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UNIFIED ASYMPTOTIC ANALYSIS AND NUMERICAL
SIMULATIONS OF SINGULARLY PERTURBED LINEAR

DIFFERENTIAL EQUATIONS UNDER VARIOUS NONLOCAL
BOUNDARY EFFECTS∗

XIANJIN CHEN† , CHIUN-CHANG LEE‡ , AND MASASHI MIZUNO§

Abstract. While being concerned with a singularly perturbed linear differential equation subject to
integral boundary conditions, the exact solutions, in general, cannot be specified, and the validity of the
maximum principle is unassurable. Hence, a problem arises: how to identify the boundary asymptotics
more precisely? We develop a rigorous asymptotic method involving recovered boundary data to tackle
the problem. A key ingredient of the approach is to transform the “nonlocal” boundary conditions into
“local” boundary conditions. Then, we perform an “ε logε-estimate” to obtain the refined boundary
asymptotics of its solutions with respect to the singular perturbation parameter ε. Furthermore, for the
inhomogeneous case, diversified asymptotic behaviors including uniform boundedness and asymptotic
blow-up are obtained. Numerical simulations and validations are also presented to further support the
corresponding theoretical results.
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1. Introduction
The work treats a class of singularly perturbed linear differential equations with

several types of integral boundary conditions involving parameters. To proceed the
analysis in an orderly way, we first study a homogeneous equation

ε2u′′(x)+εa(x)u′(x)−b(x)u(x)=0, x∈ (0,1), (1.1)

with the integral boundary condition

u(0)=µ0+
1

ε

∫ 1

l0

g0(x)u(x)dx, u(1)=µ1+
1

ε

∫ l1

0

g1(x)u(x)dx. (1.2)

Here the symbol “′” denotes d
dx and 0<ε≪1 is a singular perturbation parameter. It is

required that a, b and gj ’s defined on [0,1] are as smooth as necessary to carry out the
rigorous analysis, where a can change sign and b is always positive. For simplicity we
assume that they are independent of ε. Besides, µj ’s and lj ’s are constants independent
of ε, where (l0,l1)∈ [0,1)×(0,1]. It should be stressed that the unknown function u
depends on ε and should be denoted as uε, but throughout the paper we drop its
subscript for simplicity.
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Equations (1.1)–(1.2) arise frequently in many practical problems such as linear
optimal control theory [9,12,23,24,32,42,44] and the electrical network [35], and more
particularly relate to linearized models in population theory [20]; see, e.g., [15, eq.
(1.14)]. On the other hand, it is known that under a relation u(x)=exp{

∫ x
0
ϕ
ε }, (1.1)

formally becomes a Riccati equation εϕ′= b(x)−a(x)ϕ−ϕ2 which means that (1.1)–
(1.2) can be transformed into a singularly perturbed Riccati equation with nonlocal
boundary conditions. For more physical background and the corresponding mathemat-
ical study, we refer the reader to [6, 7, 16, 19, 27, 30, 41, 43]. We also provide its close
relation to Duffing-type equations in Remark 2.4 for the mathematical interest.

The well-known approximate solutions to (1.1)–(1.2) are not rigorous due to the
nonlocal dependence of boundary conditions; see, e.g., (1.4). This work shall propose
a unified method for asymptotic analysis with respect to this class of integral-type
boundary conditions, most notably the nonlocal effects on the asymptotic behavior
of solutions; see Section 2.1. Moreover, for the inhomogeneous case ε2u′′+εa(x)u′−
b(x)u=f(x) with the boundary condition (1.2), we show that various relations among
a, b, f and gj ’s result in diversified asymptotic behaviors (uniform boundedness &
asymptotic blow-up) of u as ε↓0, which will be completely classified. For the sake of
clarity, after completely introducing the study of (1.1)–(1.2) we will turn the interest
on several integral boundary conditions involving various parameters (cf. Section 2.2)
and the inhomogeneous case (cf. Section 2.3).

In Section 1.5, we will briefly discuss the difficulty in the asymptotic analysis of
the nonlinear equation with the integral boundary condition (1.2). We want to point
out that, for the nonlinear case, the refined asymptotics of solutions remains an open
problem. This is exactly our ongoing project.

1.1. Background and motivation. Singularly perturbed models with various
integral boundary conditions have been investigated numerically (cf. [8,10,13,14,31,38–
40]). The previous works related to the unique or multiple solutions of linear/nonlinear
equations with various integral boundary conditions can be found in [2,5,18,26,29,37,45].
Despite the importance of recent research, when a(x) and b(x) are not constant-valued
functions, the refined asymptotic analysis of (1.1)–(1.2) remains unclear.

To formulate our study in a more concrete fashion, let us notice that the boundary
value of u(0) (resp., u(1)) is evaluated by unknown u and a given function g0 (resp.,
g1) in a region [l0,1] (resp., [0,l1]) which may be in the vicinity of, or far away from,
the boundary point x=0 (resp., x=1). As a consequence, there is a nonlocal interac-
tion between boundary values u(0) and u(1). Although (1.1) is linear, the boundary
condition (1.2) makes the asymptotics of u nontrivial. In general, as ε>0 is sufficiently
small, applying the maximum principle to (1.1)–(1.2) is unable to conclude the bound-
edness of u; see, e.g., [36, Lemma 3.1]. On the other hand, perhaps one would surmise

roughly 1
ε |
∫ 1

l0
g0u|≫1 and 1

ε |
∫ l1
0
g1u|≫1 and |u|→∞ near the boundary as 0<ε≪1.

This is not the case, as will be understood later. As a consequence, the standard singu-
lar perturbation analysis may not work on studying the nonlocal model (1.1)–(1.2) and
the asymptotic behavior of its solutions seems counterintuitive. In summary, a central
question is how to recover more accurately the boundary values of u(0) and u(1) so
that we can capture the refined information of u. Accordingly, we shall address the
following questions:

(Q1) How to identify more precisely the asymptotics of u(0) and u(1)?

(Q2) What roles do the functions a, b and gj’s play in the asymptotic behavior
of u?
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The proposed problems above are essentially important for applications since nonlo-
cal boundary conditions “conceal” the accurate boundary information. Developing a
method to obtain the more refined boundary asymptotics is meaningful.

Although several useful methods for the singularly perturbed models have been
established over the past few decades [3, 4, 11, 17, 21, 22, 25, 28, 33, 34], to the best of
our knowledge, these arguments are limited to handle this type of nonlocal equations.
A difficulty comes from the fact that the numerical methods for solving such a class
of singularly perturbed equations with unknown boundary data might be unreliable as
the parameter ε>0 is sufficiently small, and hence fail to provide accurate asymptotic
results. Their corresponding “rigorous analysis” for asymptotic solutions usually stay
at the preliminary estimation, rather than the refined asymptotics. It should also be
stressed that most of the related literature assume min

[0,1]
a>0 that is exactly a simple

situation for investigating the asymptotics of (1.1)–(1.2) with 0<ε≪1. For the case
of min

[0,1]
a<0, we will point out the difficulty in analysis, and introduce an idea to deal

with this case (cf. Section 3.1). The present work shall focus on the more general case
that a(x) can be a sign-changing function, and aim to establish the precise leading term
(with 0<ε≪1) of these two nonlocal coefficients so that we can describe the limiting
profile of u in the whole domain [0,1]. A highlight of this work is to establish the
refined asymptotic profile of u on the whole domain, which is uniformly convergent as
the perturbation parameter ε↓0 (see (1.6) for a special case or Theorem 2.1 for the
general case). In our opinion, the results are useful for the numerical studies such as
stability and convergence analysis; see the numerical results in Section 2.

To be more exact, on one side, our study intends to recover the boundary data u(0)
and u(1) which are actually influenced by variable coefficients a, b, g0 and g1 as the
parameter ε vanishes. To the best of our knowledge, even for the linear Equation (1.1),
these questions remain open since u(0) and u(1) relying nonlocally on the behavior of
solution u in subdomains of [0,1] are unknown. Note that the asymptotic behavior of
solution u and the nonlocal terms in its boundary condition (1.2) are influenced by each
other. Thus, “refined apriori estimates” will be established so that we can obtain the
precise leading-order terms of u(0) and u(1) with respect to 0<ε≪1. Our argument
is based on the comparison theorem and the so-called ε logε-estimate which is useful
for the estimate of solutions near the boundary. These estimates will be explained in
Section 3.1.

Furthermore, to see the importance and non-triviality of the boundary condi-
tion (1.2) with the singularity parameter 1

ε , we shall also consider u=uτ , τ ∈R, satis-
fying (1.1) with the boundary condition

uτ (0)=µ0+ε
−τ
∫ 1

l0

g0(x)uτ (x)dx, uτ (1)=µ1+ε
−τ
∫ l1

0

g1(x)uτ (x)dx. (1.3)

For sufficiently understanding the diversification of asymptotic behavior of uτ , we focus
on the nontrivial case µ0µ1 ̸=0. We obtain that, as 0<ε≪1, the boundary values uτ (0)
and uτ (1) have precise leading order εmax{1,τ}−1. Moreover, when τ ̸=1, the effect of τ
on asymptotics of u is summarized as follows (see Theorems 2.1–2.2 in detail):

• (cf. Theorem 2.2(i)). When τ <1, the nonlocal effects in (1.3) are quite
insignificant since

max

{∫ 1

l0

g0(x)uτ (x)dx,

∫ l1

0

g1(x)uτ (x)dx

}
≪ετ if τ <1.
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For this case, the boundary condition (1.3) is exactly approximated to the

standard Dirichlet type boundary condition since uτ (0)
ε↓0−−→µ0 and uτ (1)

ε↓0−−→
µ1, and the asymptotic behavior of uτ is quite trivial compared to the case
τ =1; see (1.19)–(1.21) and (2.2).

• (cf. Theorem 2.2(ii)). When τ >1, there hold

max
[0,1]

|uτ |≤max{|uτ (0)|,|uτ (1)|}
ε↓0−−→0,

and

lim
ε↓0

ε−τ
∫ 1

l0

g0(x)uτ (x)dx=−µ0, lim
ε↓0

ε−τ
∫ l1

0

g1(x)uτ (x)dx=−µ1.

For this case, although ε−τ ≫ 1
ε (as 0<ε≪1) gives a quite strong singular

perturbation on boundary data, the asymptotic profile of uτ becomes flat in
the whole domain (−1,1). This might seem counterintuitive in the standard
singular perturbation theory.

