.4. Dirichlet forms. The discussion of the L2-spaces related to ν̃,ν∗,ν together
with density results in Theorem 2.2 allows us to define a new interesting Dirichlet form.
We refer to [50] for the general theory of Dirichlet forms and their corresponding Markov
processes. The following well-known result is a direct consequence of Theorem 2.2, (ii)
and (iii).

Proposition 2.5. Let Ω be open and bounded with a continuous boundary. Let ν be any

Lévy measure. Then each of the three bilinear forms (E ,Vν,0(Ω|Rd)), (EΩ,C∞
c (Ω)

Hν(Ω)
)

and (EΩ,Hν(Ω)) is a regular Dirichlet form on L2(Ω). The corresponding Markov pro-
cesses are often called killed, censored resp. reflected Lévy process.

An important side result of our work is the following theorem, which implies the
existence of a strong Markov process, which can be seen as another kind of reflected
jump process with regards to Ω. The theorem is an improvement over [75, Theorem
4.4], see Remark 2.11. Its proof follows from Theorem 2.2, (iv).

Theorem 2.4. Let ν be unimodal with full support and Ω⊂Rd be open and bounded
with a Lipschitz-continuous boundary. Let ν′ be any of the measures ν̃,ν∗,ν on Rd.
Then the bilinear form (E ,Vν(Ω|Rd)) is a regular Dirichlet form on L2(Rd,ν′).

2.5. Classical Sobolev spaces. Let us comment on the connection of the
spaces under consideration with classical Sobolev spaces. Recall that for an open set
Ω⊂Rd, H1(Ω) denotes the classical Sobolev space endowed with the norm

∥u∥2H1(Ω)=∥u∥2L2(Ω)+∥∇u∥2L2(Ω).
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Proposition 2.6. The following embeddings hold true:

H1(Rd) ↪→Hν(Rd) ↪→Vν(Ω|Rd) ↪→Hν(Ω) ↪→L2(Ω).

Here we equip Vν(Ω|Rd) with the norm ∥·∥Vν(Ω|Rd).

Proof. The proof is standard. For u∈H1(Rd) and h∈Rd we haveˆ
Rd

(u(x+h)−u(x))2dx=∥u(·+h)−u(·)∥2L2(Rd)≤4(1∧|h|2)∥u∥2H1(Rd).

Integrating both sides over Rd with respect to the measure ν(h)dh yields¨

RdRd

(u(x)−u(y))2ν(x−y)dxdy≤4∥ν∥L1(Rd,1∧|h|2dh)∥u∥2H1(Rd). (2.7)

This proves the first embedding, the remaining ones are trivial.

Recall that H1
0 (Ω) is the closure of C∞

c (Ω) with respect to the H1(Ω). The space
H1

0 (Ω) also coincides with the closure of C∞
c (Ω) in H1(Rd). In addition, the zero

extension to Rd of any function in H1
0 (Ω) belongs to H1(Rd). Recall the definition of

Vν,0(Ω|Rd) from (2.2).

Proposition 2.7. Let Ω⊂Rd be open. The following embeddings hold true:

H1
0 (Ω) ↪→Vν,0(Ω|Rd) ↪→Hν(Ω)

where elements of H1
0 (Ω) are extended by zero off Ω. If additionally ∂Ω is continuous,

Vν,0(Ω|Rd) ↪→C∞
c (Ω)

Hν(Ω)
↪→L2(Ω).

It is worth noticing that not every function u∈C∞
c (Ω)

Hν(Ω)
has its extension by

zero in Hν(Rd). Indeed for this to hold, one would needˆ
Ω

|u(x)|2dx
ˆ
Ωc

ν(x−y)dy<∞.

This condition is not always true since the measure ν might be very singular at the origin.
This observation shows that for some appropriate domain Ω and for some appropriate

measure ν, e.g. ν(h)= |h|−d−3/2, the spaces C∞
c (Ω)

Hν(Ω)
and Vν,0(Ω|Rd) are strictly

different although they both possess C∞
c (Ω) as dense subspace. This effect is purely

nonlocal. Recall that elements of H1
0 (Ω) can be isometrically extended by zero on Rd

as functions of H1(Rd).

Now assume Ω is a Lipschitz domain (or more generally an H1-extension domain).
Let u∈H1(Rd) be an extension of a function u∈H1(Ω) with ∥u∥H1(Rd)≤C∥u∥H1(Ω) for
some constant C depending only on Ω and d. Within the estimate (2.7) we easily get
the following continuous embedding
Proposition 2.8. Assume Ω⊂Rd is an H1-extension domain then

H1(Ω) ↪→Hν(Ω).

The latter embedding may fail when Ω is not an extension domain (see [46, Counterex-
ample 3.8] or [68, Example 9.1]). Note that H1(Ω) can be viewed as limiting space of
a sequence of nonlocal spaces of type Hν(Ω) and Vν(Ω|Rd) see [44–46] for additional
results.
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2.6. Trace space of Vν(Ω|Rd). The main goal of this section is to discuss the
trace space for Vν(Ω|Rd) similarly as one does for the classical Sobolev space H1(Ω).
Note that elements of Vν(Ω|Rd) are defined on the whole of Rd, thus the trace space
consists of functions defined on Ωc. This contrasts with the local situation, where the
trace space ofH1(Ω) consists of functions defined on the boundary ∂Ω. Unless otherwise
stated, we assume that ν is fully supported on Rd and Vν(Ω|Rd) is endowed with the
norm ∥·∥Vν(Ω|Rd). Note that, when studying the fractional Laplace operator, trace

spaces related to Vν(Ω|Rd) when ν(h)= |h|−d−α for h ̸=0 and 0<α<2, have already
been considered in [13, 37] and [35]. Below, we comment on how our general approach
relates to these studies.

Definition 2.5. We define Tν(Ω
c) as the vector space of restrictions to Rd\Ω of

functions of Vν(Ω|Rd), i.e.,

Tν(Ω
c)={v :Ωc→R measurable |v=u|Ωc with u∈Vν(Ω|Rd)}.

We endow Tν(Ω
c) with its natural norm,

∥v∥Tν(Ωc)=inf{∥u∥Vν(Ω|Rd) : u∈Vν(Ω|Rd) with v=u|Ωc}.
Theorem 2.5. The space Tν(Ω

c) is a separable Hilbert space with the scalar product

(u,v)Tν(Ωc)=
1

4

(
∥u+v∥2Tν(Ωc)−∥u−v∥2Tν(Ωc)

)
.

Proof. Since the norm ∥·∥Vν(Ω|Rd) verifies the parallelogram law so does ∥·∥Tν(Ωc).

Thus
(
·, ·
)
Tν(Ωc)

is a scalar product on Tν(Ω
c) with associated norm ∥·∥Tν(Ωc). Noting

that Tν(Ω
c) and the quotient space Vν(Ω|Rd)/Vν,0(Ω|Rd) are identical with equal norm

in space and that Vν,0(Ω|Rd) is a closed subspace of Vν(Ω|Rd), one concludes that
Tν(Ω

c) is complete.

The main question now is whether the same space Tν(Ω
c) can be defined intrin-

sically. In other words, given a measurable function v :Ωc→R, how can one decide
whether the function belongs to Tν(Ω

c) or not. In the local situation, it is possible to
define a scalar product on the space H1/2(∂Ω) when Ω is a Lipschitz domain, see [27]
for a proof. We study this question in two settings, the one of [37] and the one of [13].
For the special case ν(h)= |h|−d−α for h ̸=0 with 0<α<2, it is proved in [37, Theorem
3] that for v∈Vν(Ω|Rd) it holds

¨

ΩcΩc

(
v(x)−v(y)

)2
(|x−y|+δx+δy)d+α

dxdy<∞. (2.8)

Moreover [37], if (2.8) holds true for v=g on Ωc, there exists ug ∈Vν(Ω|Rd) such that
ug|Ωc =g and

¨

(Ωc×Ωc)c

(
ug(x)−ug(y)

)2
|x−y|d+α

dxdy≍
¨

ΩcΩc

(
v(x)−v(y)

)2
(|x−y|+δx+δy)d+α

dxdy (2.9)

with the constants independent of g and ug. Therefore we obtain in this case

Tν(Ω
c)=

{
v :Ωc→R meas.

∣∣ ¨
ΩcΩc

(
v(x)−v(y)

)2
(|x−y|+δx+δy)d+α

dxdy<∞
}
, (2.10)
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which we will make use of in Proposition 2.9.

Next, let us summarize the results of [13], which are established under the following
condition: One assumes that ν is radial and its profile ν ∈C2((0,∞)) satisfies for some
C1,C2>0 and β∈ (0,2)

|ν′(r)|+ |ν′′(r)|≤C1ν(r) (r>1),

ν(λr)≤C2λ
d−βν(r) (0<r,λ≤1),

ν(r)≤C2ν(r+1) (r≥1).

(Aν)

Assume Ωc satisfies the volume density condition (in some works, Ωc is called a
d-set), i.e., there exists a constant c>0 such that |Ωc∩Br(x)|≥ crd for all x∈∂Ω and
all r>0. By the Lebesgue density theorem, the latter condition automatically implies
that |∂Ω|=0. Then under (Aν) [13, Theorem 2.3] proves that, for any g∈Tν(Ωc) there
exists a unique ug ∈Vν(Ω|Rd) such that ug|Ωc =g with

HΩ(g,g) :=

¨

ΩcΩc

(
g(x)−g(y)

)2
γΩ(x,y)dxdy=

¨

(Ωc×Ωc)c

(
ug(x)−ug(y)

)2
ν(x−y)dxdy.

(2.11)

The function ug satisfies the weak formulation

¨

(Ωc×Ωc)c

(
ug(x)−ug(y)

)
(ϕ(x)−ϕ(y))ν(x−y)dxdy=0 for all ϕ∈Vν,0(Ω|Rd) (2.12)

and the interaction kernel γΩ(x,y) is given via the Poisson kernel of Ω by the formula

γΩ(x,y)=

ˆ
Ω

PΩ(x,z)ν(z−y)dz x,y∈Ωc.

Furthermore, a precise formula for ug in Ω is given by the Poisson integral

ug(x)=PΩ[g](x)=

ˆ
Ωc

g(y)PΩ(x,y)dy x∈Ω.

From this, it is easy to show that

Tν(Ω
c)=

{
v :Ωc→R meas. HΩ(v,v)=

¨

ΩcΩc

(
v(x)−v(y)

)2
γΩ(x,y)dxdy<∞

}
which is precisely the exterior space introduced in [13]. With this definition, the con-
nection between Tν(Ω

c) and Vν(Ω|Rd) is less visible. For v∈Tν(Ωc), by definition of
∥·∥Tν(Ωc), we have

∥v∥2Tν(Ωc)=inf{∥u∥2Vν(Ω|Rd) : u∈Vν(Ω|R
d) with v=u|Ωc}

≥ inf
{ˆ

Ω

|u(x)|2dx : u∈Vν(Ω|Rd) with v=u|Ωc

}
+HΩ(v,v).

It is rather challenging to find or to estimate the quantity

inf
{ˆ

Ω

|u(x)|2dx : u∈Vν(Ω|Rd) with v=u|Ωc

}
.
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Remember that our goal here is to explicitly define a norm which is equivalent to
∥·∥Tν(Ωc) and has less visible connection to Vν(Ω|Rd). To this end, we bring into play
the norm ∥·∥∗

Vν(Ω|Rd)
defined in Lemma 2.2.

Proposition 2.9. Assume Ω is open and bounded, such that Ωc satisfies the volume
density condition. Assume ν satisfies (Aν). Let ν̃ and ∥·∥∗

Vν(Ω|Rd)
be respectively the

measure and the norm given in Lemma 2.2. Then

Tν(Ω
c)=

{
v :Ωc→R meas. HΩ(v,v)=

¨

ΩcΩc

(
v(x)−v(y)

)2
γΩ(x,y)dxdy<∞

}
and the norms ∥·∥Tν(Ωc), ∥·∥∗Tν(Ωc) and ∥·∥†Tν(Ωc) are all equivalent, where

∥v∥∗Tν(Ωc)=inf{∥u∥∗Vν(Ω|Rd) : u∈Vν(Ω|Rd) with v=u|Ωc}

∥v∥†2Tν(Ωc)=

ˆ
Ωc

|v(x)|2ν̃(x)dx+
¨

ΩcΩc

(
v(x)−v(y)

)2
γΩ(x,y)dxdy.

Next, consider ν(h)=(2−α)|h|−d−α, h ̸=0 with 0<α<2 and ν̃(h)= 1
(1+|h|)d+α . Set

δz =dist(z,∂Ω). Then

Tν(Ω
c)=

{
v :Ωc→R meas.

∣∣ ¨

ΩcΩc

(
v(x)−v(y)

)2
(|x−y|+δx+δy)d+α

dxdy<∞
}

and the aforementioned norms are equivalent to the norm

∥v∥
′2
Tν(Ωc)=

ˆ
Ωc

|v(x)|2

(1+ |x|)d+α
dx+

¨

ΩcΩc

(
v(x)−v(y)

)2
(|x−y|+δx+δy)d+α

dxdy.

Remark 2.8. In the case να(h)=(2−α)|h|−d−α , h ̸=0 with 0<α<2, it is interest-
ing to understand the limiting behaviour of the comparability estimate for ∥v∥′

Tνα (Ωc)

and ∥v∥∗Tνα (Ωc) as α→2−. Recent results in [54] show that one can modify the norm

∥v∥′

Tν(Ωc) so that ∥v∥′

Tνα (Ωc) converges to ∥v∥H1/2(∂Ω) as α→2−.

Proof. The equivalence between ∥·∥Tν(Ωc) and ∥·∥∗Tν(Ωc) is an immediate conse-

quence of Lemma 2.2. By (2.11) it follows that,

∥v∥∗2Tν(Ωc)=inf{∥u∥∗2Vν(Ω|Rd) : u∈Vν(Ω|R
d) with v=u|Ωc}

≥ inf
{ˆ

Rd

|u(x)|2ν̃(x)dx : u∈Vν(Ω|Rd) with v=u|Ωc

}
+HΩ(v,v)

≥
ˆ
Ωc

|v(x)|2ν̃(x)dx+HΩ(v,v),

which establishes ∥v∥†Tν(Ωc)≤∥v∥∗Tν(Ωc). Hence the identity I : (Tν(Ω
c),∥·∥∗Tν(Ωc))→

(Tν(Ω
c),∥·∥†Tν(Ωc)) is continuous. The space (Tν(Ω

c),∥·∥∗Tν(Ωc)) is a Hilbert space since

∥·∥Tν(Ωc) and ∥·∥∗2Tν(Ωc) are equivalent. Also, using the Fatou lemma one can easily

show that (Tν(Ω
c),∥·∥†Tν(Ωc)) is a Hilbert space. As consequence of the open mapping

theorem the norms ∥·∥†Tν(Ωc) and ∥·∥∗Tν(Ωc) are equivalent.
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Next, let us consider ν(h)=(2−α)|h|−d−α, h ̸=0 with 0<α<2 fixed. From [37,
Theorem 3], see (2.9) and (2.10), we conclude that there exists a constant C>0 such
that for all v∈Tν(Ωc), ∥v∥∗Tν(Ωc)≤C∥v∥

′

Tν(Ωc). The equivalence between ∥·∥∗Tν(Ωc) and

∥·∥′

Tν(Ωc) follows once again by the open mapping theorem.

Remark 2.9. We emphasize that the nonlocal trace does not need any special
construction via functional analysis or density arguments. Since Ωc is a d-dimensional
manifold, it makes sense to consider the restriction of a measurable function on Ωc. No
regularity of Ω resp. ∂Ω is required. In the classical local situation, the definition of a
trace of a Sobolev function u on the boundary ∂Ω requires some smoothness of both, u
and ∂Ω.

Let us collect some basics results results concerning the trace space Tν(Ω
c). With

the aid of Lemma 2.2 we get the following.

Proposition 2.10. The trace map Tr :Vν(Ω|Rd)→L2(Ωc, ν̃) with u 7→Tr(u)=u |Ωc

has the following properties: (a) Tr(Vν(Ω|Rd))=Tν(Ω
c), (b) ker(Tr)=Vν,0(Ω|Rd) and

(c) Tr is linear and continuous. Moreover, Tν(Ω
c) is dense in L2(Ωc, ν̃).

Proof. This indeed, is a direct consequence of Lemma 2.2 since u∈L2(Rd, ν̃) for
all u∈Vν(Ω|Rd) so that Tr(u)∈L2(Ωc, ν̃) in particular Tr is well defined. Moreover, by
Lemma 2.2 there exists a constant C>0 such that,

∥Tr(u)∥L2(Ωc,ν̃)≤∥u∥L2(Rd,ν̃)≤C∥u∥Vν(Ω|Rd) for all u∈Vν(Ω|Rd). (2.13)

The zero extension to Ω of elements C∞
c (Ω

c
) are in Vν(Ω|Rd). Thus C∞

c (Ω
c
) is contained

in Tν(Ω
c) which implies that Tν(Ω

c) is dense in L2(Ωc, ν̃) since C∞
c (Ω

c
) is dense in

L2(Ωc, ν̃)

Remark 2.10. One may view the objects L2(Ωc, ν̃), Tν(Ω
c), Vν(Ω|Rd) and Vν,0(Ω|Rd)

respectively as the nonlocal counterpart of L2(∂Ω), H1/2(∂Ω), H1(Ω) and H1
0 (Ω). In-

deed, (a) the classical trace operator γ0 :H
1(Ω)→L2(∂Ω) whenever it exists is linear

continuous, (b) γ0(H
1(Ω))=H1/2(∂Ω) and (c) ker(γ0)=H

1
0 (Ω).

Proposition 2.11. Let C∞
c (Ωc)=C∞

c (Rd)|Ωc be set of restrictions on Ωc of C∞

functions on Rd with compact support. If Ω is bounded and Lipschitz then C∞
c (Ωc) is

dense in Tν(Ω
c).

Proof. For v∈Tν(Ωc) we write v=u|Ωc with u∈Vν(Ω|Rd). From [48] we know
that there exists un∈C∞

c (Rd) such that, ∥un−u∥Vν(Ω|Rd)→0. Put, vn=un|Ωc by (2.13)
we get

∥vn−v∥Tν(Ωc)≤∥un−u∥Vν(Ω|Rd)
n→∞−−−−→0.

Remark 2.11. Let us comment on certain function spaces that are introduced in [75]
in order to study some reflected jump Markov processes, see also [49]. Instead of the
natural energy space Vν(Ω|Rd) from [42], the author considers Vν(Ω|Rd)∩L2(Rd,m)
with m(x)=1Ω(x)+µ(x)1Ωc(x) and µ(x)=

´
Ω
ν(x−y)dy for x∈Ωc. It is proved in [75,

Lemma 2.2 (iii)] that L2(Ωc,µ) is the trace space of Vν(Ω|Rd)∩L2(Rd,m). Note that
Vν(Ω|Rd)∩L2(Rd,m) and its trace space L2(Ωc,µ) are much smaller than Vν(Ω|Rd)
resp. Tν(Ω

c), which leads to the following issues.

• When Ω is bounded, constant functions belong to Vν(Ω|Rd) and do not belong
to Vν(Ω|Rd)∩L2(Rd,m) in general. Thus in term of trace, x 7→1Ωc(x) belongs
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to Tν(Ω
c) but not necessarily to L2(Ωc,µ). Several natural Dirichlet problems,

e.g. for the fractional Laplace operator, cannot be formulated with the help of
L2(Ωc,µ).

• See Theorem 2.4 for a regular Dirichlet form leading to the existence of reflected
jump processes.

• Given a function v∈L2(Ωc,µ), its extension by zero v0=v1Ωc belongs to
Vν(Ω|Rd)∩L2(Rd,m) because of

¨

(Ωc×Ωc)c

(
v0(x)−v0(y)

)2
ν(x−y)dxdy=2

ˆ
Ωc

|v(x)|2µ(x)dx.

Moreover, the space L2(Ωc,µ) is continuously embedded in Tν(Ω
c), indeed,

∥v∥Tν(Ωc)≤∥v0∥Vν(Ω|Rd)≤
√
2∥v∥L2(Ωc,µ).

The fact that the extension by zero belongs to the energy space for any given
function in the trace space, is rather particular.

Since Vν(Ω|Rd)∩L2(Rd,m) resp. its trace space L2(Ωc,µ) are small compared to the
spaces Vν(Ω|Rd) resp. Tν(Ω

c), the range of possible nonlocal Dirichlet and Neumann
problems is rather small.

3. Compact embeddings and Poincaré inequality
In this section we prove compact embeddings of the spaces Hν(Ω), Vν(Ω|Rd) and

Vν,0(Ω|Rd) into L2(Ω). Our result on global compactness, Theorem 3.2, requires some
regularity assumptions on Ω and ν, which we introduce and discuss in Section 3.1.
In Section 3.2 we establish global compactness using ideas from [58] and [34]. Note
that [25, Theorem 2.2] is a related result. However, the proof therein seems to be valid
only for domains that can be decomposed as a finite union of cubes. We circumvent
this issue by an approximation argument near the boundary of Ω.

3.1. Assumptions on the Lévy measure. The definitions and most of the
results of Section 2.2 do not require assumptions on the Lévy measure ν beyond the
classical Lévy condition (L). In this section we collect further conditions on ν required
for the compactness results in Section 3.2. Recall the concept of unimodality from
Definition 2.1. We will prove a Poincaré-inequality in Theorem 3.3 for unimodal Lévy
measures with full support.

Definition 3.1. Assume Ω⊂Rd is open and bounded, and ν :Rd\{0}→ [0,∞) satis-
fies (L). We say that (ν,Ω) is in the class A0 if
(A0) ν is unimodal and has full support.

Note that, in the class A0, ν is not necessarily singular near 0. In order to establish
compactness results in Section 3.2 we will discuss different assumptions. Note that (L)
and unimodality do not imply any lower bound on ν, even ν=0 would be allowed.
Furthermore, if ν ∈L1(Rd), then the spaces Vν(Ω|Rd)∩L2(Rd) and Hν(Rd) coincide
with L2(Rd), which is not locally compactly embedded into L2(Ω). For the remainder
of this section, we assume that ν satisfies (L) and

ˆ
Rd

ν(h)dh=∞. (I)

Under (L), condition (I) obviously follows if |h|dν(h)→∞ as |h|→0. As explained in
Corollary 3.1, (L) and (I) imply local compactness of Hν(Ω) and Vν(Ω|Rd) in L2(Ω).
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Let us introduce conditions on Ω and ν under which we are able to establish global
compactness results.

Definition 3.2. Assume Ω⊂Rd is open and bounded, and ν :Rd\{0}→ [0,∞) satis-
fies (L) and (I). We say that (ν,Ω) is in the class Ai (i=1,2,3), if

(A1) .. . there exists an Hν(Ω)-extension operator E :Hν(Ω)→Hν(Rd), i.e., there is
C(ν,Ω,d)>0 such that for every u∈Hν(Ω), ∥u∥Hν(Rd)≤C∥u∥Hν(Ω) and Eu|Ω=
u.

(A2) .. . ∂Ω is Lipschitz-continuous, ν is radial and q(δ)
δ→0−−−→∞ where

q(δ) :=
1

δ2

ˆ

Bδ(0)

|h|2ν(h)dh. (3.1)

(A3) .. . the following condition holds true: q̃(δ)
δ→0−−−→∞ where

q̃(δ) := inf
a∈∂Ω

ˆ
Ωδ

ν(h−a)dh (3.2)

with Ωδ ={x∈Ω:dist(x,∂Ω)>δ}.
Note that monotonicity of ν is not necessarily required by any of the conditions

above. The class A1 is well studied in the literature for the case of the fractional
Laplace operator. For example, it is shown in [78] that Ω is an extension domain for
Hα/2(Ω), α∈ (0,2), if and only if Ω is a d-set and thus, (| · |−d−α,Ω) is an element of
A1.

The class A2 is easy to understand because the conditions on Ω and ν do not
interact. If Ω is a bounded Lipschitz domain and ν satisfies (L) and

lim
|h|→0

|h|dν(h)=∞, (I ′)

then (ν,Ω) is in the class A2. Indeed, for R>0 sufficiently large there is δ0>0 such
that |h|dν(h)≥2R whenever |h|≤ δ0. Thus q(δ)≥|Sd−1|R if 0<δ<δ0. This shows that
(3.1) is verified.

The class A3 and condition (3.2) are more involved due to a certain correlation
between Ω and the singularity of ν near the origin. Let us first provide an example of
ν and Ω such that A3 fails. In the Euclidean plane consider ν(h)= |h|−2−α1V (h) with
V ={(x1,x2)∈R2 : |x1|< |x2|} and Ω={(x1,x2)∈R2 : 4|x2−6|<x1, 0<x1<4} whose
boundary is continuous. Considering a=(0,6)∈∂Ω one has V ∩(Ωδ−a)=∅ for every
δ>0, see Figure 3.1. Therefore q̃(δ)≤

´
Ωδ
ν(h−a)dh=0 and the condition (3.2) fails.

Next, let us provide a positive result. Note that for every domain Ω and every δ>0
we know q̃(δ)<∞ because, for each a∈∂Ω and each δ>0, Ωδ ⊂Bc

δ(a), which implies
by (L) q̃(δ)≤

´
Bc

δ(0)
ν(h)dh<∞. We will show that ∂Ω∈C1,1 is sufficient. Recall that

Ω is of class C1,1 if for every a∈∂Ω there is r>0 for which Br(a)∩∂Ω={x=(x′,xd)∈
Br(a) :xd=γ(x

′)} represents the graph of a C1,1 function γ :Rd−1→R. That is to say
γ is a C1 function whose gradient is Lipschitz. The main result in [7] shows that an
open set Ω is C1,1 if and only if Ω satisfies the interior and exterior sphere condition.
We say that Ω satisfies the interior and exterior sphere condition at some scale r>0 if
for every a∈∂Ω one can find a′∈Ω and a′′∈Ω

c
for which Br(a

′)⊂Ω, Br(a
′′)⊂Ω

c
and

Br(a′)∩Br(a′′)={a}. Note that, the interior and exterior sphere condition holds for
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Ω

Ωδ−a

V

V

(0,0)

a

v

Figure 3.1. Example of (ν,Ω) /∈A3

every scale r∈ (0,r0) once it holds for r0. This characterization entails that a C1,1 set Ω
is a d-set (or volume density condition according to some authors): that is, there exist
two positive constants c>0 and r0>0 such that for every r∈ (0,r0) and every a∈∂Ω

|Ω∩Br(a)|≥ crd.

Proposition 3.1. Assume ν satisfies (L) and (I ′). Assume that Ω satisfies the
following strong volume density condition: there exist positive constants τ >1, δ0>0
and c>0 such that for all δ∈ (0,δ0) and a∈∂Ω

|Ωδ∩Bτδ(a)|≥ cδd.

Then (ν,Ω)∈A3.

Proof. Let R>0 and consider τ >1, δ0>0 as above such that if 0<δ<δ0 then
|h|dν(h)≥R for |h|<δ. Fix a∈∂Ω, since |Ωδ∩Bτδ(a)|≥ cδd for all 0<δ<δ0. Therefore,
recalling that ν(h−a)≥R|h−a|−d≥ R

τdδd
when h∈Bτδ(a) we have

ˆ
Ωδ

ν(h−a)dh≥ R

τdδd

ˆ
Ωδ∩Bτδ(a)

dh=
R

τdδd
|Ωδ∩Bτδ(a)|≥

c

τd
R.

Finally, we get

q̃(δ)≥ c

τd
R

which means that (3.2) is verified since R can be arbitrarily large.

Remark 3.1.
(1) Any bounded C1,1-domain Ω⊂Rd satisfies the aforementioned strong volume den-

sity condition. Fix a∈∂Ω, by the interior sphere condition, consider δ∈ (0,δ0/4)
for some δ0 sufficiently small. Let x∈Ω depending on a and δ such that
B2δ(x)⊂Ω, dist(x,∂Ω)= |x−a|=2δ and B2δ(x)∩∂Ω={a} then obviously, Bδ(x)⊂
Ωδ∩B2δ(x)⊂Ωδ∩B4δ(a). This yields

|Ωδ∩B4δ(a)|≥ cdδd, with cd= |B1(0)|. (3.3)
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(2) It is interesting to know whether for small δ>0, Ωδ inherits the regularity of Ω. As
proven in [52, Section 6.14] if Ω is of class Ck with k≥2 then so is Ωδ.

3.2. Local and global compactness results. Before citing a result on local
compactness, we recall a well-known result about convolutions.
Lemma 3.1 (Corollary 4.28 of [17]). Let w∈L1(Rd). Then the convolution operator

Tw :L2(Rd)→L2(Rd), Twu=w∗u

is continuous with ∥Tw∥L(L2(Rd),L2(Rd))≤∥w∥L1(Rd). Moreover, Tw :L2(Rd)→L2(K) is

compact for any compact subset K⊂Rd.

We present the local compactness result [58] that we are going to use in the sequel.