Accordingly, it motivates us to investigate the nontrivial case τ =1.
Finally, we shall emphasize that our analysis can be widely applied to other types

of integral boundary conditions. Among the mathematical interest and practical ap-
plications for such a class of singular perturbations, Equation (1.1) with various types
of integral boundary conditions (cf. (2.10) and (2.11)) will be discussed in more de-
tail. Based upon our arguments dealing with such types of boundary conditions, we
further study the asymptotic behavior of u to (1.1) with those boundary conditions; see
Section 1.4 and the corresponding results in Section 2.2.

1.2. An overview of (1.1)–(1.2): formal versus rigorous analysis. The
parameters ε2 (in front of u′′) and ε (in front of au′) are naturally due to the standard
length scales. On the other hand, let us consider the equation ε2u′′(x)+εαa(x)u′(x)−
b(x)u(x)=0, i.e., the term εa(x)u′(x) in (1.1) is replaced by εαa(x)u′(x). Then, for
α ̸=1, comparing this new equation with the original Equation (1.1) we have that:

• If α>1, then εα−1max
[0,1]

|a| ε↓0−−→0. Employing the method of matched asymptotic

expansions to this new equation and taking into account α>1, one finds that
the effect of a on asymptotics of solutions u is far weaker than the effect of b as
ε↓0.

• If α<1, this new equation can further be transformed into

ε̃2u′′(x)+ ε̃a(x)u′(x)− ε̃
2(1−α)
2−α b(x)u(x)=0 with ε̃=ε2−α.

The situation about the influences of a(x) and b(x) on asymptotics of solution u

is totally turned around since ε̃
2(1−α)
2−α max

[0,1]
|b| ε↓0−−→0.

As a consequence, this motivates us to focus on the case α=1, and we are devoted to
investigating the effects of both a(x) and b(x) on the asymptotic behavior of u. Despite
the linearity of Equation (1.1), the presence of convection term with the order ε plays
a crucial role in the asymptotics of u as ε↓0.

Let us first point out a difficulty in the asymptotics of (1.1)–(1.2). It should be
stressed that for (1.1) with the standard Dirichlet boundary condition (i.e, u(0) and
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u(1) are given), one obtains a trivial outer solution uout
ε (x)=0 in (0,1), and a formal

inner solution

uin
ε (xε)=u(0)exp

{
Λ−(0)

2ε
xε

}
+u(1)exp

{
−Λ+(1)

2ε
(1−xε)

}
(1.4)

with

Λ−(z) :=−a(z)−
√
a2(z)+4b(z)<0, Λ+(z) :=−a(z)+

√
a2(z)+4b(z)>0, (1.5)

where xε, depending on ε, approaches one of the boundary points x=0,1 as ε>0
goes to zero. (Note that b(z)>0.) What we want to point out is that the standard
method of matched asymptotic expansions may not work on such a linear equation
with integral boundary condition (1.2). A reason for the difficulty in studying the
asymptotic behavior of u with ε↓0 comes from a fact that the boundary condition (1.2)
gives a functional constraint implicitly between u(0) and u(1), and the outer and inner
solutions are formal approximations which are not useful for the rigorous asymptotic
analysis of those nonlocal terms with respect to 0<ε≪1. Furthermore, when taking

a formal look at the limiting form of (1.2) with ε↓0, the terms 1
ε

∫ 1

l0
g0(x)u(x)dx and

1
ε

∫ l1
0
g1(x)u(x)dx may strongly dominate the boundary asymptotic behavior, and such

a nonlocal effect may give a difficulty in analyzing the leading-order asymptotics of u
with respect to 0<ε≪1. In this work we will address this issue; see Proposition 1.1 and
Remark 1.1 for the non-existence, uniqueness and multiplicity of (1.1)–(1.2). The main
result (cf. Theorem 2.1) focuses on the uniqueness case and establishes rigorously the
refined asymptotics of u with respect to 0<ε≪1. For an introduction of Theorem 2.1,
we present an essential case for the reader’s understanding. For C2

ε-norm defined in (2.1),
when l0∈ (0,1] and l1∈ [0,1), by (1.20)–(1.21) and (2.3) below, uniform asymptotics of
u can be depicted as follows:

lim
ε↓0

∥∥∥∥u(x)− 1

D

[(
µ0+

2g0(1)

Λ+(1)
µ1

)
exp

{
1

2ε

∫ x

0

Λ−(z)dz

}
+

(
−2g1(0)

Λ−(0)
µ0+µ1

)
exp

{
− 1

2ε

∫ 1

x

Λ+(z)dz

}]∥∥∥∥
C2

ε([0,1])

=0, (1.6)

where Λ±(z) has been defined by (1.5), and

D :=1+
4g0(1)g1(0)

Λ−(0)Λ+(1)
̸=0,

see also Remark 1.2 below. It should be emphasized that D ̸=0 is a sufficient condition
for the uniqueness of the Equation (1.1)–(1.2), and the coefficients

1

D

(
µ0+

2g0(1)

Λ+(1)
µ1

)
and

1

D

(
−2g1(0)

Λ−(0)
µ0+µ1

)
come from the nonlocal effects of (1.2), which cannot be directly observed from the
original boundary condition. This indeed shows the role of a, b, g0 and g1 in the
nontrivial asymptotic behavior of u under (1.2). For the completeness of the study, our
result also includes the cases of l0=0 and/or l1=1.
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1.3. Methodology and preliminary results. Since (1.1) is linear, for dealing
with the nonlocal asymptotics, a key idea is to decompose u into a linear combination
of functions v and w with unknown coefficients u(0) and u(1):

u(x)=u(0)v(x)+u(1)w(x) (1.7)

where v and w satisfy {
ε2v′′+εa(x)v′−b(x)v=0, x∈ (0,1),

v(0)=1, v(1)=0,
(1.8)

and {
ε2w′′+εa(x)w′−b(x)w=0, x∈ (0,1),

w(0)=0, w(1)=1.
(1.9)

(Their subscript ε is omitted for simplicity.) The condition b(x)≥β>0 implies the
uniqueness of v,w∈C2([0,1]). We will provide basic asymptotic estimates of v and w
with 0<ε≪1 in Proposition 3.1.

Owing to the fact that (1.1) is linear, the relation (1.7) is useful for the Equation
(1.1) with integral boundary conditions (1.3). One can put (1.7) into the boundary
condition (1.2) and obtain a linear system(

I− 1

ε
A(v,w)
ε

)[
u(0)

u(1)

]
=

[
µ0

µ1

]
(1.10)

for boundary values u(0) and u(1), where

I=

[
1 0

0 1

]
and A(v,w)

ε =


∫ 1

l0

g0(x)v(x)dx

∫ 1

l0

g0(x)w(x)dx∫ l1

0

g1(x)v(x)dx

∫ l1

0

g1(x)w(x)dx

. (1.11)

Hence, (1.10)–(1.11) shows that u(0) and u(1) are, in general, influenced by each other.
For general a and b, (1.8) and (1.9) do not have explicit forms. Although equations (1.8)
and (1.9) are quite simple, the first step in conducting a challenge study is to rigorously

obtain the precise leading order term of ε−1A(v,w)
ε with respect to 0<ε≪1. Notice

further that v and w are independent of µ0 and µ1. Owing to the uniqueness of v and w,
the existence, non-existence, uniqueness and multiplicity of solutions to Equation (1.1)
with the boundary condition (1.2) follow directly from the analysis of linear system
(1.10) of (u(0),u(1)). Here we focus mainly on the uniqueness of (1.1)–(1.2).

Proposition 1.1. Assume that a(x) and b(x) are smooth functions defined in [0,1]
with b(x)≥β, where β is a positive constant independent of ε. Then, for ε>0, Equation
(1.1) with the boundary condition (1.2) has a unique solution u∈C2([0,1]) if and only

if I− 1
εA

(v,w)
ε is invertible, i.e.,

det

(
I− 1

ε
A(v,w)
ε

)
̸=0. (1.12)

The unique solution is non-trivial if and only if (µ0,µ1) ̸=(0,0).
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Remark 1.1. When det
(
I− 1

εA
(v,w)
ε

)
=0, (1.1)–(1.2) has infinitely many solutions

(resp., no solution) if µ0 and µ1 satisfy

det


µ0 −1

ε

∫ 1

l0

g0(x)w(x)dx

µ1 1− 1

ε

∫ l1

0

g1(x)w(x)dx

=0 (resp., ̸=0).

A more difficult task is to establish the refined asymptotics of u(0) and u(1) with
sufficiently small ε>0, since (1.10) only gives formal representations of u(0) and u(1),

and so far we do not have any idea on the asymptotics of A(v,w)
ε with respect to 0<

ε≪1. Some assumptions of g0 and g1 will be made later on, in order to guarantee that
(1.12) holds.

Accordingly, we will establish refined asymptotics of (1.8) and (1.9) so that we can
obtain the precise leading order terms of those coefficients in (1.10) with respect to
0<ε≪1; see Proposition 3.1. Based on Proposition 3.1, we introduce the following
properties which play a crucial role in dealing with the asymptotics of u(0) and u(1)
from (1.10).

Proposition 1.2. Assume that a and b are smooth functions defined in [0,1] with
b(x)≥β, where β is a positive constant independent of ε. For ε>0, let v and w be
the unique non-negative solutions of (1.8) and (1.9), respectively. Then, the following
convergences hold:

(i) When p>1, we have, for ϕ∈C([0,1]), that∫ δ0

0

vp

ε
ϕdx

ε↓0−−→− 2ϕ(0)

pΛ−(0)
,

∫ 1

δ1

wp

ε
ϕdx

ε↓0−−→ 2ϕ(1)

pΛ+(1)
, (1.13)∫ δ0

0

ε|v′|2ϕdx ε↓0−−→−Λ−(0)ϕ(0)

4
,

∫ 1

δ1

ε|w′|2ϕdx ε↓0−−→ Λ+(1)ϕ(1)

4
, (1.14)

and ∫ 1

δ0

vp

ε
ϕdx,

∫ 1

δ0

ε|v′|2ϕdx,
∫ δ1

0

wp

ε
ϕdx,

∫ δ1

0

ε|w′|2ϕdx ε↓0−−→0, (1.15)

where Λ has been defined by (1.4), δ0∈ (0,1] and δ1∈ [0,1) are independent of
ε.