Theorem 3.1. Let ν :Rd\{0}→ [0,∞) be a measurable symmetric function such that
(I) holds and ˆ

Rd\Bδ(0)

ν(h)dh<∞ for every δ>0. (3.4)

Then the embedding Hν(Rd) ↪→L2(Rd) is locally compact. As a consequence, for Ω⊂Rd

open and bounded, the embedding Vν,0(Ω|Rd) ↪→L2(Ω) is compact.

It is worth mentioning that an earlier analogous result is provided in [69, Proposition
6] and [16, Proposition 1] for periodic functions on the torus. This technique, which
consist of killing the singularity, is also used in [10, Lemma 3.1]. The assertion of
Theorem 3.1 is proved in [58, Theorem 1.1] under the additional assumption that ν
satisfies (L). An analogous result is also proved in [25, Theorem 2.1] under restrictive
assumptions on the kernel, using the Pego criterion for compact compactness in L2(Rd).
Looking at the proof carefully one sees that conditions (I) and (3.4) are sufficient. This
would allow to consider densities ν with a very strong singularity at the origin, e.g.,
ν(h)= |h|−d−β for h ̸=0 with any β>0.

As a straightforward consequence of Theorem 3.1 we have the local compactness of
Hν(Ω) in L

2(Ω).

Corollary 3.1. Let Ω⊂Rd be open but not necessarily bounded. Assume
ν :Rd\{0}→R fulfills conditions (L) and (I). The embedding Hν(Ω) ↪→L2(Ω) is lo-
cally compact. Furthermore, for every bounded sequence (un)n there exists u∈Hν(Ω)
and subsequence (unj

)j converging to u in L2
loc(Ω).

Proof. There is no loss of generality if we assume that a function u∈Hν(Ω) is
extended by zero outside of Ω. For φ∈C∞

c (Rd), with suppφ⊂Ω, the map Jφ :Hν(Ω)→
Hν(Rd), with Jφu=uφ is continuous and is thus locally compact by Theorem 3.1.
Therefore the embedding Hν(Ω) ↪→L2(Ω) is locally compact. Indeed, for u∈Hν(Ω) we
have[
u(x)φ(x)−u(y)φ(y)

]2
=
[
u(x)(φ(x)−φ(y))+φ(y)(u(x)−u(y))

]2
≤2∥φ∥2W 1,∞(Rd)

[
|u(x)|2(1∧|x−y|2)+1suppφ(y)(u(x)−u(y))2

]
.

As suppφ⊂Ω is compact, consider 0<r≤dist(suppφ,∂Ω). Then integrating both sides
of the above estimate over Ω×Rd with respect to the measure ν(x−y)dydx, yields the
continuity of Jφ as follows¨

RdRd

[
u(x)φ(x)−u(y)φ(y)

]2
ν(x−y)dydx
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≤2∥φ∥2W 1,∞(Rd)

ˆ
Ω

|u(x)|2dx
ˆ
Rd

(1∧|h|2)ν(h)dh

+

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dydx+
ˆ
Ω

|u(x)|2dx
ˆ
Br(0)

ν(h)dh

≤Cφ∥u∥2Hν(Ω).

Next, we prove the second statement. Consider Ω′
δ =

{
x∈Ω: |x|< 1

δ , dist(x,∂Ω)>

δ
}
=Ωδ∩B 1

δ
(0) and define φδ(x)=ηδ/4 ∗1Ω′

δ/2
(x) for δ>0 small enough, where ηδ(x)=

1
δd
η(xδ ) with η∈C

∞
c (Rd) is supported in the unit ball B1(0), η≥0 and

´
Rd ϕ(x)dx=1.

So that φδ ∈C∞
c (Ω), φδ =1 on Ω′

δ, 0≤φδ ≤1 and |∇φδ|≤ c/δ. Given a sequence (un)n
that is bounded in Hν(Ω), the previous observation entails that for each δ>0 for the
sequence (unφδ)n there exist a subsequence nj =nj(δ), j≥1, and uδ ∈L2(Ω′

δ) such that
the sequence (un)n, (as unφδ =un in Ω′

δ) converges to some uδ in L2(Ω′
δ) and almost

everywhere in Ω′
δ. Employing the standard Cantor’s diagonalization procedure with

δ= 1
2k
, one can construct a subsequence (unj

)j converging subsequence in L2
loc(Ω) and

almost everywhere in Ω to some function u. Fatou’s lemma implies that u∈Hν(Ω) since

∥u∥Hν(Ω)≤ liminf
j→∞

∥unj
∥Hν(Ω)<∞.

Let us turn to the result on global compactness. We will need some estimates near
the boundary ∂Ω. We begin with the following estimate involving cut-off functions.

Lemma 3.2. Let Ω⊂Rd be open and bounded. Assume ν :Rd\{0}→ [0,∞) is even and
measurable. Let 0<δ< 1

3 diam(Ω). Let φ∈C∞
c (Ω) be such that 2 φ=0 on Ωδ, φ=1 on

Ω\Ωδ/2, 0≤φ≤1 and |∇φ|≤ c/δ. For every u∈Hν(Ω), the following estimate holds
true¨

ΩΩ

([uφ](x)− [uφ](y))2ν(x−y)dxdy≤ C

δ2

ˆ

Ωδ/2

|u(x)|2dx+8

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy

(3.5)

where, C=8c2
´
BR(0)

|h|2ν(h)dh and R=diam(Ω).

Proof. Firstly, since φ=1 on Ω\Ωδ/2 we have

¨

Ω\Ωδ/2 Ω\Ωδ/2

([uφ](x)− [uφ](y))2ν(x−y)dxdy=
¨

Ω\Ωδ/2 Ω\Ωδ/2

(u(x)−u(y))2ν(x−y)dxdy

≤
¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy.

In view of the fact that 0≤φ≤1 and |φ(x)−φ(y)|≤ c/δ|x−y| for every x,y∈Ω, we
have

([uφ](x)− [uφ](y))2=
(
φ(y)(u(x)−u(y))+u(x)(φ(x)−φ(y))

)2
≤2(u(x)−u(y))2+ 2c2

δ2
|u(x)|2|x−y|2. (3.6)

2Take φ= 1−φδ with φδ =ηδ/4 ∗1Ω′
δ/2

as in the proof of Corollary 3.1.
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Secondly, noticing that Ω⊂BR(x) for all x∈Ω where R=diam(Ω) and integrating both
sides of (3.6) over Ωδ/2×Ωδ/2 we obtain the following estimate

¨

Ωδ/2Ωδ/2

([uφ](x)− [uφ](y))2ν(x−y)dxdy

≤2

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy+ 2c2

δ2

ˆ

Ωδ/2

|u(x)|2dx
ˆ

BR(x)

|x−y|2ν(x−y)dy

=2

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy+ 2c2

δ2

( ˆ

BR(0)

|h|2ν(h)dh
) ˆ

Ωδ/2

|u(x)|2dx.

Likewise to the previous estimate, using (3.6) we get

¨

Ωδ/2×Ω\Ωδ/2

([uφ](x)− [uφ](y))2ν(x−y)dxdy

≤2

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy+ 2c2

δ2

( ˆ

BR(0)

|h|2ν(h)dh
) ˆ

Ωδ/2

|u(x)|2dx.

Altogether, the desired estimate follows as claimed since by symmetry we can use the
following split

¨

Ω×Ω

=

¨

Ωδ/2×Ωδ/2

+2

¨

Ωδ/2×Ω\Ωδ/2

+

¨

Ω\Ωδ/2×Ω\Ωδ/2

.

The next lemma plays a crucial role in the sequel.

Lemma 3.3. Assume that Ω⊂Rd is open and bounded, and ν :Rd\{0}→ [0,∞) is
radial. There exists C>0 such that for every u∈L2(Ω) and every positive δ< 1

3 diam(Ω)

ˆ
Ω

|u(x)|2dx≤ C

δ2q̃(2δ)

ˆ
Ωδ/2

|u(x)|2dx+ 8

q̃(2δ)

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy, (3.7)

with q̃ as is (3.2). Moreover, if Ω has a Lipschitz boundary, then

ˆ
Ω

|u(x)|2dx≤ C

δ2q(2δ)

ˆ
Ωδ/2

|u(x)|2dx+ 8

q(2δ)

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy, (3.8)

with q as in (3.1).

Proof. Let φ be as in Lemma 3.2 and fix a∈∂Ω. A routine check reveals that
Ω2δ−a⊂Ωδ−x for every x∈Ω∩Bδ(a) which yields,

ˆ
Ω∩Bδ(a)

[φu]2(x)dx

ˆ
Ωδ

ν(x−y)dy≥
ˆ
Ω∩Bδ(a)

[φu]2(x)dx

ˆ
Ωδ−x

ν(h)dh

≥
ˆ
Ω∩Bδ(a)

[φu]2(x)dx

ˆ
Ω2δ−a

ν(h)dh≥ q̃(2δ)
ˆ
Ω∩Bδ(a)

[φu]2(x)dx.



40 A GENERAL FRAMEWORK FOR NONLOCAL NEUMANN PROBLEMS

By a compactness argument there exist a1,a2,·· ·an∈∂Ω such that ∂Ω⊂
n⋃

i=1

Bδ/2(a
i).

So that, Ω\Ωδ/2⊂
n⋃

i=1

Ω∩Bδ(a
i)⊂Ω\Ωδ. φu=0 on Ωδ/2 trivially implies φu=0 on Ωδ.

Therefore with the aid of the above estimate we obtain the following estimate¨

ΩΩ

(
[φu](x)− [φu](y)

)2
ν(x−y)dxdy≥2

¨

Ω\Ωδ Ωδ

[φu]2(x)ν(x−y)dxdy

≥
ˆ

n⋃
i=1

Ω∩Bδ(ai)

[φu]2(x)dx

ˆ
Ωδ

ν(x−y)dy≥2q̃(2δ)

ˆ
n⋃

i=1
Ω∩Bδ(ai)

[φu]2(x)dx

≥2q̃(2δ)

ˆ

Ω\Ωδ/2

[φu]2(x)dx=2q̃(2δ)

ˆ

Ω\Ωδ/2

|u(x)|2(x)dx.

This combined with (3.5) gives (3.7). Next, let us assume that Ω is a Lipschitz domain.
Following the same procedure as in [70, Eq. (22) and Eq. (23)] one arrives at

2δ2
¨

ΩΩ

(
[φu](x)− [φu](y)

)2
ν(x−y)dxdy≥

( ˆ

B2δ(0)

|h|2ν(h)dh
) ˆ

Ω\Ωδ/2

[φu]2(x)dx.

that is, ¨

ΩΩ

(
[φu](x)− [φu](y)

)2
ν(x−y)dxdy≥2q(2δ)

ˆ

Ω\Ωδ/2

[φu]2(x)dx,

which combined with (3.5) implies (3.8).

Here is our global compactness result.

Theorem 3.2. Let Ω be an open bounded subset of Rd and ν :Rd\{0}→ [0,∞] be
a measurable function. If the couple (ν,Ω) belongs to the class Ai, i=1,2,3 then the
embedding Hν(Ω) ↪→L2(Ω) is compact. In particular, the embedding Vν(Ω|Rd) ↪→L2(Ω)
is compact.

Proof. Given the continuous embedding Vν(Ω|Rd) ↪→Hν(Ω), it will be sufficient
only to prove that the embedding Hν(Ω) ↪→L2(Ω) is compact. For (ν,Ω) belonging to
the class A1 the result is a direct consequence of Theorem 3.1. Now assume (ν,Ω)
belongs to the class A2 (resp. A3) then for ε>0 there is δ>0 small enough such
that 8q−1(2δ)<ε (resp. 8q̃−1(2δ)<ε) If (un)n is a bounded sequence of Hν(Ω) then
Corollary 3.1 infers the existence of a subsequence (unj

)j of (un)n converging to some
u∈Hν(Ω) in L

2(Ωδ/2) i.e ∥unj
−u∥L2(Ωδ/2)→0 as j→∞. In any case, in view of Lemma

3.3, passing to the limsup in (3.7) or in (3.8) applied to unj
−u we get

limsup
j→∞

ˆ
Ω

|unj (x)−u(x)|2dx≤Mε,

M =2∥u∥2Hν(Ω)+2sup
n

∥un∥2Hν(Ω)<∞.

Finally, limsup
j→∞

∥unj −u∥L2(Ω)=0 since ε>0 is arbitrarily chosen, which achieves the

proof.
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Remark 3.2. A noteworthy consequence of what we have obtained so far is that,
for an appropriate choice of ν, the well-known Rellich-Kondrachev compact embeddings
H1

0 (Ω) ↪→L2(Ω) and H1(Ω) ↪→L2(Ω) when Ω is Lipschitz, respectively derive from The-
orem 3.1 combined with the continuous embeddingH1

0 (Ω) ↪→Vν,0(Ω|Rd) and from Theo-
rem 3.2 combined with the continuous embeddingH1(Ω) ↪→Hν(Ω) when Ω is Lipschitz.

The efforts made to establish Theorem 3.2 will be rewarded for the elaboration of
the Poincaré type inequality which will be useful in the forthcoming section.

Theorem 3.3 (Poincaré inequality). Let Ω be an open bounded subset of Rd and
ν :Rd\{0}→ [0,∞] be a measurable function with full support. Assume the couple (ν,Ω)
belongs to one of the class Ai, i=0,1,2,3. Then there exists a positive constant C=
C(d,Ω,ν) depending only on d, Ω and ν such that∥∥u−ffl

Ω
u
∥∥2
L2(Ω)

≤C
¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy for all u∈L2(Ω), (3.9)

and hence ∥∥u−ffl
Ω
u
∥∥2
L2(Ω)

≤CE(u,u) for all u∈Vν(Ω|Rd) . (3.10)

Proof. Assume such constant does not exist then we can find a sequence (un)n
elements of Hν(Ω) such that for every n,

ffl
Ω
un=0, ∥un∥L2(Ω)=1 and

¨

ΩΩ

(un(x)−un(y))2ν(x−y)dxdy≤
1

2n
.

The sequence (un)n is thus bounded in Hν(Ω) which by Theorem 3.2 is compactly
embedded in L2(Ω) whenever (ν,Ω) is in the class Ai, i=1,2,3. Therefore, if it is the
case, passing through a subsequence, (un)n converges in L2(Ω) to some function u.
Clearly it follows that

ffl
Ω
u=0 and ∥u∥L2(Ω)=1. Moreover, by Fatou’s Lemma we have

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy≤ liminf
n→∞

¨

ΩΩ

(un(x)−un(y))2ν(x−y)dxdy=0

which implies that u equals the constant function x 7→
ffl
Ω
u=0 almost everywhere on Ω.

This goes against the fact that ∥u∥L2(Ω)=1 hereby showing that our initial assumption
was wrong.

Next assume (ν,Ω) belongs to the class A0 then, as ν has full support, is unimodal
and Ω is bounded, there is a constant c>0 such that ν(x−y)≥ c for all x,y∈Ω. Using
this and Jensen’s inequality we obtain the desired inequality as follows:¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy≥ c|Ω|
ˆ
Ω

 
Ω

(u(x)−u(y))2dxdy

≥ c|Ω|∥u−
ffl
Ω
u∥2L2(Ω).

The proof is complete because (3.10) is a consequence of (3.9).

The above Poincaré inequality (3.9)-(3.10) can be seen as the nonlocal counterpart
of the classical Poincaré inequality which states that, for a connected bounded Lipschitz
domain Ω, there is C>0 for which∥∥u−ffl

Ω
u
∥∥
L2(Ω)

≤C∥∇u∥L2(Ω), for all u∈L2(Ω)
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where by convention we assume ∥∇u∥L2(Ω)=∞ if |∇u| is not in L2(Ω). Alongside to
this we also recall the classical Poincaré-Friedrichs inequality: there is C>0 such that

∥u∥L2(Ω)≤C∥∇u∥L2(Ω) for all u∈H1
0 (Ω).

In the same spirit, as we will see below the corresponding nonlocal Poincaré-Friedrichs
inequality Vν,0(Ω|Rd) (which we recall is the closure of the C∞

c (Ω) in Vν(Ω|Rd)) is
much more easier to obtain and no compactness argument is required. This provides
an easier alternative proof to the Poincaré-Friedrichs inequality from [42, Lemma 2.7].
Furthermore, under the condition that the embedding Vν,0(Ω|Rd) ↪→L2(Ω) is compact,
a similar inequality is proved in [58] wherein the authors only assume Ω to be bounded
in one direction.

Theorem 3.4 (Poincaré-Friedrichs inequality). Let Ω⊂Rd be open and bounded. Let
ν :Rd\{0}→ [0,∞) be a symmetric function such that one of the two conditions holds
true:

(1) ν1Rd\BR
is nontrivial and integrable for R=diam(Ω),

(2) ν ∈L1(Rd) and |{ν >0}|>0.

Then for some constant C=C(d,Ω,ν)>0

∥u∥2L2(Ω)≤CE(u,u) for all u∈Vν,0(Ω|Rd). (3.11)

Proof. Set R=diam(Ω). Then for all x∈Ω we have Bc
R(x)⊂Ωc. For u∈

Vν,0(Ω|Rd) we recall that u=0 a.e on Ωc. Thus,

E(u,u)= 1

2

¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy+
ˆ
Ω

|u(x)|2dx
ˆ
Ωc

ν(x−y)dy

≥
ˆ
Ω

|u(x)|2dx
ˆ
Bc

R(x)

ν(x−y)dy=∥νR∥L1(Rd)∥u∥2L2(Ω).

Take C= (∥νR∥L1(Rd))
−1 with νR=ν1Rd\BR(0). This settles the first case. The second

case is treated in [42, Lemma 2.7] and also in [45].

Remark 3.3. Note that a Poincaré-Friedrichs inequality of the form

∥u∥2L2(Ω)≤C
¨

ΩΩ

(u(x)−u(y))2ν(x−y)dxdy (u∈C∞
c (Ω)). (3.12)

does not hold in general, independently of whether the embedding Hν(Ω) ↪→L2(Ω) is
compact or not. For example, consider ν(h)= |h|−d−α with 0<α<1. Then, C∞

c (Ω) is
dense in Hα/2(Ω) but Hα/2(Ω) contains all constant functions. Thus (3.12) fails. Note
that, in the case ν(h)= |h|−d−α,α∈ (0,2), a necessary and sufficient condition on Ω for
(3.12) to hold is provided in [40].

4. Existence of weak solutions and spectral decomposition
This section is devoted to the following results: well-posedness of the Neumann

problem in Theorem 4.2, the spectral decomposition of the corresponding operator in
Theorem 4.5, the Robin problem in Theorem 4.6, and the definition of the nonlocal
Dirichlet-to-Neumann map in Theorem 4.8 together with its spectral decomposition in
Theorem 4.10. We refer the reader to Section 1 for comments about related expositions
in the literature.
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Throughout this section, Ω⊂Rd is assumed to be open. We recall that the function
ν :Rd\{0}→ [0,∞] is assumed to be symmetric and to satisfy the Lévy integrability
condition (L). Let k :Rd×Rd\diag→ [0,∞) be symmetric and measurable such that for
some Λ≥1

Λ−1ν(y−x)≤k(x,y)≤Λν(y−x) (x,y∈Rd). (E)

We will formulate well-posedness results for equations Lu=f in Ω, where

Lu(x)=p.v.

ˆ
Rd

(
u(y)−u(x)

)
k(x,y)dy. (4.1)

Note that the expression Lu(x) does not exist in general if u is smooth. One would
require additional assumptions on k. Note that L can be understood as an integro-
differential operator. The aforementioned phenomenon is similar to the fact that ex-
pressions like div

(
A(x)∇u(x)

)
do not exist in general for smooth functions u without

further assumptions on the matrix A(x). Given functions u,v∈Vν(Ω|Rd), we define a
bilinear form E by

E(u,v)= 1

2

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)(
v(x)−v(y)

)
k(x,y)dxdy. (4.2)

Note that under the condition (E) the expression E(u,v) is well defined for u,v∈
Vν(Ω|Rd).

Definition 4.1. We define a nonlocal operator N acting on functions v :Rd→R by

N v(y)=

ˆ
Ω

(v(y)−v(x))k(x,y)dx (y∈Ωc). (4.3)

Note that (4.3) requires some integrability condition of v. If ν is a unimodal Lévy
measure, then N v(y) is well defined for v∈L1(Rd, ν̂), see the beginning of the proof
of Proposition A.2. Furthermore, the definition of N v(y), y∈Ωc, does not require any
principal value integral, because there is a positive distance between y and Ω.

Remark 4.1. (i) We work under the assumption (E) in order to establish well-posedness
for exterior value problem. One could replace this assumption by the assumption

Λ−1

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)2
ν(x−y)dxdy≤E(u,u)≤Λ

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)2
ν(x−y)dxdy

(E’)

for all functions u∈L2
loc(R

d). This assumption allows for many more general cases of k,
see the discussions in [21,38]. (ii) Throughout this section we will work with the weight
ν̃. Analogous results hold true when choosing ν or ν∗ from Definition 2.3.

4.1. Neumann boundary condition. In light of the Gauss-Green formula (B.3)
it is reasonable to define weak solutions of the Neumann problem under consideration
as follows. Assume Ω⊂Rd is an open set. Let f :Ω→R and g :Rd\Ω→R be two
measurable functions. The Neumann problem for the operator L associated to the data
f and g is to find a measurable function u :Rd→R such that

Lu=f in Ω and Nu=g on Rd\Ω. (N)
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Definition 4.2. Let f ∈Vν(Ω|Rd)′ and g∈Tν(Ωc)′. We say that u∈Vν(Ω|Rd) is a
weak solution or a variational solution of the inhomogeneous Neumann problem (N) if

E(u,v)= ⟨f,v⟩+⟨g,v⟩ for all v∈Vν(Ω|Rd), (V ′)

where we use the natural embedding Vν(Ω|Rd) ↪→Tν(Ω
c). Note that the existence of a

solution u∈Vν(Ω|Rd) implies the compatibility condition ⟨f,1⟩+⟨g,1⟩=0.

If, in particular, f ∈L2(Ω) and g∈L2(Ωc, ν̃−1), then u∈Vν(Ω|Rd) is a weak solution
of (N) if

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)dy, for all v∈Vν(Ω|Rd). (V )

In this case, the compatibility condition readsˆ
Ω

f(x)dx+

ˆ
Ωc

g(y)dy=0. (C)

Remark 4.2. The compatibility condition (C) is an implicit necessary requirement.
Recall that the local counterpart of this compatibility condition associated with (1.1),
where g is defined on ∂Ω, is given byˆ

Ω

f(x)dx+

ˆ
∂Ω

g(y)dσ(y)=0. (4.4)

Remark 4.3. (i) Note that [29, Def. 3.6] looks very similar to (V ) at first glance.
However, the norm of the test space defined in [29, Eq. (3.1)] depends on the Neumann
data g, which is not natural. Our test space Vν(Ω|Rd) in the weak formulation (V ) does
not depend on the Neumann data g. Moreover for the existence of weak solutions to
(N), it is sufficient to choose f ∈L2(Ω) and g∈L2(Ωc, ν̃−1), see Theorem 4.3. (ii) For
non-singular kernels, Definition 4.2 coincides with the definition in [36, Section 3.2].

The next result shows that both problems (N) and (V ) are related under additional
regularity assumption.

Proposition 4.1. Let Ω be an open bounded subset of Rd with Lipschitz boundary.
Assume k(x,y)=ν(y−x), i.e., Λ=1. Let u∈C2

b (R
d), f ∈L2(Ω) and g∈L2(Ωc, ν̃−1).

Then u satisfies (N) if and only if f and g are compatible in the sense of (C) and u
satisfies (V ).

Proof. If u solves (N) i.e. Lu=f in Ω and Nu=g on Ωc, then by the Gauss-Green
formula (B.3) we obtain the following

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)dy, for all v∈C1
b (R

d). (4.5)

As shown in (4.9)-(4.10) below, all terms involved in (4.5) are linear and continuous
on Vν(Ω|Rd) with respect to the variable v. Moreover smooth functions of compact
support are dense in Vν(Ω|Rd) hence the relation in (4.5) remains true for functions v
in Vν(Ω|Rd) that is (V ) is satisfied. In particular taking v=1 one gets the condition
(C).

Conversely, assume u solves (V ) then inserting the Gauss-Green formula (B.3) with

v∈C1
b (R

d)⊂Vν(Ω|Rd) in (4.5) yields
ˆ
Ω

Lu(x)v(x)dx−
ˆ
Ω

f(x)v(x)dx=

ˆ
Ωc

g(y)v(y)dy−
ˆ
Ωc

Nu(y)v(y)dy, for all v∈C1
b (Rd).
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Specializing this relation for v∈C∞
c (Ω) and v∈C∞

c (Rd\Ω) respectively we end up with
ˆ
Ω

Lu(x)v(x)dx−
ˆ
Ω

f(x)v(x)dx=0 for all v∈C∞
c (Ω),

ˆ
Ωc

g(y)v(y)dy−
ˆ
Ωc

Nu(y)v(y)dy=0 for all v∈C∞
c (Rd\Ω).

Recall that, by Proposition A.1, Lu is well defined and bounded. Hence, Lu belongs to
L2(Ω). Similarly Nu is well defined and bounded, i.e., it belongs to L∞(Ωc). Thus, up
to null sets, we conclude from the above equations Lu=f in Ω and Nu=g on Rd\Ω,
which proves (N).

Both integrodifferential operators L and N annihilate additive constants. Whence
as long as u is a solution to the system (N) or to the variational problem (V ) so is the
function ũ=u+c for any c∈R. Accordingly, both problems are ill-posed in the sense
of Hadamard. The situation is likewise in the local setting with the operators L and N
respectively replaced by the operators −∆ and ∂

∂n . In order to overcome this issue, it

is common to introduce an appropriate function space Vν(Ω|Rd)⊥ as follows:

Vν(Ω|Rd)⊥ :=
{
u∈Vν(Ω|Rd) :

ˆ
Ω

u(x)dx=0
}
.

Assuming that Ω is bounded, the space Vν(Ω|Rd)⊥ endowed with the scalar product
of Vν(Ω|Rd) is Hilbert space as well. Instead of (V ) we need to consider the following
weak formulations:

E(u,v)= ⟨f,v⟩+⟨g,v⟩ for all v∈Vν(Ω|Rd)⊥, (V
′⊥)

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)dy for all v∈Vν(Ω|Rd)⊥. (V ⊥)

In contrast to (V ), the variational problem (V ⊥) possesses at most one solution since
E(·, ·) defines a scalar product on Vν(Ω|Rd)⊥. Analogous observations can be made in
the local setting by introducing the space H1(Ω)⊥=

{
u∈H1(Ω) :

´
Ω
u(x)dx=0

}
.

By standard procedure, a solution of the variational problem (V ) is characterized
as a critical point (a minimizer) of the functional

J (v)=
1

2
E(v,v)−

ˆ
Ω

fvdx−
ˆ
Ωc

gvdx

=
1

4

¨

(Ωc×Ωc)c

(v(x)−v(y))2ν(x−y)dxdy−
ˆ
Ω

fvdx−
ˆ
Ωc

gvdx. (4.6)

Proposition 4.2. Let Ω⊂Rd be an open set. Then a function u∈Vν(Ω|Rd)⊥ is a
solution to (V ⊥) if and only if u is a solution of the minimization problem

J (u)= min
v∈Vν(Ω|Rd)⊥

J (v). (M⊥)

Moreover, if f :Ω→R and g :Ωc→R are compatible in the sense of (C), u∈Vν(Ω|Rd)⊥

solves (V ⊥) if and only if for any c∈R, u+c solves the variational problem (V ) and
the latter problem is equivalent to the minimization problem

J (u)= min
v∈Vν(Ω|Rd)

J (v). (M)
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Proof. Let u∈Vν(Ω|Rd)⊥ so that (V ⊥) holds true for all v∈Vν(Ω|Rd)⊥. Employ-
ing Cauchy-Schwartz inequality yields

E(u,v)≤ 1

2
E(u,u)+ 1

2
E(v,v)=E(u,u)− 1

2
E(u,u)+ 1

2
E(v,v).

In virtue of (V ⊥) we get J (u)≤J (v) and thus u solves (M⊥).

Conversely assume that u satisfies (M⊥) which means that J (u)≤J (v) for all
v∈Vν(Ω|Rd)⊥. For fixed v∈Vν(Ω|Rd)⊥ the mapping J (u+ ·v) :R→R,

t 7→J (u+ tv)=J (u)+ t

[
E(u,v)−

ˆ
Ω

f(x)v(x)dx−
ˆ
Ωc

g(y)v(y)dy

]
+
t2

2
E(v,v)

is a polynomial of second order. For all t∈R, u+ tv∈Vν(Ω|Rd) and since u minimizes
J we get that J (u)≤J (u+ tv) for all t∈R. Thus J (u+ ·v) :R→R has a critical point
at t=0 which implies that

0= lim
t→0

J (u+ tv)−J (u)

t
= lim

t→0

[
E(u,v)−

ˆ
Ω

f(x)v(x)dx−
ˆ
Ωc

g(y)v(y)dy+
t

2
E(v,v)

]
equivalently

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)dy.