(ii) For the case p=1, the convergences presented in (1.13) and (1.15) also hold
for ϕ∈C1([0,1]). If, in addition, we assume a(0)>0 and a(1)>0, then the
convergences presented in (1.13) can hold for ϕ∈C([0,1]).

Proposition 1.2 is based on a series of interior estimates of v and w established in
Proposition 3.1. The proof will be stated in Section 3.3.

We want to stress again that even if (1.8) and (1.9) are of linear type, Proposi-
tions 1.2 and 3.1 seem to be novel and significant. To the best of our knowledge, such
results are useful for dealing with the singularly perturbed Equation (1.1) with the
nonlocal boundary conditions, but they do not appear in the previous literature.

By Propositions 1.1 and 1.2, we make a brief discussion about some sufficient con-
ditions for the uniqueness of u with small ε>0 and for the boundary and interior
asymptotics of u, respectively.
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(I) Uniqueness. Under the same hypotheses as in Proposition 1.2, we assume

that gi’s are smooth functions defined in [0,1]. Then, by (1.13) and (1.15) with
p=1, there holds

lim
ε↓0

1

ε
A(v,w)
ε =A∗ :=

−
2g0(0)

Λ−(0)
111{0}(l0)

2g0(1)

Λ+(1)

−2g1(0)

Λ−(0)

2g1(1)

Λ+(1)
111{1}(l1)

 (1.16)

where A(v,w)
ε was defined in (1.11), and 111S : [0,1]→{0,1} is the standard indi-

cator function defined on a set S⊂ [0,1]. Particularly,{
111{0}(0)=111{1}(1)=1;

111{0}(l0)=111{1}(l1)=0 for l0∈ (0,1], l1∈ [0,1).
(1.17)

On the other hand, we obtain from (1.10), Proposition 1.1, Remark 1.1 and
(1.16) that if

det(I−A∗) ̸=0, (1.18)

then as ε>0 is sufficiently small, Equation (1.1) with the boundary condi-
tion (1.2) has a unique solution u∈C2([0,1]).

(II) Boundary asymptotics & a positivity preserving property. Applying

the Cramer’s formula to (1.10) and using (1.16), we obtain

lim
ε↓0

u(0)=B0, lim
ε↓0

u(1)=B1, (1.19)

where B0 and B1 are uniquely determined by (I−A∗)[B0B1]
T=[µ0 µ1]

T, i.e.,

B0 :=det

(I−A∗)−1

µ0 −2g0(1)

Λ+(1)

µ1 1− 2g1(1)

Λ+(1)
111{1}(l1)


, (1.20)

B1 :=det

(I−A∗)−1

1+
2g0(0)

Λ−(0)
111{0}(l0) µ0

2g1(0)

Λ−(0)
µ1


; (1.21)

see (1.16) for A∗. Moreover, when both B0 and B1 are positive, one can use
the result (1.19) and apply the strong maximum principle to (1.1) and obtain
a positivity preserving property of u with sufficiently small ε. This is quite
nontrivial since there is no intuitive way to verify conditions of µj ’s and gj ’s
which guarantees u>0 in [0,1], i.e.,

u>0 in [0,1] for sufficiently small ε>0 if and only if B0 andB1 are positive.

This points out the importance of precise leading terms of boundary values with
respect to 0<ε≪1.
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(III) Interior estimates. There exist positive constants M and γ̃ independent of
ε such that (see Theorem 2.1):

|u(x)|+ε|u′(x)|≤M
(
exp

{
− γ̃
ε
x

}
+exp

{
− γ̃
ε
(1−x)

})
. (1.22)

As a consequence, the boundary asymptotics (1.19) with (1.20) and (1.21) answer
(Q1) in the affirmative, but an answer to question (Q2) is not obvious; see questions
(Q1) and (Q2) in Section 1.1. To avoid the trivial case, by Proposition 1.1 and (1.18),
it suffices to investigate the asymptotics of u for the case B0B1 ̸=0. Without loss of
generality, in what follows we focus on two cases for B0 and B1:

B0<0<B1 (1.23)

and

B0>0, B1>0. (1.24)

Later on, we will establish the asymptotic profiles of u under (1.23) and (1.24). The
study for other cases is analogous.

Remark 1.2. Although (1.20) and (1.21) show that the boundary asymptotics of u
as ε approaches zero is exactly due to the nonlocal effects of boundary conditions (1.2),
their formulas are usually a little complicated. Here we give a simple situation when
l0∈ (0,1] and l1∈ [0,1). For this case, by (1.16), (1.17) and (1.20)–(1.21) we have

B0=

(
µ0+

2g0(1)

Λ+(1)
µ1

)
det(I−A∗)−1 and B1=

(
−2g1(0)

Λ−(0)
µ0+µ1

)
det(I−A∗)−1,

where det(I−A∗)=1+ 4g0(1)g1(0)
Λ−(0)Λ+(1) ̸=0. This shows how those variable coefficients a,b,g0

and g1 affect the boundary asymptotics of u.

1.4. On more general cases. Thanks to Proposition 1.2, we can study the
asymptotic behavior of (1.1) with various boundary conditions which are more general
than (1.2).

Firstly, to stress the nontriviality of the boundary condition (1.2), we also consider
the boundary condition (1.3) with τ ̸=1. Then we have(

ετ−1I− 1

ε
A(v,w)
ε

)[
ε1−τuτ (0)

ε1−τuτ (1)

]
=

[
µ0

µ1

]
. (1.25)

According to Proposition 1.1, we shall focus on the situation

det

(
ετ−1I− 1

ε
A(v,w)
ε

)
̸=0 & (µ0,µ1) ̸=(0,0) (1.26)

(see Remark 1.3 below). Then, for the case τ <1, we obtain (uτ (0),uτ (1))
ε↓0−−→ (µ0,µ1),

while for the case τ >1, there holds limsup
ε↓0

ε1−τmax
[0,1]

|uτ |<∞, and, in particular,

max
[0,1]

|uτ |
ε↓0−−→0. To highlight the difference, we will only discuss the boundary asymp-

totics of u for simplicity; see Theorem 2.2.

Remark 1.3. By Proposition 1.2, (1.16) and (1.25)–(1.26), we have the following
uniqueness result for τ ̸=1 and sufficiently small ε>0.
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(i) For the case τ <1, we have I−ε−τA(v,w)
ε ≈I as 0<ε≪1. It immediately con-

cludes that Equation (1.1) with the boundary condition (1.3) has a unique
solution u as ε>0 is sufficiently small.

(ii) For the case τ >1, we have I−ε−τA(v,w)
ε ≈−ε−τA(v,w)

ε as 0<ε≪1. Hence,
it suffices to assume detA∗ ̸=0 (cf. (1.16)) so that Equation (1.1) with the
boundary condition (1.3) has a unique solution u as ε>0 is sufficiently small.

For the sake of completeness of this paper, we further consider the Equation (1.1)
with several boundary effects that are more general than (1.2). The motivation of this
study is quite straightforward since the boundary condition (1.2) is a special case of the
form

u(i)=µi+

∫
Ωi

Gi(x,q(ε)u,q̃(ε)u
′)dx, i∈{0,1}, (1.27)

where q(ε) and q̃(ε) are functions of ε and Ω0=(l0,1), Ω1=(0,l1). To the best of
our knowledge, for general Gi : [0,1]×R2→R, the asymptotic analysis under boundary
condition (1.27) remains open and it is expected that nontrivial boundary concentration
phenomena may occur; see, e.g., Proposition 1.2 for the case Gi=ε

−1giu. Based on the
investigation of the Equation (1.1) with the boundary condition (1.2), we will focus
on some types of boundary conditions with the corresponding q(ε) and q̃(ε) as the
first step in our research in this topic (see (2.10) and (2.11) below). We will state the
corresponding preliminary knowledge and the main result in Section 2.2.

1.5. The nonlinear case: an open problem and a future plan. Before pro-
ceeding to the asymptotic analysis for the linear Equation (1.1) with integral boundary
conditions (1.2), we shall propose its nonlinear analogue

ε2u′′(x)+εa(x)u′(x)−b(x)h(u(x))=0, x∈ (0,1), (1.28)

where the nonlinear source h :R→R is smooth. When b(x) is positive and h :R→R
is strictly increasing, the second author in his recent work [29] considers the Equation
(1.28) with some more general nonlocal boundary conditions. He applies the fixed
point argument and establishes asymptotic estimates of the solution u with respect to
sufficiently small ε>0 to show the uniqueness of solutions as ε∈ (0,ε0). In particular,
when h(s)=s is linear, he also provides an example to show that there exists ε1>ε0
depending on µj ’s and gj ’s such that Equation (1.28) with the boundary condition (1.2)
has multiple solutions; see [29, Example 1.3]. According to our understanding, for each
ε>0 (which may not be small), the existence and uniqueness of the Equation (1.28)
with nonlocal type boundary conditions remains an open problem.

As our first step in the investigation of this problem, this work focuses on the linear
homogeneous/inhomogeneous case and establishes the sufficient and necessary condi-
tions for the existence and uniqueness; see Proposition 1.1 in Section 1.3. Furthermore,
as ε>0 approaches zero, we obtain the refined asymptotic expansions of the uniqueness
solution of the Equation (1.1) under various nonlocal boundary effects; see the main
results presented in Section 2.

However, to the best of our knowledge, the refined asymptotic expansions (as ε↓0)
of solutions to Equation (1.28) with the boundary condition (1.2) are not yet obtained.
The main difficulty lies in a fact that the boundary asymptotics of u(0) and u(1) involves
nonlocal effects. On the other hand, when x∈ (0,1) is close to the boundary points, the
three terms ε2u′′(x), εa(x)u′(x) and h(u(x)) in (1.28) enjoy the same order of ε (as
ε↓0), and their refined asymptotics are influenced by each other. In general, we could
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not establish precise quantities (similar to Λ−(0) and Λ+(1)) to obtain their precise
asymptotics. This project will be our future research directions.