This shows the equivalence between variational problem (V ⊥) and the minimization
problem (M⊥). Meanwhile, if the compatibility condition (C) holds, then it is easy
to observe that the relation in (V ⊥) remains unchanged under additive constant and
J (v+c)=J (v) for all v∈Vν(Ω|Rd) and all c∈R. Accordingly, if u∈Vν(Ω|Rd)⊥ solves
(V ⊥) then we have J (u+c)= min

v∈Vν(Ω|Rd)
J (v) which, by similar arguments as above, is

equivalent to (V ).

From Proposition 4.1 and Proposition 4.2 we deduce that, analogous to the case
of the Laplace operator, the complement condition Nu=0 turns out to be a natural
condition in the variational context:

Corollary 4.1. Let f ∈L2(Ω). Assume u∈Vν(Ω|Rd) minimizes the functional v 7→
1
2 E(v,v)−

´
Ω
fv in the space Vν(Ω|Rd). Then Nu=0 in Ωc. A different version of this

observation is given in [28, Theorem 2.1]. [65, Theorem 2.8] is similar in the translation
invariant case. We are now in position to state the existence and the uniqueness of a
solution to (V ⊥) and hence to (V ) up to additive constant. A direct application of the
Lax-Milgram lemma leads to the following observation.

Theorem 4.1. We assume that Ω⊂Rd is open and bounded. Let ν :Rd→ [0,∞] be
the density of a symmetric Lévy measure with full support. We further assume that
the couple (ν,Ω) belongs to one of the class Ai, i=0,1,2,3. Let f ∈Vν(Ω|Rd)′ and
g∈Tν(Ωc)′.

(1) There exists a unique solution u∈Vν(Ω|Rd)⊥ to the problem (V
′⊥) satisfying

∥u∥Vν(Ω|Rd)≤C
(
∥f∥Vν(Ω|Rd)′ +∥g∥Tν(Ωc)′

)
with a positive constant C, which depends only on d,Ω,Λ and ν.
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(2) Problem (V ′) is solvable if and only if ⟨f,1⟩+⟨g,1⟩=0. All solutions w are of the
form w=u+c with c∈R and satisfy

∥w−
ffl
Ω
w∥Vν(Ω|Rd)≤C

(
∥f∥Vν(Ω|Rd)′ +∥g∥Tν(Ωc)′

)
.

Proof. The existence and the uniqueness of solutions of (V
′⊥) follow from the

Lax-Milgram lemma. The bilinear form E(·, ·) is continuous on Vν(Ω|Rd)⊥. From the
Poincaré inequality (3.10) we conclude

∥v∥2L2(Ω)≤CE(v,v) for all v∈Vν(Ω|Rd)⊥

for some positive constant C. This implies coercivity of E(·, ·) on Vν(Ω|Rd)⊥ and we
obtain

E(v,v)≥
(
1+C

)−1∥v∥2Vν(Ω|Rd). (4.7)

Note that, due to the continuity of the trace operator Tr :Vν(Ω|Rd)→Tν(Ω
c), the map-

ping v 7→ ⟨f,v⟩+⟨g,v⟩ is linear and continuous on Vν(Ω|Rd)⊥. The Lax-Milgram lemma
implies (i).

For v∈Vν(Ω|Rd) set v= ṽ+c′ with c′=
ffl
Ω
vdx so that ṽ∈Vν(Ω|Rd)⊥. In addition,

every constant function w= c belongs to Vν(Ω|Rd) for every c∈Rd because Ω is bounded.
Hence, Vν(Ω|Rd)=Vν(Ω|Rd)⊥⊕R. With this observation along with the identity E(u+
c,v+c′)=E(u,v) for all c,c′∈R and the uniqueness of u∈Vν(Ω|Rd)⊥ solving (V

′⊥)
it becomes easy to check that under the compatibility condition ⟨f,1⟩+⟨g,1⟩=0, all
solutions of (V ′) are of the form u+c.

Remark 4.4. It worth to mention that, Theorem 4.1 (1) implies that the operator Φ :
Vν(Ω|Rd)′×Tν(Ωc)′→Vν(Ω|Rd)⊥ mapping (f,g) to the unique solution u∈Vν(Ω|Rd)⊥

of the variational problem (V
′⊥) is linear, one-to-one, continuous with

∥Φ(f,g)∥Vν(Ω|Rd)≤C∥(f,g)∥Vν(Ω|Rd)′×Tν(Ωc)′ .

Let us apply Theorem 4.1 in order to prove our main existence result.

Theorem 4.2. Under the assumptions of Theorem 4.1 with f ∈L2(Ω) and g∈
L2(Ωc, ν̃−1) the following holds true:

(1) There exists a unique solution u∈Vν(Ω|Rd)⊥ to the problem (V ⊥) satisfying

∥u∥Vν(Ω|Rd)≤C
(
∥f∥L2(Ω)+∥g∥L2(Ωc,ν̃−1)

)
with a positive constant C, which depends only on d,Ω,Λ and ν.

(2) Problem (V ) is solvable if and only if (C) holds true. All solutions w are of the
form w=u+c with c∈R and satisfy

∥w−
ffl
Ω
w∥Vν(Ω|Rd)≤C

(
∥f∥L2(Ω)+∥g∥L2(Ωc,ν̃−1)

)
. (4.8)

Proof. It suffices to show the continuity of the associated linear forms. For
v∈Vν(Ω|Rd)⊥ ∣∣∣ˆ

Ω

fvdx
∣∣∣≤∥f∥L2(Ω)∥v∥L2(Ω)≤∥f∥L2(Ω)∥v∥Vν(Ω|Rd). (4.9)
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From g∈L2(Ωc, ν̃−1) and the continuity of Tr :Vν(Ω|Rd) ↪→Tν(Ω
c), we obtain∣∣∣ˆ

Ωc

g(x)v(x)dx
∣∣∣≤∥g∥L2(Ωc,ν̃−1)∥v∥L2(Ωc,ν̃)≤C∥g∥L2(Ωc,ν̃−1)∥v∥Vν(Ω|Rd). (4.10)

Application of Theorem 4.1 completes the proof.

There is an alternative formulation of Theorem 4.2, which allows for more general
inhomogeneities g. Let us define a modified Neumann problem for the operator L
associated to the data f and g as follows:

Lu=f in Ω and Nu=gν̃ on Rd\Ω. (N∗)

Theorem 4.3. Under the assumptions of Theorem 4.1 with f ∈L2(Ω) and g∈
L2(Ωc, ν̃), then the following holds true:

(1) There exists a unique weak solution u∗∈Vν(Ω|Rd)⊥ to the problem (N∗), that is

E(u∗,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)ν̃(y)dy for all v∈Vν(Ω|Rd)⊥ (V ⊥
∗ )

satisfying

∥u∗∥Vν(Ω|Rd)≤C
(
∥f∥L2(Ω)+∥g∥L2(Ωc,ν̃)

)
with a positive constant C, which depends only on d,Ω,Λ and ν.

(2) Problem (V∗) is solvable if and only if (C∗) holds true, where

E(u,v)=
ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)ν̃(y)dy for all v∈Vν(Ω|Rd), (V∗)

ˆ
Ω

f(x)dx+

ˆ
Ωc

g(y)ν̃(y)dy=0. (C∗)

All solutions w∗ are of the form w=u∗+c with c∈R and satisfy

∥w−
ffl
Ω
w∥Vν(Ω|Rd)≤C

(
∥f∥L2(Ω)+∥g∥L2(Ωc,ν̃)

)
.

The proof of Theorem 4.3 is analogous to the one of Theorem 4.2. Note that, if g∈
L2(Ωc, ν̃), then ∣∣∣ˆ

Ωc

g(x)v(x)ν̃(x)dx
∣∣∣≤C∥g∥L2(Ωc,ν̃)∥v∥Vν(Ω|Rd).

The last result in this section concerns the non-existence of weak solutions when
the Neumann data g is not in the weighted trace space L2(Ωc, ν̃−1).

Theorem 4.4 (Non-existence of weak solution). Let B1=B1(0) be the unit ball in
Rd and f =0. Let ν(h)= |h|−d−α, α∈ (0,2) so that ν̃(h)≍ (1+ |h|)−d−α. There exists
g∈L1(Bc

1)\L2(Bc
1, ν̃

−1) with
´
Bc

1
g(y)dy=0, for which the Neumann problem Lu=0 on

B1 and Nu=g on Rd\B1 has no weak solution in Vν(B1|Rd).

Proof. We will construct a function g of the form g=gγ ν̃ where, given x∈Rd,

gγ(x)=
x1
|x|

(|x|−1)γ1Bc
1(0)

(x),
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with an appropriate choice of γ∈ (−1,−α+1
2 )∪(α2 ,

α+1
2 ). Note that for x∈Bc

1(0) we
have dist(x,∂B1(0))=(|x|−1) andˆ

B1(0)

dy

|x−y|d+α
≍ (|x|−1)−α∧(|x|−1)−d−α.

Claim 1: gγ ∈Vν(B1|Rd) if and only if γ∈ (α−1
2 , α2 ). Integration in polar coordinates

yields

∥gγ∥2Vν(B1|Rd)=2

ˆ
Bc

1(0)

x21
|x|2

(|x|−1)2γ
ˆ
B1(0)

|x−y|−d−αdydx

≍
ˆ
Bc

1(0)

x21
|x|2

(|x|−1)2γ−α(1∧(|x|−1)−d)dx

≍
(ˆ 1

0

r2γ−αdr+

ˆ ∞

1

r2γ−α−1dr
)
.

Claim 2: gγ+β ∈L1(Bc
1, ν̃) if and only if γ+β∈ (−1,α). Indeed,

∥gγ+β∥L1(Bc
1,ν̃)

=

ˆ
Bc

1(0)

x21
|x|2

(|x|−1)γ+β(1+ |x|)−d−αdx

≍|Sd−1|
(ˆ 1

0

rγ+βdr+

ˆ ∞

1

rγ+β−α−1dr
)
.

Claim 3: Analogously, gγ ∈L2(Bc
1, ν̃) if and only if γ∈ (− 1

2 ,
α
2 ).

Claim 4: g∈L1(Bc
1)\L2(Bc

1, ν̃
−1) if and only if gγ ∈L1(Bc

1, ν̃)\L2(Bc
1, ν̃) if and only if

γ∈ (−1,− 1
2 ]∪ [α2 ,α) by Claim 2 and Claim 3.

From now on, we assume γ∈ (−1,−α+1
2 )∪(α2 ,

α+1
2 )⊂ (−1,− 1

2 ]∪ [α2 ,α).

Claim 5: Since gγ(x)=−gγ(−x) it follows that g=gγ ν̃ satisfies the compatibility con-
dition ˆ

Bc
1

g(y)dy=

ˆ
Bc

1

gγ(y)ν̃(y)dy=0.

We assume the Neumann problem Lu=0 on B1 and Nu=g on Rd\B1 has a weak
solution u∈Vν(B1|Rd), that is we have

E(u,v)=
ˆ
Bc

1

gγ(y)v(y)ν̃(y)dy for all v∈Vν(B1|Rd).

This implies that for a constant C≥1+∥u∥Vν(B1|Rd)>0 we have∣∣∣ˆ
Bc

1

gγ(y)v(y)ν̃(y)dy
∣∣∣≤C∥v∥Vν(B1|Rd) for all v∈Vν(B1|Rd). (4.11)

The Claim 1 allows us to take v=gβ ∈Vν(B1|Rd) for β∈ (α−1
2 , α2 ). Then we obtain

∥gγ+β∥L1(Bc
1,ν̃)

≤ c(d)
ˆ
Bc

1

gγ(y)gβ(y)ν̃(y)dy≤C∥gβ∥Vν(B1|Rd), (4.12)

where we have used (4.11). Finally, we consider two cases. If α≥1, then we choose
γ∈ (α2 ,

α+1
2 ) and β=α−γ. If α≤1, then we choose γ∈ (−1,−α+1

2 ) and β=−γ−1.
In both cases, γ∈ (−1,− 1

2 ]∪ [α2 ,α), β∈ (α−1
2 , α2 ) and γ+β∈{−1,α}. This implies gγ ∈

L1(Bc
1, ν̃)\L2(Bc

1, ν̃) and gβ ∈Vν(B1|Rd) whereas ∥gγ+β∥L1(Bc
1,ν̃)

=∞. This contradicts
(4.12) since ∥gβ∥Vν(B1|Rd)<∞.
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4.2. Neumann eigenvalues of L. Let f ∈L2(Ω), for g=0 it is worthwhile to
see that the variational problem (V ) coincides with (V∗) and both correspond to the
variational(weak) formulation of the homogeneous Neumann problem Lu=f in Ω and
Nu=0 on Ωc.

Definition 4.3 (Neumann eigenvalue of L). A non-zero function u∈Vν(Ω|Rd) is
called a Neumann eigenfunction of the operator L on Ω if there exists a real number µ,
which is the eigenvalue associated to u, such that for all v∈Vν(Ω|Rd)

E(u,v)=µ
ˆ
Ω

u(x)v(x)dx.

One formally writes Lu=µu in Ω and Nu=0 on Ωc, which corresponds to the afore-
mentioned weak formulation provided that u is sufficiently regular.

It is worth noticing that, if u is a Neumann eigenfunction of L with associated
eigenvalue µ, then either u∈Vν(Ω|Rd)⊥ when µ ̸=0 or else, µ=0 and the constant
functions u= c, c∈R\{0}, are the related eigenfunctions.

Theorem 4.5. Assume Ω⊂Rd is bounded and open and ν :Rd\{0}→ [0,∞) is the
density of a symmetric Lévy measure with full support. Assume that the couple (ν,Ω)
belongs to one of the classes Ai, i=1,2,3. Then there exist a sequence (ϕn)∈N0

in
Vν(Ω|Rd), which forms an orthonormal basis of L2(Ω), and an increasing sequence of
real numbers 0=µ0<µ1≤···≤µn≤··· . such that µn→∞ as n→∞ and each ϕn is a
Neumann eigenfunction of L with corresponding eigenvalue µn. The number of each
eigenvalue is given by its geometric multiplicity.

Proof. For f1,f2∈L2(Ω) let us denote ufk =Φ0(fk)=Φ(fk,0)∈Vν(Ω|Rd)⊥, k=1,2
the unique solution of (V ⊥) with Neumann data f =fk and g=0. Precisely,

E(Φ0(fk),v)=

ˆ
Ω

fk(x)v(x)dx for all v∈Vν(Ω|Rd)⊥. (4.13)

Testing (4.13) against v=Φ0(f2) and v=Φ0(f1) successively when k=1 and k=2
yields(

f1,Φ0(f2)
)
L2(Ω)

=E(Φ0(f1),Φ0(f2))=E(Φ0(f2),Φ0(f1))=
(
f2,Φ0(f1)

)
L2(Ω)

.