Outline and notations. The rest of this paper outlines the following structure.
In Section 2 we state the main analytical results (see Theorems 2.1–2.4) and their corre-
sponding numerical results (see Figures 2.1–2.5 and Tables 2.1–2.4), where Theorem 2.1
presents the refined asymptotic profile of the unique solution u to the Equation (1.1)
with the boundary condition (1.2), and Theorems 2.2–2.3 focus on the asymptotic be-
havior of solutions u to the Equation (1.1) with other types of boundary conditions (1.3),
(2.10) and (2.11), respectively. For the inhomogeneous case, the corresponding asymp-
totic results are stated in Theorem 2.4; see Section 2.3. To prove the main results, we
introduce basic properties of v and w in Section 3 and complete the proof of Proposi-
tion 1.2 in Section 3.3. Then we state the proof of Theorems 2.1 and 2.2 in Section 4.
In Section 5 we will give the proof of Theorem 2.3. Finally, the proof of Theorem 2.4
will be stated in Section 6. In our proofs, we will frequently abbreviate “≤C” to “≲”,
where C>0 is a generic constant independent of the parameter ε.

2. Theoretical results and corresponding numerical examinations
To describe the asymptotic profiles of u with respect to 0<ε≪1, let us define

||F ||C2
ε([0,1])

:=max
[0,1]

|F |+εmax
[0,1]

|F ′|+ε2max
[0,1]

|F ′′|, F ∈C2([0,1]). (2.1)

In this section, we state the main results Theorems 2.1–2.4. Moreover, extensive nu-
merical results are provided to demonstrate our theoretical analysis.

2.1. The main results for the homogeneous case. Assume (1.18) with A∗

defined by (1.16). Let B0 and B1 be defined in (1.20) and (1.21), respectively. As
mentioned previously, for the Equation (1.1) with the boundary condition (1.2), we
shall consider two cases (1.23) and (1.24) for B0 and B1. The main result is stated as
follows.

Theorem 2.1. Under the same hypotheses as in Proposition 1.1, we assume (1.18).
Then there exists η>0 such that as ε∈ (0,η), Equation (1.1) with the boundary condi-
tion (1.2) has a unique solution u∈C2([0,1]), which satisfies (1.19), (1.22) and

lim
ε↓0

εu′(0)=
B0

2
Λ−(0), lim

ε↓0
εu′(1)=

B1

2
Λ+(1), (2.2)

and fulfills the asymptotics∥∥∥∥u(x)−B0 exp

{∫ x

0

Λ−(z)

2ε
dz

}
−B1exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

≤M∗εθ
∗
1 , (2.3)

as 0<ε≪1, where Λ, B0 and B1 were defined in (1.4) and (1.20)–(1.21). Besides, M∗

is a positive constant independent of ε and θ∗1 ∈ (0, 12 ] depending mainly on a(x) satisfies
(see the exact value of θ∗1 in Claim 1 and Remark 3.3 of Section 3.3):

θ∗1 =
1

2
if min

[0,1]
a≥0; θ∗1 ∈ (0,

1

2
) if min

[0,1]
a<0. (2.4)

Moreover,

(i) if B0 and B1 satisfy (1.23), then u is strictly increasing on (0,1);
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Fig. 2.1. A numerical examination for Theorem 2.2(i).

(ii) if B0 and B1 satisfy (1.24), then there uniquely exists pε∈ (0,1) satisfying

pε
ε

ε↓0−−→∞ and
1−pε
ε

ε↓0−−→∞ (2.5)

such that u is strictly decreasing on (0,pε) and strictly increasing on (pε,1).

For the other two cases B0>0>B1 and B0, B1<0, we can obtain the similar results
but we omit the details here.

(2.3) plays a crucial role in describing the interior asymptotic behavior of u(xε)
when xε∈ (0,1) depending on ε is close to a boundary point. To be more precise, for
k≥0, we denote by

E−
j,k=exp

{
k

2
Λ−(j)

}
and E+

j,k=exp

{
−k
2
Λ+(j)

}
, j=0,1.

Then for z0,kε , z1,kε ∈ (0,1) satisfying

z0,kε
ε

ε↓0−−→k and
1−z1,kε

ε

ε↓0−−→k,

(2.3) immediately implies the pointwise asymptotics

u(z0,kε )
ε↓0−−→B0E

−
0,k, εu′(z0,kε )

ε↓0−−→
B0E

−
0,k

2
Λ−(0),

u(z1,kε )
ε↓0−−→B1E

+
1,k, εu′(z1,kε )

ε↓0−−→
B1E

+
1,k

2
Λ+(1).

It should also be stressed that when x∈ (0,1) is independent of ε, the estimate
(1.22) shows that u(x) and u′(x) exponentially decay to zero, which is better than the
estimate (2.3). As a consequence, Theorem 2.1 completely describes the asymptotic
profile of u with respect to 0<ε≪1. The proof of Theorem 2.1 will be stated in
Section 4.1.

We next consider the boundary condition (1.3) with τ ̸=1. Comparing with the
asymptotics for the case τ =1 presented in Theorem 2.1, the following result focuses on
illustrating a significant difference between their boundary asymptotics.

Theorem 2.2. Under the same hypotheses as in Proposition 1.1, we assume (1.26).
For ε>0 sufficiently small and τ ̸=1, let uτ ∈C2([0,1]) be the unique solution of (1.1)
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with the boundary condition (1.3) (cf. Remark 1.3). Then, as ε approaches zero, for
each interior point x∈ (0,1) both uτ (x) and u′τ (x) exponentially decay to zero, while at
the boundary points, we have that:

(i) When τ <1, there hold (uτ (0),uτ (1))
ε↓0−−→ (µ0,µ1), and

εu′τ (0)
ε↓0−−→ µ0

2
Λ−(0) and εu′τ (1)

ε↓0−−→ µ1

2
Λ+(1). (2.6)

(ii) When τ >1 and detA∗ ̸=0, there hold max
[0,1]

|u| ε↓0−−→0 with

ε1−τuτ (0)
ε↓0−−→−det

(A∗)−1

µ0
2g0(1)

Λ+(1)

µ1
2g1(1)

Λ+(1)
111{1}(l1)


 := B̃0, (2.7)

ε1−τuτ (1)
ε↓0−−→−det

(A∗)−1

−
2g0(0)

Λ−(0)
111{0}(l0) µ0

−2g1(0)

Λ−(0)
µ1


 := B̃1, (2.8)

and

ε2−τu′τ (0)
ε↓0−−→ B̃0

2
Λ−(0), ε2−τu′τ (1)

ε↓0−−→ B̃1

2
Λ+(1). (2.9)

The proof of Theorem 2.2 is stated in Section 4.2 (see Table 2.1 for a numerical
result supporting (2.6)–(2.9)).

Fig. 2.2. Numerical solutions of equation ε2u′′(x)+2ε(x+1)u′(x)− [5−(x+1)2]u(x)=0 with
the boundary condition (2.10), where (µ0,µ1)=(1,1.2), (ℓ0,ℓ1)=(0,1), (g0(x), g1(x))=(−1,−ex) and
(p0,p1)=(2,2).

2.2. Asymptotic analysis for (1.1) with various boundary effects. In this
section, we are devoted to investigating the Equation (1.1) with the following boundary
conditions that are more general than (1.2):

u(0)=µ0+
1

ε

∫ 1

l0

g0(x)|u(x)|p0 dx, u(1)=µ1+
1

ε

∫ l1

0

g1(x)|u(x)|p1 dx, (2.10)

u(0)=µ0+ε

∫ 1

l0

g0(x)|u′(x)|2dx, u(1)=µ1+ε

∫ l1

0

g1(x)|u′(x)|2dx, (2.11)



408 SINGULARLY PERTURBED EQUATIONS WITH NONLOCAL BOUNDARY EFFECTS

Fig. 2.3. Numerical solutions of equation ε2u′′(x)+2ε(x+1)u′(x)− [5−(x+1)2]u(x)=0 with the
boundary condition (2.11), where (g0(x), g1(x))=(−1,−ex), (µ0,µ1)=(0.16,0.25) and (ℓ0,ℓ1)=(0,1).

Case 1: τ =0.1

ε |uτ (0)−µ0| |uτ (1)−µ1| |εu′
τ (0)−

µ0Λ−(0)

2
| |εu′

τ (1)−
µ1Λ+(1)

2
|

0.0256 0.01492 0.01492 0.048949 0.0041799

0.0064 0.0046 0.0046 0.01505 0.0012366

0.0016 0.00137 0.00137 0.0044591 0.0003589

0.0004 0.0004 0.0004 0.0012917 0.00010255

0.0001 0.00011 0.00011 0.0003717 2.9191e-005

Case 2: τ =2

ε |uτ (0)
ε

−B̃0| |uτ (1)
ε

−B̃1| max
[0,1]

|u| |u′
τ (0)−

B̃0Λ−(0)

2 | |u′
τ (1)−

B̃1Λ+(1)

2 |

0.1024 0.059783 0.015693 0.0030527 0.19421 0.0042813

0.0256 0.014915 0.0045842 0.00038543 0.048181 0.0011634

0.0064 0.0044883 0.0013726 0.00016309 0.014488 0.00033975

0.0016 0.0012428 0.00037571 4.5965e-005 0.0040116 9.2267e-005

0.0004 0.00033774 9.6848e-005 1.1853e-005 0.0010903 2.3731e-005

Table 2.1. Focusing on the equation ε2u′′
τ (x)+2ε(x+1)u′

τ (x)− [5−(x+1)2]uτ (x)=0 under the
boundary condition (1.3) with (ℓ0,ℓ1)=(0,1), we consider two cases τ =0.1 and τ =2 to examine the
results in Theorem 2.2 numerically. For τ =0.1, we set (µ0,µ1)=(−0.1,−0.1) and (g0(x),g1(x))=
(1,1) (cf. Figure 2.1). For τ =2, we set (µ0,µ1)=(−0.1,−0.12) and (g0(x),g1(x))=(2,ex), and get

(B̃0,B̃1)≈ (−0.029971,−0.009617) from (2.7) and (2.8). Moreover, ε1−τuτ (0) and ε1−τuτ (1) can be
obtained by (1.25). The following numerical results with respect to various ε support (2.6)–(2.9).