Therefore, the operator RΩ ◦Φ0 :L
2(Ω)

Φ0−−→Vν(Ω|Rd)⊥
RΩ−−→L2(Ω)⊥ is compact (by The-

orem 3.2) and symmetric hence self-adjoint. It is a fact from the spectral theory of
compact self-adjoint operators that L2(Ω)⊥ has an orthonormal basis (en)n whose el-
ements are eigenfunctions of RΩ ◦Φ0 and the sequence of the corresponding eigenval-
ues are non-negative real numbers (rn)n which we assume ordered in the decreasing
order, r1≥ r2≥···≥ rn≥···0 such that rn→0 as n→∞. Precisely, for each n≥1,
RΩ ◦Φ0(en)= rnen or simply write Φ0(en)= rnen a.e in Ω. Combining the latter re-
lation with definition of Φ0(en) we get

E(Φ0(en),v)=

ˆ
Ω

en(x)v(x)dx= r
−1
n

ˆ
Ω

Φ0(en)(x)v(x)dx for all v∈Vν(Ω|Rd)⊥.

Equivalently, setting µn= r
−1
n and ϕn=Φ0(en)/∥Φ0(en)∥L2(Ω)= r

−1
n Φ0(en) which is

clearly an element of ∈Vν(Ω|Rd)⊥ yields

E(ϕn,v)=µn

ˆ
Ω

ϕn(x)v(x)dx for all v∈Vν(Ω|Rd)⊥ .
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Hereby, along with µ0=0 and ϕ0= |Ω|−1 provides the sequences sought for. Now if
we assume µ1=0 then we have ϕ1∈Vν(Ω|Rd)⊥ and E(ϕ1,v)=0 for all v∈Vν(Ω|Rd)⊥

in particular E(ϕ1,ϕ1)=0 i.e ϕ1 is a constant function in Vν(Ω|Rd)⊥ necessarily ϕ1=0
since u1 has zero mean over Ω. We have therefore reached a contradiction as ϕ1 is
supposed to be an eigenfunction i.e ϕ1 ̸=0. Thus, µ1>0 and the proof is complete.

4.3. Robin boundary condition. In this section we treat a Robin-type problem
with respect to the nonlocal operator L on Ω. In the classical setting for the Laplace
operator, the Robin boundary problem – also known as Fourier boundary problem or
third boundary problem – is a combination of the Dirichlet and Neumann boundary
problem in the form3

−∆u=f in Ω and
∂u

∂n
+βu=g on ∂Ω. (4.14)

Here f ∈L2(Ω) and the measurable functions β,g :∂Ω→R are given. Analogously, in
the nonlocal set up, we assume that β,g :Ωc→R are measurable functions. The Robin
problem consists in finding a measurable function u :Rd→R such that

Lu=f in Ω and Nu+βu=g on Ωc. (4.15)

Note that, for β=0 one recovers the inhomogeneous Neumann problem. Informally, for
β→∞ it leads to the homogeneous Dirichlet problem. Define the quadratic form

Qβ(u,v)=E(u,v)+
ˆ
Ωc

u(y)v(y)β(y)dy.

A function u∈Vν(Ω|Rd) is called a weak solution of the Robin problem (4.15) if

Qβ(u,v)=

ˆ
Ω

f(x)v(x)dx+

ˆ
Ωc

g(y)v(y)dy for all v∈Vν(Ω|Rd). (4.16)

Theorem 4.6. Let ν and Ω be as in Theorem 4.5. Assume that βν̃−1 :Ωc→ [0,∞)
is essentially bounded and β is non-trivial that is, |Ωc∩{β>0}|>0. Let f ∈L2(Ω)
and g∈L2(Ωc, ν̃−1). There exists a unique function u∈Vν(Ω|Rd) solution to (4.16)
satisfying

∥u∥Vν(Ω|Rd)≤C
(
∥f∥L2(Ω)+∥g∥L2(Ωc,ν̃−1)

)
, (4.17)

where C :=C(d,Ω,Λ,ν,β)>0 can be chosen independently of u, f and g.

Remark 4.5. The operator Ψ :L2(Ω)×L2(Ωc, ν̃−1)→Vν(Ω|Rd) mapping the data
(f,g) to the unique solution u∈Vν(Ω|Rd) of the variational problem (4.16) is linear,
one-to-one, and continuous. Moreover, with C as above,

∥Ψ(f,g)∥Vν(Ω|Rd)≤C∥(f,g)∥L2(Ω)×L2(Ωc,ν̃−1).

Proof. First of all, we claim that the form Qβ(·, ·) is coercive on Vν(Ω|Rd). Assume

it is not true. Then for each n≥1 there exists un∈Vν(Ω|Rd) with ∥un∥Vν(Ω|Rd)=1 such
that

E(un,un)+
ˆ
Ωc

|un(y)|pβ(y)dy=Qβ(un,un)<
1

2n
.

3According to the over 20 years survey work [56], there is no historical evidence why the problem
(4.14) is termed after Robin’s name. The survey [56, p.69] also points out that the first mathematical
appearance of the problem (4.14) goes back at least to the works on cooling law by Fourier(1822) and/or
Newton (1701, but mathematical contribution by Newton is uncertain).
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In virtue of our compactness result, Theorem 3.2, (un)n converges up to a subsequence

in L2(Ω) to some u∈Vν(Ω|Rd). We deduce ∥u∥L2(Ω)=1, since E(un,un)
n→∞−−−−→0 and

for all n≥1, ∥un∥Vν(Ω|Rd)=1. From E(un,un)
n→∞−−−−→0 and ∥un−u∥Lp(Ω)

n→∞−−−−→0 we

obtain that un converges to u in Vν(Ω|Rd) with E(u,u)=0. Thus u is constant al-
most everywhere in Rd. On the other hand, since β is bounded and the embedding
Vν(Ω|Rd) ↪→L2(Ωc, ν̃), see Lemma 2.2, is continuous, we have

ˆ
Ωc

u2(y)β(y)dy≤2

ˆ
Ωc

u2n(y)β(y)dy+2∥βν̃−1∥L∞(Ωc)

ˆ
Ωc

(un(y)−u(y))2ν̃(y)dy

≤2Qβ(un,un)+C∥un−u∥2Vν(Ω|Rd)

n→∞−−−−→0.

From this, we conclude u=0 since we know that u is a constant function and β>0
almost everywhere on a set of positive measure U ⊂Ωc on which u vanishes. This
contradicts ∥u∥L2(Ω)=1 and hence our initial assumption was wrong. Therefore there
exists a constant C=C(d,Ω,ν,β)>0 such that

Qβ(u,u)≥C∥u∥2Vν(Ω|Rd) for all u∈Vν(Ω|Rd). (4.18)

The remaining requirements for the application of the Lax-Milgram lemma can be
checked easily. Existence of a unique solution to (4.16) follows. The estimate (4.17) is
a direct consequence of (4.18).

4.4. Dirichlet-to-Neumann map. In this section we define the Dirichlet-to-
Neumann map related to the nonlocal Lévy operator L under consideration. Afterwards
we prove that its spectrum is strongly connected to the Robin eigenvalues of the op-
erator L. This was originally introduced in [47]. We refer the interested reader to the
expositions [4, 9] where the Dirichlet-to-Neumann map is treated in the local setting
for the Laplacian. We point out that an attempt to define the Dirichlet-to-Neumann
map is provided in [75]. For the case for the fractional Laplacian a different Dirichlet-
to-Neumann map to ours is derived in [51], see also the variant for fractional regional
operators in [76, 77]. Let us first review the nonlocal Dirichlet problem. In the spirit
of [42] one can easily prove the following.

Theorem 4.7. Let Ω⊂Rd be open and bounded. Given f ∈L2(Ω) and g∈Tν(Ωc),
there exists a unique function u∈Vν(Ω|Rd) with u=g a.e. on Ωc and

E(u,v)=
ˆ
Ω

f(x)v(x)dx for all v∈Vν,0(Ω|Rd). (4.19)

In fact, u is the weak solution to the nonlocal Dirichlet problem Lu=f in Ω and u=g
on Ωc. Moreover, there exists C=C(Ω,d,Λ,ν)>0 independent of f and g,

∥u∥Vν(Ω|Rd)≤C(∥f∥L2(Ω)+∥g∥Tν(Ωc)). (4.20)

The result follows from the Lax-Milgram lemma because the linear form v 7→
´
Ω
fv

is continuous on Vν,0(Ω|Rd) and the bilinear form E(·,·) bounded and coercive on

Vν,0(Ω|Rd) (see Theorem 3.4). It is noteworthy to recall that under the non-integrability

condition (I) and the Lévy integrability condition (L), Vν,0(Ω|Rd) is compactly embed-
ded in L2(Ω). With this at hand, analogously to Theorem 4.5 there exist a family of
(ψn)n elements of Vν,0(Ω|Rd), orthonormal basis of L2(Ω) and an increasing sequence
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of real numbers 0<λ1≤···≤λn≤··· . such that λn→∞ as n→∞ and each ψn is a
Dirichlet eigenfunction of L whose corresponding eigenvalue is λn namely

E(ψn,v)=λn

ˆ
Ω

ψn(x)v(x)dx for all v∈Vν,0(Ω|Rd).

Note that the constants µ1>0 and λ1>0 respectively satisfy the Poincaré inequalities

E(u,u)≥µ1∥u∥2L2(Ω), for all u∈Vν(Ω|Rd)⊥,

E(u,u)≥λ1∥u∥2L2(Ω), for all u∈Vν,0(Ω|Rd).

Before we formally define the Dirichlet-to-Neumann map, some prerequisites are re-
quired. Let f ∈L2(Ω) and g∈Tν(Ωc). Assume, λ<λ1, then the bilinear form
E−λ(u,u)=E(u,u)−λ∥u∥2L2(Ω) is coercive on Vν,0(Ω|Rd). Thus there exists a function

u∈Vν(Ω|Rd) unique weak solution to the Dirichlet problem Lu−λu=f in Ω and u=g
on Ωc. Explicitly, u=g on Ωc and

E(u,v)−λ
ˆ
Ω

u(x)v(x)dx=

ˆ
Ω

f(x)v(x)dx for all v∈Vν,0(Ω|Rd). (4.21)

Moreover, the estimate (4.20) (with the estimating constant depending on λ) remains
true. More generally, by the mean of Fredholm alternative and the closed graph theorem,
the preceding facts (4.21) and (4.20) respectively remain true for the operator L−λ,
whenever λ∈R\{λn :n≥1}.

From now on we suppose f =0 and λ∈R\{λn :n≥1} and label the solution of
(4.21) by u=ug. Then the mapping g 7→ug is linear and continuous from Tν(Ω

c) to

Vν(Ω|Rd) since by (4.20) we have

∥ug∥Vν(Ω|Rd)≤C∥g∥Tν(Ωc).

Given v∈Tν(Ωc), put ṽ=ext(v)∈Vν(Ω|Rd) as an extension of v. Let ⟨·, ·⟩ be the dual
pairing between Tν(Ω

c) and Tν(Ω
c)′.

Definition 4.4. Let λ∈R\{λn :n≥1}. We call the mapping Dλ :Tν(Ω
c)→Tν(Ω

c)′

with g 7→Dλg=E−λ(ug ,̃·) such that ⟨Dλg,v⟩=E−λ(ug, ṽ), the Dirichlet-to-Neumann map
with respect to the operator L−λ.

Theorem 4.8. The Dirichlet-to-Neumann operator Dλ :Tν(Ω
c)→Tν(Ω

c)′ with g 7→
Dλg=E−λ(ug ,̃ ·) is well defined, linearly bounded and self-adjoint. Moreover, if we take
c=min(1,−λ) then for all g∈Tν(Ωc) we have

⟨Dλg,g⟩≥ c∥ug∥2Vν(Ω|Rd).

In particular, if c>0 it follows that

⟨Dλg,g⟩≥ c∥g∥2Tν(Ωc).

Proof. Consider v′∈Vν(Ω|Rd), another extension of v then v′− ṽ∈Vν,0(Ω|Rd) and
by definition of ug

E−λ(ug,v
′− ṽ)=0 that is E−λ(ug, ṽ)=E−λ(ug,v

′).

Therefore the mapping v 7→E−λ(ug, ṽ) is well defined, linear and bounded on Tν(Ω
c).

Indeed,

|E−λ(ug, ṽ)|≤ (|λ|+1)∥ug∥Vν(Ω|Rd)∥ṽ∥Vν(Ω|Rd).



54 A GENERAL FRAMEWORK FOR NONLOCAL NEUMANN PROBLEMS

Since the extension ṽ of v is arbitrarily chosen, upon the estimate (4.21) we obtain

|E−λ(ug, ṽ)|≤C∥g∥Tν(Ωc)∥v∥Tν(Ωc).

This shows that, E−λ(ug ,̃·) belongs Tν(Ω
c)′. Subsequently it also follows from this

estimate that the mapping Dλ :Tν(Ω
c)→Tν(Ω

c)′ with g 7→Dλg=E−λ(ug ,̃ ·) is linear and
bounded. Now let g,h∈Tν(Ωc) specializing the definition of Dλ with g̃=ug and h̃=uh
the self-adjointness is obtained as follows

⟨Dλg,h⟩=E−λ(ug,uh)=E−λ(uh,ug)= ⟨Dλh,g⟩.

The choice c=min(1,−λ) leads to ⟨Dλg,g⟩=E−λ(ug,ug)≥ c∥ug∥2Vν(Ω|Rd)
.

Remark 4.6. The above definition is motivated by the following observation. Assume
ug is as before and φ∈C∞

c (Rd). The Gauss-Green formula (B.3) gives

⟨Dλg,φ⟩=E−λ(ug,φ)=

ˆ
Ωc

Nug(y)φ(y)dy. (4.22)

From the second equality we can identify Dλg=Nug ∈L2(Ωc, ν̃−1)⊂Tν(Ωc)′. Hence
Dλ :g 7→Nug, which agrees with conceptual idea behind the Dirichlet-to-Neumann map
in the classical case.

Theorem 4.9. Let the assumptions of Theorem 4.6 be in force. Denote by Lβ

the operator L subject to the Robin boundary condition Nu+βu=0. Then the point
spectrum σp(Lβ)=(γn(β))n of Lβ is infinitely countable say 0<γ1(β)≤γ2(β)≤···≤
γn(β)≤···, with γn(β)→∞ as n→∞, and the corresponding eigenfunctions belong to
Vν(Ω|Rd) and form an orthonormal basis of L2(Ω).

Proof. It suffices to proceed as in the proof of Theorem 4.5, see also [47, Theorem
4.36].

Next, we see the relation between the spectrum of the operator L subject to Robin
boundary condition and that of Dirichlet-to-Neumann operator.

Theorem 4.10. Let λ∈R\{λn :n≥1} and β :Ωc→R be measurable. Consider the
Dirichlet-to-Neumann map Dλ :Tν(Ω

c)→Tν(Ω
c)′, Dλg=Nug. Then, 0∈σp(Dλ+β) if

and only if λ∈σp(Lβ). In addition, dimker(Lβ−λ)=dimker(Dλ+β).

Proof. Let u∈ker(Lβ−λ) then for all v∈Vν(Ω|Rd),

Qβ(u,v)=λ

ˆ
Ω

u(x)v(x)dx equivalently E−λ(u,v)=−
ˆ
Ωc

u(y)v(y)β(y)dy.

Set g=Tr(u)=u|Ωc , with the aid of (4.22) the above relation reduces to

ˆ
Ωc

Nug(y)v(y)dy=−
ˆ
Ωc

g(y)v(y)β(y)dy.

Thus g∈ker(Dλ+β). We have shown that the mapping T : ker(Lβ−λ)→ker(Dλ+β)
with u 7→Tr(u) is well defined and onto. Both assertions will follow once we show
that T defines a bijection, in other words we only have to show that T is one-to-
one. For u∈ker(Lβ−λ) if Tr(u)=0 then from the first relation above, we have

E(u,v)=λ
´
Ω
u(x)v(x)dx for all v∈Vν,0(Ω|Rd). Necessarily, u=0 otherwise λ is a Dirich-

let eigenvalue which is not the case by assumption.
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5. Transition from nonlocal to local
The main purpose of this section is to prove the convergence of a sequence of non-

local Neumann problems to a local Neumann problem, i.e., the corresponding solutions
converge. The main result of this section is Theorem 5.1. We consider the following
set-up: Let (να)α∈(0,2) be a family of Lévy radial functions approximating the Dirac
measure at the origin, i.e., for every α,δ>0

να≥0 is radial,

ˆ
Rd

(1∧|h|2)να(h)dh=d, lim
α→2

ˆ
|h|>δ

να(h)dh=0. (5.1)

Note that there is no restriction on the support of να. The above definition of (να)0<α<2

generalizes the spectrum of possible approximation sequences in [36,48]. Note that, con-
vergence of nonlocal variational structures including finite dimensional Galerkin meth-
ods have already been considered in [63] and [12] for homogeneous nonlocal problems
of vanishing horizon-type.

We denote Lα and Nα to be the nonlocal operators associated with να, i.e.,

Lαu(x)=2p.v.

ˆ
Rd

(u(x)−u(y))να(x−y)dy,

Nαu(x)=2

ˆ
Ω

(u(x)−u(y))να(x−y)dy.

The associated energy forms are defined by

Eα
Ω(u,v)=

¨

ΩΩ

(
u(y)−u(x)

)(
v(y)−v(x)

)
να(x−y)dxdy,

Eα(u,v)=

¨

(Ωc×Ωc)c

(
u(y)−u(x)

)(
v(y)−v(x)να(x−y)dxdy.

Let us mention two prototypical examples of interest here. For more concrete ex-
amples we refer the reader to [47,48].

Example 5.1. Define να(h)=ad,α|h|−d−α with ad,α=
dα(2−α)
2|Sd−1| . Indeed, passing

through polar coordinates yields

ˆ
Rd

(1∧|h|2)|h|−d−αdh= |Sd−1|
(ˆ 1

0

r1−αdr+

ˆ ∞

1

r−1−αdr
)
=

2d|Sd−1|
dα(2−α)

=da−1
d,α.

For δ>0, a similar computation gives

ad,α

ˆ

|h|≥δ

(1∧|h|2)|h|−d−αdh≤ dα(2−α)
2d

ˆ ∞

δ

r−1−αdr=
d

2
(2−α)δ−α α→2−−−→0.

The choice of να(h)=ad,α|h|−d−α gives rise to a multiple of fractional Laplace opera-
tor, i.e., Lα=

ad,α

Cd,α
(−∆)α/2, where we recall that Cd,α is the normalizing constant of

(−∆)α/2. Note however that
ad,α

Cd,α
→1 as α→2 see [2, 47,68].

Example 5.2. Let ν ∈L1(Rd,1∧|h|2) be any radial Lévy density that is normalized,
i.e., ˆ

Rd

1∧|h|2ν(h)dh=d.
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Let a family (να)α∈(0,2) be defined by να=ν
2−α where νε is a rescaled version of ν in

the following sense:

νε(h)=


ε−d−2ν

(
h/ε

)
if |h|≤ε

ε−d|h|−2ν
(
h/ε

)
if ε< |h|≤1

ε−dν
(
h/ε

)
if |h|>1.

Then, as shown in [46, Proposition 2.2], (να)α∈(0,2) satisfies (5.1). Note that, as
a possible simple example, one could consider ν(h)= c1B1(0)(h), so that (να) would
correspond to what is known as vanishing horizon in peridynamics, see [26,36].

The next result implies the convergence of the nonlocal normal derivative to the
local one. We point out that a similar convergence has been recently established in [57].

Lemma 5.1. Assume Ω⊂Rd is an open bounded set with Lipschitz boundary. Let
φ∈C2

b (R
d) and v∈Vνα

(Ω|Rd). The following assertions hold true.

(1) There is a constant C>0 independent of α such that

sup
α∈(0,2)

∣∣∣ˆ
Ωc

Nαφ(y)v(y)dy
∣∣∣≤C∥φ∥C2

b (Rd)∥v∥Vνα (Ω|Rd).

(2) Assume v∈H1(Rd) then

lim
α→2

ˆ
Ωc

Nαφ(y)v(y)dy=

ˆ
∂Ω

∂φ

∂n
(x)v(x)dσ(x).

Proof. In view of the estimates (A.1) and (B.2) respectively, we have

|Lαφ|≤4d∥φ∥C2
b (Rd) and Eα(φ,φ)≤4d|Ω|∥φ∥2C1

b (Rd) for all α∈ (0,2).

By the continuity of the linear mapping v 7→Eα(φ,v)−
´
Ω
Lαφ(x)v(x)dx, the Gauss-

Green formula (B.3) is applicable for φ∈C2
b (R

d) and v∈Vνα
(Ω|Rd). Therefore, with

the help of the above estimates we get (1) as follows∣∣∣ˆ
Ωc

Nαφ(y)v(y)dy
∣∣∣= ∣∣∣Eα(φ,v)−

ˆ
Ω

Lαφ(x)v(x)dx
∣∣∣

≤Eα(φ,φ)1/2Eα(v,v)1/2+∥Lαφ∥L2(Ω)∥v∥L2(Ω)

≤C∥φ∥C2
b (Rd)∥v∥Vνα (Ω|Rd).

Noting that Lαφ(x)
α→2−−−→−∆φ(x) for all x∈Rd (see [46, Proposition 2.4]) and that

|Lαφ|≤ 4
d∥φ∥C2

b (Rd), the Lebesgue dominated convergence theorem yields

ˆ
Ω

Lαφ(x)v(x)dx
α→2−−−→

ˆ
Ω

−∆φ(x)v(x)dx.

On the other hand, according to [46] and [48, Theorem 3.4], we have that

¨

ΩΩ

(v(x)−v(y))2να(x−y)dxdy
α→2−−−→

ˆ
Ω

|∇v(x)|2dx

¨

ΩΩc

(v(x)−v(y))2να(x−y)dxdy
α→2−−−→0.

(5.2)
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So that, Eα(v,v)
α→2−−−→

´
Ω
|∇v(x)|2dx. Thus we also have

Eα(φ,v)
α→2−−−→

ˆ
Ω

∇φ(x) ·∇v(x)dx.

Finally from the foregoing and the local Gauss-Green formula we obtain (2) as follows

lim
α→2

ˆ
Ωc

Nαφ(y)v(y)dy= lim
α→2

Eα(φ,v)− lim
α→2

ˆ
Ω

Lαφ(x)v(x)dx

=

ˆ
Ω

∇φ(x) ·∇v(x)dx−
ˆ
Ω

∆φ(x)v(x)dx=

ˆ
∂Ω

∂φ

∂n
(x)v(x)dσ(x).

Theorem 5.1 (Convergence of weak solution). Let Ω⊂Rd be an open bounded
and connected domain with Lipschitz boundary. Let (fα)α be functions converging in
the weak sense to another function f in L2(Ω) and let gα=Nαφ and g= ∂φ

∂n for some

φ∈C2
b (R

d). Assume uα∈Vνα
(Ω|Rd)⊥ is a weak solution to Lαu=fα on Ω and Nαu=

gα on Ωc that is,

Eα(uα,v)=

ˆ
Ω

fα(x)v(x)+

ˆ
Ωc

gα(x)v(x) for all v∈Vνα
(Ω|Rd)⊥.

Let u∈H1(Ω)⊥ be the unique weak solution to the Neumann problem −∆u=f in Ω and
∂u
∂n =g on ∂Ω i.e.

ˆ
Ω

∇u(x) ·∇v(x)dx=
ˆ
Ω

f(x)v(x)dx+

ˆ
∂Ω

g(x)v(x)dσ(x) for all u∈H1(Ω)⊥.

Then (uα)α strongly converges to u in L2(Ω), i.e., ∥uα−u∥L2(Ω)
α→2−−−→0. Moreover,

the following weak convergence of the energy forms holds true

Eα(uα,v)
α→2−−−→

ˆ
Ω

∇u(x) ·∇v(x)dx for all v∈H1(Rd). (5.3)

Remark 5.1.
(1) In case of the homogeneous problem, i.e., for φ=0 and fα=f , the corresponding

result is a direct consequence of the Mosco-convergence of (Eα(·,·),Vνα
(Ω|Rd))α to

the gradient form
´
Ω
|∇u(x)|2dx with domain H1(Ω), see [48].

(2) The convergence in result of Theorem 5.1 remains true if one replaces the Neumann
condition with the Dirichlet condition, see [47].

(3) Examples of the type of Example 5.2 have been considered in relation to models in
peridynamics, see [36, Section 4.2] and [12] for a natural nonlinear setting.

(4) The assertion of the theorem remains true under the weaker assumption that
(gα,ψ)L2(Ωc) convergences to (g,ψ)L2(∂Ω) for all ψ∈H1(Rd).

(5) It is desirable to study Theorem 5.1 under more general assumptions, e.g., under
a weaker assumption than φ∈C2

b (R
d). A sufficient condition to be expected is

g∈H1/2(∂Ω).

Proof. A compactness argument as in [70, Corollary 2.1], see also [47, Chapter 5],
shows that for certain α0∈ (0,2) there exists a constant positive C>0 depending only
on α0,Ω and d such that for all v∈L2(Ω)⊥ and all α∈ (α0,2)

∥v∥2Vνα (Ω|Rd)≤CE
α(v,v). (5.4)
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In view of the weak convergence, we can assume without loss of generality that
supα∈(0,2)∥fα∥L2(Ω)<∞. This together with the definition of uα along with Lemma 5.1
(1) yields

Eα(uα,uα)=

ˆ
Ω

fα(x)uα(x)dx+

ˆ
Ωc

gα(y)uα(y)dy

≤∥uα∥Vνα (Ω|Rd)(∥fα∥L2(Ω)+∥φ∥C2
b (Rd))

≤C∥uα∥Vνα (Ω|Rd).

Combining this with (5.4), then for a generic constant C>0 independent of α we have
the following uniform boundedness

∥uα∥Hνα (Ω)≤∥uα∥Vνα (Ω|Rd)≤C for all α∈ (α0,2). (5.5)

Recall that, see [46, 47], ∥u∥Hνα (Ω)
α→2−−−→∥u∥H1(Ω) for all u∈H1(Ω). Whence from [60,

Lemma 2.2] there exists u′∈H1(Ω) and a subsequence αn
n→∞−−−−→2 such that,

lim
n→∞

(
uαn

,v
)
Hναn

(Ω)
=
(
u′,v

)
H1(Ω)

,

where, we recall that(
w, v

)
Hνα (Ω)

=

ˆ
Ω

w(x)v(x)dx+

¨

ΩΩ

(w(x)−w(y))(v(x)−w(y))να(x−y)dxdy

(
w,v

)
H1(Ω)

=

ˆ
Ω

w(x)v(x)dx+

ˆ
Ω

∇w(x) ·∇v(x)dx.

By virtue of the asymptotic compactness, see [14, 47, 70]; see also and [2, Section
4], there exists a further subsequence that we still denote by (αn)n and a function

u′′∈H1(Ω) such that ∥uαn −u′′∥L2(Ω)
n→∞−−−−→0. It is not difficult to show that u′=u′′

almost everywhere in Ω, u∈H1(Ω)⊥ where we let u=u′, and that for all v∈H1(Ω)¨

ΩΩ

(uαn
(x)−uαn

(y))(v(x)−v(y))ναn
(x−y)dxdy n→∞−−−−→

ˆ
Ω

∇u(x) ·∇v(x)dx. (5.6)

It remains to show that u is the weak solution of the corresponding local Neumann
problem. To this end, we fix v∈H1(Ω)⊥, given that Ω has a Lipschitz boundary we let
v∈H1(Rd) be an extension of v. The uniform boundedness in (5.5) and the convergence
in (5.2) yield ¨

ΩΩc

∣∣(uαn
(x)−uαn

(y))(v(x)−v(y))
∣∣ναn

(x−y)dxdy

≤C
¨

ΩΩc

(v(x)−v(y))2ναn(x−y)dxdy
n→∞−−−−→0.

This combined with (5.6) gives

Eαn(uαn ,v)
n→∞−−−−→

ˆ
Ω

∇u(x) ·∇v(x)dx.

In particular, since v∈H1(Rd) can be arbitrarily chosen, we have the weak convergence

Eαn(uαn
,v)

n→∞−−−−→
ˆ
Ω

∇u(x) ·∇v(x)dx for all v∈H1(Rd).
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We know that v∈Vνα(Ω|R
d)⊥ for all α∈ (0,2), thus by definition of uαn it follows that,

Eαn(uαn
,v)=

ˆ
Ω

fαn
(x)v(x)dx+

ˆ
Ωc

gαn
(y)v(y)dy.

By Lemma 5.1 (2) and the fact that fαn
⇀f weakly in L2(Ω), letting n→∞ we obtainˆ

Ω

∇u(x) ·∇v(x)dx=

ˆ
Ω

f(x)v(x)dx+

ˆ
∂Ω

g(x)v(x)dσ(x).

By virtue of the uniqueness of the limit u∈H1(Ω)⊥, the same reasoning can be applied

to any other subsequence (αn)n with αn
n→∞−−−−→2 and hence the claimed convergences

hold true for the whole sequence as desired.
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Appendix. In the following appendices we explain basic properties of translation-
invariant nonlocal operators L driven by the density of a Lévy measure ν :Rd\{0}→
[0,∞) satisfying condition (L). Throughout this section we assume k(x,y)=ν(x−y) for
all x ̸=y. The main goals include a definition of Lu as a distribution in Proposition A.2
and the Gauss-Green formula for nonlocal operators in Proposition B.1.