ε u(0)−B∨
0 u(1)−B∨

1 |εu′(0)−
B∨

0 Λ−(0)

2 | |εu′(1)−
B∨

1 Λ+(1)

2 | ||F∨
ε ||C2

ε([0,1])

0.1024 0.00450496 0.0891017 0.028282 0.031389 0.261398

0.0256 0.00128422 0.0332327 0.007888 0.010124 0.0809492

0.0064 0.000342411 0.0102049 0.0020407 0.0029465 0.0227721

0.0016 8.21154e-005 0.00275294 0.00049884 0.00078161 0.00590314

0.0004 -6.65396e-005 0.000678467 0.00015706 0.00019291 0.00119104

Table 2.2. Corresponding to numerical solutions shown in Figure 2.2, we have used (2.13) to
obtain (B∨

0 ,B∨
1 )≈ (0.65153,0.36546) and the following errors with respect to ε, where F∨

ε (x)=u(x)−(
B∨

0 exp
{∫ x

0

Λ−(z)

2ε
dz

}
+B∨

1 exp
{
−
∫ 1
x

Λ+(z)

2ε
dz

})
(cf. Theorem 2.3(i), (2.1) and (2.3)).
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ε u(0)−B∧
0 u(1)−B∧

1 |εu′(0)−
B∧

0 Λ−(0)

2 | |ϵu′(1)−
B∧

1 Λ+(1)

2 | ||F∧
ε ||C2

ε([0,1])

0.1024 0.00235323 0.00478142 0.0053066 0.0035313 0.0198415

0.0256 0.00077098 0.00179304 0.0017663 0.00076325 0.00756108

0.0064 0.000215058 0.000533187 0.00051281 0.00017285 0.0022747

0.0016 5.82104e-005 0.000143458 0.00014252 4.0972e-005 0.000637809

0.0004 1.44721e-005 3.6228e-005 3.5365e-005 1.0168e-005 0.00015871

Table 2.3. Corresponding to numerical solutions shown in Figure 2.3, we have used (2.14) to
obtain (B∧

0 ,B∧
1 )≈ (0.12822,0.20934) and the following errors with respect to ε, where F∧

ε (x)=u(x)−(
B∧

0 exp
{∫ x

0

Λ−(z)

2ε
dz

}
+B∧

1 exp
{
−
∫ 1
x

Λ+(z)

2ε
dz

})
(cf. Theorem 2.3(ii)).

where l0∈ [0,1) and l1∈ (0,1], and p0, p1>1. To study the nontrivial case, for (2.10)
and (2.11) we shall assume

g0, g1∈C([0,1]) with g0(1)g1(0) ̸=0. (2.12)

Recall that the existence and uniqueness of (1.1) is determined by the existence and
uniqueness of the boundary values u(0) and u(1). However, it should be stressed that
under boundary conditions (2.10) or (2.11), various situations (including non-existence,
uniqueness and multiplicity) for solutions u of (1.1) will occur. More precisely, by a
similar argument as in (1.10) and (1.16), we shall apply (1.7) and Proposition 1.2 to deal
with the boundary conditions (2.10) and (2.11), respectively. After making appropriate
manipulations, we obtain the corresponding systems (see, also, Theorem 2.3):

[
X0

X1

]
−

−
2g0(0)

p0Λ−(0)
111{0}(l0)

2g0(1)

p0Λ+(1)

− 2g1(0)

p1Λ−(0)

2g1(1)

p1Λ+(1)
111{1}(l1)


[
|X0|p0

|X1|p1

]
=

[
µ0

µ1

]
(2.13)

for (2.10), and[
X0

X1

]
−

−Λ−(0)g0(0)

4
111{0}(l0)

Λ+(1)g0(1)

4

−Λ−(0)g1(0)

4

Λ+(1)g1(1)

4
111{1}(l1)

[X 2
0

X 2
1

]
=

[
µ0

µ1

]
(2.14)

for (2.11). We assume that each of these two systems has at least one solution (X0,X1)
(cf. Remark 2.1) which asserts the existence of u as ε>0 is sufficiently small. We will
establish the refined asymptotic behavior of u to the Equation (1.1) with the boundary
conditions (2.10) and (2.11) separately.

Remark 2.1. We provide examples for the existence of systems (2.13) and
(2.14), where we consider the case l0∈ (0,1], l1∈ [0,1), µi>0, i=0,1, and gj ’s satisfy
Λ+(1)g0(1)<0<Λ−(0)g1(0) for simplicity.

(i) When
(
µ0+

2g0(1)
p0Λ+(1)µ

p1
1

)(
µ1− 2g1(0)

p1Λ−(0)µ
p0
0

)
>0, (2.13) has a positive solu-

tion (X0,X1) satisfying X p1
0 <−µ0p0Λ+(1)

2g0(1)
and X p0

1 < µ1p1Λ−(0)
2g1(0)

.

(ii) When
(
2
√
µ0−µ1

√
−Λ+(1)g0(1)

)(
2
√
µ1−µ0

√
Λ−(0)g1(0)

)
>0, (2.14) has

two solutions (X0,−,X1,−) and (X0,+,X1,+) satisfying X0,−<0<X0,+, X1,−<
0<X1,+ and X 2

0,±<− 4µ0

Λ+(1)g0(1)
and X 2

1,±<
4µ1

Λ−(0)g1(0)
.
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(i) and (ii) are easy to check via the intermediate value theorem so we omit the proof
here.

Note that the solution of (1.1) is uniquely determined by boundary values u(0) and
u(1). Under the situation (see, e.g., Remark 2.1) that both systems (2.13) and (2.14)
have at least one solution (X0,X1), our conclusions are stated as follows:

Theorem 2.3. Under the same hypotheses as in Proposition 1.1, we assume (2.12).
Then we have the following results.

(i) If (X0,X1)=(B∨
0 ,B

∨
1 ) is a solution of system (2.13), then as ε>0 is suffi-

ciently small, (1.1) with the boundary condition (2.10) has a solution satisfying

(u(0),u(1))
ε↓0−−→ (B∨

0 ,B
∨
1 ) and

εu′(0)
ε↓0−−→ B∨

0

2
Λ−(0), εu′(1)

ε↓0−−→ B∨
1

2
Λ+(1). (2.15)

Moreover, the asymptotics of u in C2([0,1]) satisfies (2.3) with (B0,B1)=
(B∨

0 ,B
∨
1 ).

(ii) If (X0,X1)=(B∧
0 ,B

∧
1 ) is a solution of system (2.14), then as ε>0 is suffi-

ciently small, (1.1) with the boundary condition (2.11) has a solution satisfying

(u(0),u(1))
ε↓0−−→ (B∧

0 ,B
∧
1 ) and

εu′(0)
ε↓0−−→ B∧

0

2
Λ−(0), εu′(1)

ε↓0−−→ B∧
1

2
Λ+(1). (2.16)

Moreover, the asymptotics of u in C2([0,1]) satisfies (2.3) with (B0,B1)=
(B∧

0 ,B
∧
1 ).

We will state the proof of Theorem 2.3 in Section 5.
Numerically, once the boundary data (X0,X1) is recovered from the 2-variable alge-

braic system (2.13) or (2.14), then a numerical solution u(x) of the Equation (1.1) with
the nonlinear boundary conditions (2.10) or (2.11) can be easily obtained from (1.7),
i.e., u(x)=X0v(x)+X1w(x), where v(x) and w(x) are solutions of (1.8) and (1.9), re-
spectively. It is known that for the standard 2-point boundary value problems, a wide
variety of numerical methods such as the Finite Difference/Element Method can be
applied. Based on this concept, we use the subroutine BVP4C in Matlab to solve (1.8)
and (1.9) and the subroutine FSOLVE in Matlab to solve (2.13) or (2.14), respectively.
Before the rigorous asymptotic analysis, we check the results of the estimate (2.3) and
Theorem 2.3 numerically in Tables 2.2–2.3, where the values of u(i) and u′(i), i=0,1,
are obtained via numerical solutions shown in Figures 2.2 and 2.3.

2.3. The main results for the inhomogeneous case. The homogeneous case
is completely studied so that we now can apply the results to the asymptotic behavior
of an inhomogeneous equation

ε2u′′(x)+εa(x)u′(x)−b(x)u(x)=f(x), x∈ (0,1), (2.17)

with the boundary condition (1.2), where the source term f : [0,1]→R is a smooth
function. To depict the asymptotic profile of u as ε>0 approaches zero, we introduce
the homogeneous equations

ε2U ′′
0 (x)+εa(x)U

′
0(x)−b(x)U0(x)=0, x∈ (0,1),

U0(0)=m0(0)+
1

ε

∫ 1

l0

g0U0dx, U0(1)=m0(1)+
1

ε

∫ l1

0

g1U0dx,
(2.18)
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and 
ε2U ′′

1 (x)+εa(x)U
′
1(x)−b(x)U1(x)=0, x∈ (0,1),

U1(0)=m1(0)+
1

ε

∫ 1

l0

g0U1dx, U1(1)=m1(1)+
1

ε

∫ l1

0

g1U1dx,
(2.19)

where each mi(j), i,j∈{0,1}, is given as follows:

[
m0(0) m0(1)

m1(0) m1(1)

]
:=


−
∫ 1

l0

g0f

b
dx −

∫ l1

0

g1f

b
dx

µ0+
f(0)

b(0)
−
∫ 1

l0

g0a

b

(
f

b

)′

dx µ1+
f(1)

b(1)
−
∫ l1

0

g1a

b

(
f

b

)′

dx

 . (2.20)

Note that (2.18) and (2.19) share the same form with (1.1)–(1.2). Similar to (1.20)
and (1.21), let us define

B0 :=det

(I−A∗)−1

m0(0) −2g0(1)

Λ+(1)

m0(1) 1−
2g1(1)

Λ+(1)
111{1}(l1)


, (2.21)

B1 :=det

(I−A∗)−1

1+
2g0(0)

Λ−(0)
111{0}(l0) m0(0)

2g1(0)

Λ−(0)
m0(1)


. (2.22)

Then the asymptotic behavior of solutions to (2.17) with the boundary condition (1.2)
is mainly described by that of U0 and U1. Moreover, when U0 is non-vanishing near
boundary points, we use the asymptotic analysis to show that as 0<ε≪1, u asymp-
totically blows up near boundary points x=0 and x=1 (see also Figures 2.4–2.5 and
Table 2.4) and we are interested in the refined blow-up rate when the position x is
sufficiently close to the boundary points, which is stated as follows.

Theorem 2.4. Let f : [0,1]→R be a smooth function. Under the same hypotheses as
in Proposition 1.1, we assume (1.18). Then as ε∈ (0,η) (with η defined in Theorem 2.1),
Equation (2.17) with the boundary condition (1.2) has a unique solution u∈C2([0,1])
and fulfills the asymptotics∥∥∥∥u− U0

ε
−U1+

f

b

∥∥∥∥
C2

ε([0,1])

≲ε, as 0<ε≪1. (2.23)

Therefore, the asymptotics of u with 0<ε≪1 can be obtained via (2.23) with the direct
application of Theorem 2.1 to (2.18) and (2.19). In particular,

(i) if (B0,B1)=(0,0), then u is uniformly bounded in [0,1], and∥∥∥u−U1+
f
b

∥∥∥
C2

ε([0,1])

ε↓0−−→0;

(ii) if (B0,B1) ̸=(0,0), then u is uniformly bounded in any compact subset K⋐

(0,1) as 0<ε≪1. However, for B0 ̸=0 (resp., B1 ̸=0), |u(zε)|
ε↓0−−→∞ as zε

is sufficiently close to the boundary point x=0 (resp., x=1). Moreover, the
pointwise blow-up rate of u(zε)’s varies with the order ε−ξ(zε) with ξ(zε)∈ (1−
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θ∗1 ,1] depending sensitively on the position zε, which can be precisely described
as follows:

ε1+
ζ0
2

Λ−(0)u(ζ0ε log
q
ε
)

ε↓0−−→B0q
ζ0
2

Λ−(0), for ζ0∈ (0,
2θ∗1

|Λ−(0)|
),

εu(ζ0ε)
ε↓0−−→B0 exp

{
ζ0
2
Λ−(0)

}
, for ζ0>0,

(2.24)

and
ε1−

ζ1
2

Λ+(1)u(1−ζ1ε log
q
ε
)

ε↓0−−→B1q
− ζ1

2
Λ+(1), for ζ1∈ (0,

2θ∗1
Λ+(1)

),

εu(1−ζ1ε)
ε↓0−−→B1 exp

{
− ζ1

2
Λ+(1)

}
, for ζ1>0,

(2.25)

where θ∗1 ∈ (0, 12 ] (defined by (2.4)), q>0 and ζj’s are independent of ε.

Fig. 2.4. Asymptotic profile of u. Numerical solutions of equation ϵ2u′′(x)+ϵ2ϵ(x+
1)u′(x)− [5−(x+1)2]u(x)=0.5−0.1(x+1)2 with boundary condition (1.2), where (µ0,µ1)=
(−0.2,−0.8),(g0(x),g1(x))=(1,cos(x)) and (ℓ0,ℓ1)=(0,1) (cf. Theorem 2.4(ii)).

Theorem 2.4 focusing mainly on (2.23) shows that as ε↓0, u develops diversified
asymptotic behaviors which are determined by the relation between f and those variable
coefficients a, b and gj ’s, which are precisely presented in (2.20)–(2.22). For other types
of boundary conditions such as (2.10) and (2.11), the studies are analogous. In this
paper, we omit the details for brevity.

The proof of Theorem 2.4 will be stated in Section 6. A crucial step for the proof is to

demonstrate the asymptotic expansion u= U0

ε +
(
U1− f

b

)
+ε

[
Uε− a

b

(
f
b

)′]
+O(ε2) uni-

formly in [0,1] as 0<ε≪1 (cf. (6.6)–(6.9)), where Uε satisfies ε2U′′
ε +εaU

′
ε−bUε=0 in

(0,1) and both |Uε(0)− 1
ε

∫ 1

l0
g0Uεdx| and |Uε(1)− 1

ε

∫ l1
0
g1Uεdx| are uniformly bounded

as 0<ε≪1. (Hence, by Theorem 2.1, Uε is uniformly bounded as ε↓0.) We shall stress

that the term a
b

(
f
b

)′
appears in the boundary condition of U1.

Finally, we state several remarks as follows.

Remark 2.2 (A challenge in numerical simulation for the boundary blow-up rate).
According to Theorem 2.4, the blow-up rate at the boundary points x=0 and x=1 is of
order ε−1. However, due to the limitation of computer’s accuracy, it will be challenging
to capture the blow-up when ε>0 is extremely small. In Figures 2.4–2.5, we numerically
approximate the blow-up scenario for the case ε=0.0016; see also Table 2.4.
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ε u(0) u(1)

0.0512 3.5461 1.5596

0.0256 5.5358 2.3649

0.0064 17.651 7.1881

0.0032 33.82 13.547

0.0016 66.155 26.222

Table 2.4. Asymptotic boundary blowing-up of solutions u(x) to equation
ε2u′′(x)+2ε(x+1)u′(x)− [5−(x+1)2]u(x)=0.5−0.1(x+1)2 with the boundary condition (1.2)
and ε=0.0512,0.0256,0.0064,0.0032,0.0016, where (µ0,µ1)=(−0.2,−0.8), (g0(x),g1(x))=(1,cosx)
and (ℓ0,ℓ1)=(0,1); see also Figures 2.4–2.5 and Theorem 2.4(ii).

Fig. 2.5. Asymptotic blowing-up of u near x=0 (zoom in). Numerical solutions of equation
ε2u′′(x)+2ε(x+1)u′(x)− [5−(x+1)2]u(x)=0.5−0.1(x+1)2 with the boundary condition (1.2), where
(µ0,µ1)=(−0.2,−0.8), (g0(x),g1(x))=(1,cosx) and (ℓ0,ℓ1)=(0,1) (cf. Theorem 2.4(ii)).

Remark 2.3. (2.24) and (2.25) also present the precise leading order term of zε with
respect to 0<ε≪1 as u(zε)∼ε−ξ(zε) with ξ(zε)∈ (1−θ∗1 ,1]. When ξ(zε)∈ (0,1−θ∗1 ], the
refined asymptotics of zε with respect to 0<ε≪1 is difficult to verify because it involves

the second order terms of 1
ε

∫ 1

l0
g0U0dx and 1

ε

∫ l1
0
g1U0dx (see (2.18) and (2.23)).

Remark 2.4 (Closely related to Duffing-type equations). Equation (2.17) with the
boundary condition (1.2) has a close relation with the following nonlocal equation with
standard Dirichlet boundary conditions (e.g., a Duffing-type equation involving an in-
tegral forcing term [1]):ε2Ũ ′′

ε (x)+εa(x)Ũ
′
ε(x)−b(x)

(
Ũε(x)−

∫ 1

0

g̃ε(z)Ũε(z)dz

)
=f(x) in (0,1),

Ũε(0)=µ0, Ũε(1)=µ1,

(2.26)

where we assume that {g̃ε}ε>0 satisfying
∫ 1

0
g̃ε

ε↓0−−→1, and εg̃ε/
∫ 1

0
(g̃ε−1)

ε↓0−−→g a smooth

function defined in [0,1]. (For example, g̃ε=
(1+ε)g

(1+ε)
∫ 1
0
g−ε with

∫ 1

0
g≥1 and ε>0.) In-

deed, let us set u∗ε= Ũε−
∫ 1

0
g̃εŨε. After making simple calculations we obtain that, as

0<ε≪1, the equation of u∗ε formally approaches Equation (2.17) with the boundary
condition (1.2) of u, where (l0,l1)=(0,1) and g0=g1=g. For such a linear Equation

(2.26), the term
∫ 1

0
g̃εŨε exactly gives a nonlocal perturbation with respect to ε, and

the more refined asymptotic behavior of Ũε with ε↓0, to the best of our knowledge,



414 SINGULARLY PERTURBED EQUATIONS WITH NONLOCAL BOUNDARY EFFECTS

remains to be unknown. What we want to point out is that Theorem 2.4 can be applied
directly to studying this model.

3. Preliminaries: Basic properties of v and w

Firstly, let us define γ >0 and γ̃ >0 which satisfy

γ2=γ min
x∈[0,1]

{0,a(x)}+β, (3.1)

and

γ̃2= γ̃

(
min
x∈[0,1]

{0,a(x)}−1

)
+
β

2
with 0<γ̃ <γ. (3.2)

The existence of γ>0 and γ̃∈ (0,γ) is trivial since β>0≥min
[0,1]

{0,a}. Now we are ready

to establish interior estimates for v and w provided that ε>0 is sufficiently small.

Proposition 3.1. Assume that a and b are smooth functions defined in [0,1] with
b(x)≥β, where β is a positive constant independent of ε. Then, for ε>0, both (1.8) and
(1.9) have unique solutions. v is strictly decreasing on [0,1], and w is strictly increasing
on [0,1]. Moreover, for x∈ (0,1) there hold the following estimates.

(i) As ε>0 is sufficiently small, v and w satisfy the exponentially decaying esti-
mates

0≤v(x)≤ exp
{
−γ
ε
x
}
, 0≤w(x)≤ exp

{
−γ
ε
(1−x)

}
, (3.3)

and

−Ca,b
ε

exp

{
− γ̃
ε
x

}
≤v′(x)<0<w′(x)≤ Ca,b

ε
exp

{
− γ̃
ε
(1−x)

}
, (3.4)

where Ca,b=max{|Λ−(0)|,Λ+(1)}>0 (cf. (1.4)).

(ii) There exist ε⋆>0 and C⋆>0 independent of ε such that as 0<ε<ε⋆, the fol-
lowing estimates hold:∣∣∣∣√εv′(x)−Λ−(x)

2
√
ε
v(x)

∣∣∣∣≤C⋆ exp{− 1

2ε

∫ x

0

a(z)dz

}
, (3.5)

and ∣∣∣∣√εw′(x)−Λ+(x)

2
√
ε
w(x)

∣∣∣∣≤C⋆ exp{ 1

2ε

∫ 1

x

a(z)dz

}
, (3.6)

for x∈ [0,1].

The proof of Proposition 3.1 will be stated in Section 3.2.

Remark 3.1. By (3.3) and (3.4), one obtains that, as ε>0 is sufficiently small,

0≤v(x)w(x)≤ exp
{
−γ
ε

}
, 0< |v′(x)w′(x)|≤ exp

{
− γ̃

2ε

}
, ∀x∈ [0,1]. (3.7)
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3.1. Uniform asymptotics of v and w using ε logε-estimate. In this section
we shall explain how Proposition 3.1 plays a crucial role in the pointwise asymptotics
of v and w and Proposition 1.2, and we point out a difficulty in the refined asymptotic
analysis of v(x1) and w(x2) with x1 and 1−x2 sufficiently near 0.