Appendix A. Basics on the operator L. Given k∈N, denote Ck
b (R

d) as the
space of bounded functions of class Ck whose derivatives up to order k are bounded.
Recall that for a sufficiently smooth function v :Rd→R, the operator L is defined by

Lv(x)=p.v.

ˆ

Rd

(v(x)−v(y))ν(x−y)dy= lim
ε→0+

Lεv(x)

where

Lεv(x)=

ˆ

Rd\Bε(x)

(v(x)−v(y))ν(x−y)dy (x∈Rd;ε>0).

Here are some basic properties of the operator L.

Proposition A.1. Let u∈C2
b (R

d). Then the following properties are satisfied.

(1) The map x 7→Lu(x) is bounded and uniformly continuous. Moreover,

Lu(x)=−1

2

ˆ
Rd

(u(x+h)+u(x−h)−2u(x))ν(h)dh.

(2) For each ε>0, the map x 7→Lεu(x) is uniformly continuous.

(3) The family (Lεu(x))ε is uniformly bounded and uniformly converges to Lu, i.e.

∥Lεu−Lu∥L∞(Rd)
ε→0−−−→0.

Proof. Let u∈C2
b (R

d). A simple change of variables implies

Lεu(x)=−1

2

ˆ

Rd\Bε(0)

(u(x+h)+u(x−h)−2u(x))ν(h)dh.
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An application of the fundamental theorem of calculus yields

(u(x+h)+u(x−h)−2u(x))=

ˆ 1

0

[
∇u(x+ th)−∇u(x− th)

]
·hdt

=

ˆ 1

0

ˆ 1

0

2t
[
D2u(x− th+2sth) ·h

]
·hdsdt.

Since u and its Hessian D2u are bounded functions, we deduce

|u(x+h)+u(x−h)−2u(x)|≤2∥u∥C2
b (Rd)(1∧|h|2), x,h∈Rd . (A.1)

The integrability of the function h 7→ (1∧|h|2)ν(h) entails the boundedness of x 7→Lu(x)
and the uniform boundedness of x 7→Lεu(x). It also allows us to get rid of the principal
value formulation. Furthermore, we can prove the uniform convergence of (Lεu)ε to Lu
by

∥Lεu−Lu∥L∞(Rd)≤2∥u∥C2
b (Rd)

ˆ
Bε(0)

(1∧|h|2)ν(h)dh ε→0−−−→0.

In order to prove the uniform continuity, we fix x,z∈Rd close enough, say |x−z|≤ δ
with 0<δ<1. Then for every h ∈Rd, h ̸=0,

2|u(x)−u(z)|+ |u(x+h)−u(z+h)|+ |u(x−h)−u(z−h)|≤4δ∥u∥C2
b (Rd).

This combined with (A.1) yields the uniform continuity via the integrability of h 7→
(1∧|h|2)ν(h) as follows,

∥Lu(x)−Lu(z)∥L∞(Rd)≤2∥u∥C2
b (Rd)

ˆ
Rd

(δ∧|h|2)ν(h)dh δ→0−−−→0.

The uniform continuity of x 7→Lεu(x) follows analogously.

In order for Lu(x) to be defined, u needs to possess two properties: some regularity
in the neighborhood of the point x and some weighted integrability for |x|→∞. As
shown above, being C2 in the neighborhood of x is more than sufficient as it is bounded
for |x|→∞. Let us investigate some mild condition on u as |x|→∞ that still allows a
suitable definition of Lu. In order to do so, we additionally assume that ν is unimodal.

Proposition A.2. Let ν be a unimodal Lévy measure. Define a weight ν̂ on Rd by
ν̂(x)=ν( 12 (1+ |x|)).
(1) For u∈C2(Rd)∩L1(Rd, ν̂), the expression Lu(x) exists for every x∈Rd.

(2) Assume that ν has full support. For u∈L1(Rd, ν̂) the expression Lu is defined in
the distributional sense via the mapping φ 7→ ⟨Lu,φ⟩=(u,Lφ)L2(Rd).

(3) Assume that ν satisfies the scaling condition (2.5). Let Ω⊂Rd be open bounded and
u∈Vν(Ω|Rd). Then Lu is defined in the distributional sense.

Remark A.1. Note that ν̂ ∈L1(Rd)∩L∞(Rd) and that L1(Rd, ν̂) contains L∞(Rd).
In particular if ν(h)= |h|−d−α for some α∈ (0,2), then ν̂(h)≍ (1+ |h|)−d−α.

Proof. For the proof of (1) we decompose the integral in the definition of Lu(x)
into the two domains {|y|≤2|x|+1} and {|y|>2|x|+1}. In the first domain we employ
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the Taylor formula as in the proof of Proposition A.1. For y in the second domain we
observe

|x−y|≥ |y|−|x|≥ |y|
2

+
|y|
2

−|x|≥ |y|+1

2
.

Thus, for y in the second domain, by unimodality (see Definition 2.1) we conclude
ν(x−y)≤ cν̂(y) and thus

ˆ

{|y|>2|x|+1}

|u(x)|ν(x−y)dy+
ˆ

{|y|>2|x|+1}

|u(y)|ν(x−y)dy≤Kν |u(x)|+∥u∥L1(Rd,ν̂).

For the proof of (2), let φ∈C∞
c (Rd) be supported in BR(0) for some R≥1. We claim

|Lφ(x)|≤C∥φ∥C2
b (Rd)ν̂(x) for all x∈Rd (A.2)

with some constant C=C(R,d,ν) depending only on R,d and ν. Indeed, suppose |x|≥
4R, so that φ(x)=0. Since |x−y|≥ |x|

2 +R≥ 1
2 (1+ |x|) for y∈BR(0), the unimodal

property (see Definition 2.1) implies ν(x−y)≤ cν̂(x). Accordingly,

|Lφ(x)|≤
ˆ
BR(0)

|φ(y)|ν(x−y)dy≤ c|BR(0)|∥φ∥C2(Rd)ν̂(x).

Whereas, if |x|≤4R the proof of (A.2) is complete using (A.1) as follows. Since 1
2 (1+

|x|)≤4R we have ν̂(x)≥ c1 for an appropriate constant c1>0 depending on R and ν.
Thus we conclude

|Lφ(x)|≤4Θ∥φ∥C2
b (Rd)≤ c−1

1 4Θ∥φ∥C2
b (Rd)ν̂(x)

with Θ=
´
Rd(1∧|h|2)ν(h)dh. Note that in case of the fractional Laplace operator the

estimate (A.2) is analogous to [41, Lemma 2.1]. Finally, (A.2) yields

|(u,Lφ)L2(Rd)|≤C∥φ∥C2
b (Rd)

ˆ
Rd

|u(x)|ν̂(x)dx.

This shows that Lu is a distribution when u∈L1(Rd, ν̂). With regard to (3) let Ω⊂Rd be
open and bounded. We show that the embedding Vν(Ω|Rd) ↪→L1(Rd, ν̂) is continuous
under the additional scaling assumption (2.5). Indeed, for u∈Vν(Ω|Rd) we assume
Ω⊂BR(0) for some R≥1. Then |x−y|≤R(1+ |x|) for all x∈Rd and all y∈Ω so that
by (2.5) and Definition 2.1 we deduce ν̂(x)≤Cν(R(1+ |x|))≤ cCν(x−y). Here c,C >0
are constants independent of x and y. Proceeding as in Lemma 2.2, one arrives at the
estimate ˆ

Rd

|u(x)|ν̂(x)dx≤C∥u∥Vν(Ω|Rd).

Therefore, regarding the preceding arguments Lu is also a distribution whenever u∈
Vν(Ω|Rd).

Appendix B. Gauss-Green type formula. Having at hand a nonlocal analog
of the normal derivative as in Definition 4.1, it makes sense to study a formula that
resembles the classical Gauss-Green formula. Such formulas have been established in
several contexts. See [33] for numerous identities of a nonlocal vector calculus in the
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case of bounded kernels and [29] for the case of the fractional Laplace operator. Recall
the classical Gauss-Green formula (see [67, Chap 3], [74, Appendix A.3] or [15, Theorem
III.1.8]) says for all u∈H2(Ω) and v∈H1(Ω),

ˆ
Ω

(−∆)u(x)v(x)dx=

ˆ
Ω

∇u(x) ·∇v(x)dx−
ˆ
∂Ω

γ1u(x)γ0v(x)dσ(x). (B.1)

A reasonable explanation to this terminology is given in the Lemma 5.1. For a function
u∈C1

b (R
d) we know

|u(x)−u(y)|≤2∥u∥C1
b (Rd)(1∧|x−y)|) (x,y∈Rd), (B.2)

which implies

¨

(Ωc×Ωc)c

(
u(x)−u(y)

)2
ν(x−y)dxdy≤8∥u∥2C1

b (Rd)

¨

ΩRd

(1∧|x−y|2)ν(x−y)dxdy<∞.

Proposition B.1 (Gauss-Green type formula). Let Ω be open and bounded. For
u∈C2

b (R
d) and v∈C1

b (R
d)

ˆ
Ω

[Lu(x)]v(x)dx=E(u,v)−
ˆ
Ωc

Nu(y)v(y)dy. (B.3)

In particular, by choosing v=1 one deduces

ˆ
Ω

Lu(x)dx=−
ˆ
Ωc

Nu(y)dy. (B.4)

Proof. Let u∈C2
b (R

d) and v∈C1
b (R

d). With the aid of Proposition A.1 we can
write

ˆ
Ω

[Lu(x)]v(x)dx= lim
ε→0

ˆ
Ω

v(x)dx

ˆ

Rd\Bε(x)

((u(x)−u(y))ν(x−y)dy

= lim
ε→0

ˆ

Ω

ˆ

Ω\Bε(x)

(u(x)−u(y))v(x)ν(x−y)dydx+
ˆ

Ω

ˆ

Ωc

(u(x)−u(y))v(x)ν(x−y)dydx.

On one side, by a symmetry argument we have

lim
ε→0

ˆ

Ω

ˆ

Ω\Bε(x)

(u(x)−u(y))v(x)ν(x−y)dydx

= lim
ε→0

¨

Ω×Ω∩{|x−y|>ε}

(u(x)−u(y))v(x)ν(x−y)dydx

= lim
ε→0

1

2

¨

Ω×Ω∩{|x−y|>ε}

(u(x)−u(y))(v(x)−v(y))ν(x−y)dydx

=
1

2

¨

ΩΩ

(u(x)−u(y))(v(x)−v(y))ν(x−y)dydx
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where one gets rid of the principal value using the estimate (B.2) applied to u and v.
On the other side, with the help of Fubini’s theorem we have

¨

ΩΩc

(u(x)−u(y))v(x)ν(x−y)dydx

=

¨

ΩΩc

(u(x)−u(y))(v(x)−v(y))ν(x−y)dydx+
ˆ

Ωc

v(y)dy

ˆ

Ω

(u(x)−u(y))ν(x−y)dx

=
1

2

¨

ΩΩc

(u(x)−u(y))(v(x)−v(y))ν(x−y)dydx

+
1

2

¨

ΩcΩ

(u(x)−u(y))(v(x)−v(y))ν(x−y)dydx−
ˆ

Ωc

Nu(y)v(y)dy.

Altogether inserted in the initial relation provide the desired relation.

As a direct consequence of Proposition B.1 we have the following.

Corollary B.1 (Second Gauss-Green identity). For all u,v∈C2
b (R

d) we have

ˆ
Ω

v(x)Lu(x)−u(x)Lv(x)dx=
ˆ
Ωc

u(y)N v(y)−v(y)Nu(y)dy. (B.5)

We now look at certain aspect of the dual of the trace space Tν(Ω
c) in relation with

the nonlocal normal derivative operator N .

Theorem B.1. For any linear continuous form ℓ :Tν(Ω
c)→R there exists a function

w∈Vν(Ω|Rd) such that for every v∈C∞
c (Ω

c
)

ℓ(v)=

ˆ
Ωc

Nw(y)v(y)dy.

In particular, given a measurable function g :Ωc→R if the linear mapping ℓg :v 7→´
Ωc g(y)v(y)dy is continuous on Tν(Ω

c) then, there exists w∈Vν(Ω|Rd) such that
g=Nw almost everywhere on Ωc.

Proof. Let ℓ∈Tν(Ωc)′ then because of the continuity of the trace operator Tr, the
linear form ℓ◦Tr is also continuous on Vν(Ω|Rd). By Riesz’s representation theorem
there exists w∈Vν(Ω|Rd) such that ℓ◦Tr(v)=(v,w)(Vν(Ω|Rd) for each v∈Vν(Ω|R

d). In

particular, for v∈C∞
c (Ω

c
) identified with its zero extension on Ω so that Tr(v)=v, we

remain with

ℓ(v)=

ˆ
Ω

w(x)v(x)dx+
1

2

¨

(Ωc×Ωc)c

(w(x)−w(y))(v(x)−v(y))ν(x−y)dxdy

=

ˆ
Ωc

v(y)dy

ˆ
Ω

(w(y)−w(x))ν(x−y)dx=
ˆ
Ωc

Nw(y)v(y)dy.

Furthermore, if g :Ωc→R is such that ℓg is continuous on Tν(Ω
c) then by the above

computation, it follows that g=Nw almost everywhere on Ωc since

ˆ
Ωc

g(y)v(y)dy=

ˆ
Ωc

Nw(y)v(y)dy for all v∈C∞
c (Ω

c
).
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Remark B.1. The second statement of Theorem B.1 particularly suggests that the
space of all measurable functions g :Ωc→R for which the linear form v 7→

´
Ωc g(y)v(y)dy

is continuous on Tν(Ω
c) is contained in N (Vν(Ω|Rd)) (the range of N ).

Remark B.2. The nonlocal normal derivative Nu of a function measurable u :Rd→R
can be thought of as the restriction of the regional operator on Ω associated with
k(x,y)=ν(x−y) on Rd\Ω. It might be interesting to know some situations where the
pointwise definition Nu(x) makes sense at least almost everywhere. It is straightforward
to verify the following: (i) if u∈L∞(Ω) then Nu(x) exists for almost every x∈Rd\Ω,
(ii) if u∈Vν(Ω|Rd) then Nu∈L2

loc(R
d\Ω), (iii) more generally, if u∈Vν(Ω|Rd) then

Nu∈L2(Rd\Ω,w−1(x)dx) where w(x)=
´
Ω
ν(x−y)dy, x∈Rd\Ω.
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