We first point out that Proposition 1.2 is based on the uniform asymptotics of v and
w in the whole domain [0,1]. Although (3.3) shows that v(x1) and w(x2) exponentially
decay to zero as lim

ε↓0
x1

ε =∞ and lim
ε↓0

1−x2

ε =∞, and such exponentially decaying estimates

are more refined than the standard outer expansions for solutions v (of Equation (1.8))
and w (of Equation (1.9)), when lim

ε↓0

(
x1

ε + 1−x2

ε

)
<∞, (3.3)–(3.4) are not able to imply

the refined asymptotic behavior of v(x1) and w(x2) with respect to 0<ε≪1. But, for
this case, by (3.5) and (3.6) we have

lim
ε↓0

(∣∣∣∣εv′(x1)−Λ−(x1)

2
v(x1)

∣∣∣∣+ ∣∣∣∣εw′(x2)−
Λ+(x2)

2
w(x2)

∣∣∣∣)=0, (3.8)

since exp
{
− 1

2ε

∫ x1

0
a(z)dz

}
≤ exp

{
x1

2εmax
[0,1]

|a|
}

and exp
{

1
2ε

∫ 1

x2
a(z)dz

}
≤

exp

{
1−x2

2ε max
[0,1]

|a|
}

are uniformly bounded as 0<ε≪1. Accordingly, we can ap-

ply (3.8) to deal with the boundary asymptotics of v and w as ε goes to zero. Moreover,
we shall introduce a so-called “ε logε-estimate” to establish the refined boundary
asymptotics of solutions.

Precisely speaking, when min
[0,1]

a≥0, (3.5) and (3.6) are indeed good estimates for

asymptotic analysis of v and w in the whole domain [0,1] since their right-hand sides
provide uniform upper bound as 0<ε≪1. On the contrary, when min

[0,1]
a<0, the situa-

tion becomes tricky, and an idea is to consider intervals Iε,j ’s with 0∈ Iε,1 and 1∈ Iε,2
such that

ℓ(Iε,j)
ε↓0−−→0,

ℓ(Iε,j)

ε

ε↓0−−→∞,

sup
Iε,1

√
εexp

{
− 1

2ε

∫ x

0

a(z)dz

}
+sup
Iε,2

√
εexp

{
− 1

2ε

∫ 1

x

a(z)dz

}
ε↓0−−→0,

where ℓ(Iε,j) means the length of Iε,j . It is feasible when ℓ(Iε,j) is the order of ε log 1
ε .

In doing so, by (3.3)–(3.6) we can obtain uniform asymptotics of v and w in the whole
domain [0,1]. Although such an idea seems intuitive, it is quite inconvenient to handle.
Various estimates will be established. The uniform estimate of C2

ε([0,1])-norm of v and
w with respect to 0<ε≪1 will be established in Proposition 4.1, which will be used to
prove Proposition 1.2.

3.2. Proof of Proposition 3.1. Since b(x)≥β>0, the uniqueness of (1.8) and
(1.9) is obvious. By applying the maximum principle to (1.8) and (1.9), we obtain
0≤v(x), w(x)≤1 for x∈ [0,1]. In particular, by the fact that v and w are nontrivial,
there hold v′(1)<0<w′(0).

Multiplying the equation of v in (1.8) by exp
{∫ x

1
a(z)
ε dz

}
, one finds

(
v′(x)exp

{∫ x

1

a(z)

ε
dz

})′

=
b(x)

ε2
v(x)exp

{∫ x

1

a(z)

ε
dz

}
≥0, x∈ [0,1]. (3.9)
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Thus, v′(x)exp
{∫ x

1
a(z)
ε dz

}
is increasing and attains the maximum value at x=

1. As a consequence, for x∈ [0,1], it holds v′(x)exp
{∫ x

1
a(z)
ε dz

}
≤v′(1)<0. This

shows that v is strictly decreasing on [0,1]. Using the similar argument, we obtain

w′(x)exp
{∫ x

0
a(z)
ε dz

}
≥ w′(0)>0, and w is strictly increasing on [0,1]. We first prove

(3.3) as follows.

Proof. (Proof of (3.3)). Define

Γ(x) :=v(x)−exp
{
−γ
ε
x
}
,

where γ>0 satisfies (3.1) which asserts

γ2=γ min
x∈[0,1]

{0,a(x)}+β≤γa(x)+b(x).

Hence, by (1.8) one obtains, for x∈ (0,1), that

ε2Γ′′(x)+εa(x)Γ′(x)−b(x)Γ(x)=(−γ2+γa(x)+b(x))exp
{
−γ
ε
x
}
≥0.

This along with Γ(0)=0>Γ(1) immediately implies Γ(x)≤0, i.e., v(x)≤ exp
{
−γ
εx
}
.

Similarly, we can obtain w(x)≤ exp
{
−γ
ε (1−x)

}
and complete the proof of (3.3).

For the sake of convenience, we will prove (3.4) after we complete the proof of (ii).
The proof of (3.5) and (3.6) are stated as follows.

Proof. (Proof of (3.5) and (3.6)). To prove (3.5), we apply the standard trans-
formation

V (x)=v(x)exp

{
1

2ε

∫ x

0

a(z)dz

}
(3.10)

to (1.8), which transforms Equation (1.8) into an equation of V without a convection
term:

ε2V ′′(x)=

(
a2(x)

4
+
εa′(x)

2
+b(x)

)
V (x) in (0,1); V (0)=1, V (1)=0. (3.11)

Since a′(x) is uniformly bounded in [0,1] and b(x)≥β>0, from (3.11) we may set

ε⋆=min
[0,1]

β

1+ |a′|
(3.12)

such that, as 0<ε<ε⋆, we arrive at

ε2V ′′(x)≥β
(
1− ε

β
max
[0,1]

|a′|
)2

V (x) in (0,1). (3.13)

Here we have used the property 0≤V (x)≤1 and a suitable lower bound for a2(x)
4 +

εa′(x)
2 +b(x) (with respect to 0<ε<ε⋆) as follows:

a2(x)

4
+
εa′(x)

2
+b(x)≥− ε

2
max
[0,1]

|a′|+β
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≥β
(
1− ε

β
max
[0,1]

|a′|
)2

+εmax
[0,1]

|a′|
(
1− ε

β
max
[0,1]

|a′|
)

≥β
(
1− ε

β
max
[0,1]

|a′|
)2

.

It should be stressed that (3.12) is a sufficient condition for the above estimate, where
we consider β

1+|a′| instead of β
|a′| since a(x) may be a constant-valued function. As a

consequence, by (3.13) and the boundary condition of V in (3.11), we obtain a super-
solution

Vsup(x) :=exp

{
−
√
β

(
1− ε

β
max
[0,1]

|a′|
)
x

ε

}
(3.14)

for Equation (3.11). Hence, 0≤V (x)≤Vsup(x) for x∈ [0,1].

Now we shall prove (3.5). Firstly, we can choose xε∈ (0,1) such that V ′(xε)=
V (1)−V (0)=−1. Notice that for 0<ε<ε⋆, by (3.11), we have V ′′≥0. In particular,
it implies −1=V ′(xε)≤V ′(1)≤0. Furthermore, multiplying (3.11) by V ′(x) yields{
ε2V ′2(x)−

(
a2(x)

4
+b(x)+εa′(x)

)
V 2(x)

}′

=−
(
a(x)a′(x)

2
+b′(x)+εa′′(x)

)
V 2(x).

As a consequence, for x∈ [0,1], by (3.14) one may obtain the following estimate from
the above equation:∣∣∣∣ε2V ′2(x)−

(
a2(x)

4
+b(x)+εa′(x)

)
V 2(x)

∣∣∣∣
≤ε2V ′2(1)+

∫ 1

x

∣∣∣∣a(z)a′(z)2
+b′(z)+εa′′(z)

∣∣∣∣V 2
sup(z)dz

≤ε2+ ε√
β
max
[0,1]

∣∣∣∣aa′2 +b′+εa′′
∣∣∣∣≤Mε, (3.15)

where M is a positive constant independent of ε. Since V ′≤0≤V ≤1 and a2

4 +b>0,

we have

∣∣∣∣εV ′(x)+
√

a2(x)
4 +b(x)V (x)

∣∣∣∣≤ ∣∣∣∣εV ′(x)−
√

a2(x)
4 +b(x)V (x)

∣∣∣∣. This along with

(3.15) immediately implies∣∣∣∣∣εV ′(x)+

√
a2(x)

4
+b(x)V (x)

∣∣∣∣∣≤√(a′(x)V 2(x)+M)ε≤

√(
max
[0,1]

|a′|+M
)
ε. (3.16)

Therefore, (3.5) follows from (3.10), (3.16) and a simple calculation V ′(x)=(v′(x)+
a(x)
2ε v(x))exp{

1
2ε

∫ x
0
a(z)dz}.

We next consider

W (x)=w(x)exp

{
− 1

2ε

∫ 1

x

a(z)dz

}
.

Note that w satisfies (1.9). Thus, we have

ε2W ′′(x)=

(
a2(x)

4
+
εa′(x)

2
+b(x)

)
W (x) in (0,1);W (0)=0, W (1)=1. (3.17)
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In particular, there holdW (x)≥0 andW ′(x)≥0, x∈ [0,1]. Following a similar argument
of (3.11)–(3.16) on (3.17), we can obtain

ε2W ′′(x)≥β
(
1− ε

β
max
[0,1]

|a′|
)2
W (x)

and ∣∣∣εW ′(x)−
√
a2(x)

4
+b(x)W (x)

∣∣∣≤√(max
[0,1]

|a′|+M
)
ε, x∈ [0,1],

as 0<ε<ε⋆. Thus (3.6) immediately follows from these estimates.

Completion of the proof of Proposition 3.1. It suffices to prove (3.4). Recall
v(0)=1 and w(1)=1. By (3.5) and (3.6) we obtain boundary asymptotics

lim
ε↓0

εv′(0)=
Λ−(0)

2
, lim

ε↓0
εw′(1)=

Λ+(1)

2
. (3.18)

By (3.3) there exists x∗ε ∈ (1−ε,1) such that ε|v′(x∗ε)|= |v(1)−v(1−ε)|≤ exp
{
−γ
ε +γ

}
.

Along with (3.9) we know that

|v′(1)|≤ |v′(x∗ε)|exp

{∫ 1

x∗
ε

a(z)

ε
dz

}
≤ 1

ε
exp

{
−γ
ε
+γ+max

[0,1]
|a|
}

(3.19)

since |1−x∗ε|<ε. Applying the same argument, we can obtain the same upper bound
of w′(0) as in (3.19). As a consequence,

v′(1)
ε↓0−−→0 and w′(0)

ε↓0−−→0 exponentially. (3.20)

Differentiating Equation (1.8) with respect to x, we obtain ε2v′′′(x)+εa(x)v′′(x)−
(b(x)−εa′(x))v′(x)= b′(x)v(x). On the other hand, multiplying Equation (1.8) by b′(x)

b(x)

and combining the result with the previous equation, we arrive at

ε2v′′′(x)+ε

(
a(x)−εb

′(x)

b(x)

)
v′′(x)−

(
b(x)−εa′(x)+εa(x)b

′(x)

b(x)

)
v′(x)=0. (3.21)

Now we define

v⋆(x)=v
′(x)−v′(0)exp

{
− γ̃
ε
x

}
, (3.22)

where γ̃ >0 was defined in (3.2). Firstly, we claim that there exists ε⋆(γ,γ̃)>0 depend-
ing on γ and γ̃ such that as 0<ε<ε⋆(γ,γ̃),

v⋆(0)=0, v⋆(1)>0. (3.23)

Proof. (Proof of (3.23)). Obviously, v⋆(0)=0. Note that v′(0), v′(1)<0. Since
γ̃ <γ and b(0)≥β>0, by (3.18), (3.19) and (3.22), one may check that

v⋆(1)=v
′(1)−v′(0)exp

{
− γ̃
ε

}
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≥− 1

ε
exp

{
−γ
ε
+γ+max

[0,1]
|a|
}
+

|Λ−(0)|
4ε

exp

{
− γ̃
ε

}
=
1

ε
exp

{
− γ̃
ε

}(
−exp

{
−γ− γ̃

ε
+γ+max

[0,1]
|a|
}
+

|Λ−(0)|
4

)
>0,

where the term in the last parentheses is positive provided that 0<ε<ε⋆(γ,γ̃) with
sufficiently small ε⋆(γ,γ̃)>0. This completes the proof.

By (3.21) and (3.22), a direct calculation yields

ε2v′′⋆ (x)+ ε

(
a(x)−ε

b′(x)

b(x)

)
v′⋆(x)−

(
b(x)−εa′(x)+εa(x)

b′(x)

b(x)

)
v⋆(x)

=−v′(0)

[
γ̃2−

(
a(x)−ε

b′(x)

b(x)

)
γ̃−

(
b(x)−εa′(x)+εa(x)

b′(x)

b(x)

)]
≤−v′(0)

[(
min

x∈[0,1]
{0,a(x)}−1−a(x)+ε

b′(x)

b(x)

)
γ̃+

(
β

2
−b(x)+εa′(x)−εa(x)

b′(x)

b(x)

)]
.

Here we have used the fact −v′(0)>0. Moreover, since a′(x) and b′(x) are bounded and
b(x)≥β>0, there exists ε⋆(γ,γ̃)∈ (0,ε⋆(γ,γ̃)) such that

εmax
[0,1]

|b′|
b
<1 and b(x)−εa′(x)+εa(x)b

′(x)

b(x)
>
β

2

as 0<ε<ε⋆(γ,γ̃). As a consequence, for 0<ε<ε⋆(γ,γ̃), we have

ε2v′′⋆ (x)+ε

(
a(x)−εb

′(x)

b(x)

)
v′⋆(x)−

(
b(x)−εa′(x)+εa(x)b

′(x)

b(x)

)
v⋆(x)<0. (3.24)

Applying the maximum principle to (3.24) and using (3.23), we obtain v⋆(x)≥0. By

(3.18) and (3.22), we thus arrive at Λ−(0)exp
{
− γ̃
εx
}
≤εv′(x)<0 as 0<ε<ε⋆(γ,γ̃).

Similarly, we can prove 0<εw′(x)≤Λ+(1)exp
{
− γ̃
ε (1−x)

}
as 0<ε<ε⋆(γ,γ̃). There-

fore, we obtain (3.4) and the proof of Proposition 3.1 is indeed complete.

3.3. Proof of Proposition 1.2. In what follows we let ϕ∈C([0,1]) except when
it is specifically emphasized otherwise.

By (3.3) and (3.4), we have, for p≥1, v
p

ε , ε|v
′|2→0 exponentially in (0,1]⊇ [δ0,1],

and wp

ε , ε|w
′|2→0, exponentially in [0,1)⊇ [0,δ1] as ε↓0. Hence, (1.15) immediately

follows.
We first consider the case p>1. Due to (1.15), it suffices to prove (1.13) and (1.14)

for the cases δ0=1 and δ1=0. We shall give more refined estimates as follows.

Claim 1. For p>1, let

θ∗p=


1

2
, if min

[0,1]
a≥0,

min
[0,1]

pγ

2pγ+ |a|
∈ (0,

1

2
), if min

[0,1]
a<0.

Then for ϕ∈C([0,1]), there holds

limsup
ε↓0

ε−θ∗p

(∣∣∣∣∫ 1

0

vp(x)

ε
ϕ(x)dx+

2ϕ(0)

pΛ−(0)

∣∣∣∣+ ∣∣∣∣∫ 1

0

wp(x)

ε
ϕ(x)dx− 2ϕ(1)

pΛ+(1)

∣∣∣∣)<∞. (3.25)
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Remark 3.2. Although for Proposition 1.2, such a refined estimate is not required,
(3.25) will be used to prove (2.3) and Theorem 2.4.

Proof. (Proof of Claim 1). Observe first that for any fixed number θ>0, by
(3.3), we have∣∣∣∣∣

∫ 1

0

vp(x)

ε
ϕ(x)dx−

∫ θε log 1
ε

0

vp(x)

ε
ϕ(x)dx

∣∣∣∣∣≤
∫ 1

θε log 1
ε

vp(x)

ε
|ϕ(x)|dx≤ εpθγ

pγ
max
[0,1]

|ϕ|. (3.26)

On the other hand, from (3.3) and (3.5) one may observe that, under a suitable choice
of θ, the difference between vp

ε and − 2
Λ−
vp−1v′ in [0,θε log 1

ε ] tends to zero as ε↓0.
Hence, for the purpose of dealing with (3.26) we take an estimate∣∣∣∣∣

∫ θε log 1
ε

0

(
vp(x)

ε
− 2

Λ−(x)
vp−1(x)v′(x)

)
ϕ(x)dx

∣∣∣∣∣
≤C⋆

∫ θε log 1
ε

0

2vp−1(x)√
ε

∣∣∣∣ ϕ(x)Λ−(x)

∣∣∣∣exp{− 1

2ε

∫ x

0

a(z)dz

}
dx,

≤C
⋆

β

(
max
[0,1]

|ϕ|
(
|a|+

√
β
))

exp

{
θ

2
max
[0,1]

|a| log 1
ε

}∫ θε log 1
ε

0

vp−1(x)√
ε

dx

≤ C⋆

βγ(p−1)

(
max
[0,1]

|ϕ|
(
|a|+

√
β
))

ε
1
2

(
1−θmax

[0,1]
|a|

)
, (3.27)

which exactly tends to zero provided that 0<θ< 1
max
[0,1]

|a| . Here we have used an elemen-

tary inequality1

min
[0,1]

1

2
(
|a|+

√
b
) ≤ 1

|Λ−(x)|
≤max

[0,1]

|a|+
√
β

2β
, x∈ [0,1], (3.28)

to get the third line of (3.27). For the last line of (3.27) we have used (3.3) to obtain∫ θε log 1
ε

0
vp−1dx≤ ε

γ(p−1) . In particular, setting

Iε log 1
ε
:= [0,θε log

1

ε
] with θ=min

[0,1]

1

2pγ+ |a|
,

i.e., pθγ= 1
2

(
1−θmax

[0,1]
|a|
)
:=θ∗p, we obtain, from (3.26) and (3.27), that

∣∣∣∣∣∣∣∣
∫ 1

0

vp(x)

ε
ϕ(x)dx−

∫
I
ε log 1

ε

2

Λ−(x)
vp−1(x)v′(x)ϕ(x)dx

∣∣∣∣∣∣∣∣≲ε
θ∗p . (3.29)

It remains to deal with (3.29). Let D(x) :=− 2ϕ(x)
Λ−(x) +

2ϕ(0)
Λ−(0) . Notice first that the con-

1The left-hand estimate of (3.28) is trivial. The right-hand estimate is due to 1
|Λ−| =

1

a+
√

a2+4β
≤

|a|+2
√
β−a

4β
≤ |a|+

√
β

2β
.
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tinuous differentiability of 2ϕ(x)
Λ−(x) indicates max

I
ε log 1

ε

|D|≲εlog 1
ε

ε↓0−−→0. Hence,

∣∣∣∣∣∣∣∣
∫

I
ε log 1

ε

2

Λ−(x)
vp−1(x)v′(x)ϕ(x)dx+

2ϕ(0)

pΛ−(0)

∣∣∣∣∣∣∣∣
≤2

∣∣∣∣∣∣∣∣
ϕ(0)

Λ−(0)

 ∫
I
ε log 1

ε

vp−1(x)v′(x)dx+
1

p


∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
∫

I
ε log 1

ε

D(x)vp−1(x)v′(x)dx

∣∣∣∣∣∣∣∣
=
2|ϕ(0)|vp(θεlog 1

ε )

p|Λ−(0)|
+

∣∣∣∣∣∣∣∣
∫

I
ε log 1

ε

D(x)vp−1(x)v′(x)dx

∣∣∣∣∣∣∣∣≲ε
θ∗p . (3.30)

Here we have used the facts that v(θεlog 1
ε )=O(εθγ) (by (3.3)), and∣∣∣∣∣∣∣∣

∫
I
ε log 1

ε

D(x)vp−1(x)v′(x)dx

∣∣∣∣∣∣∣∣≤
1

p
max
I
ε log 1

ε

|D|≲ε log 1
ε
≪εθ

∗
p ,

since θ∗p≤ 1
2 . Therefore, by (3.29) and (3.30), we obtain (3.25). Similarly, we have

limsup
ε↓0

ε−θ
∗
p

∣∣∣∣∫ 1

0

wp(x)

ε
ϕ(x)dx− 2ϕ(1)

pΛ+(1)

∣∣∣∣<∞, p>1.

Thus, we prove (1.13) and complete the proof of Claim 1.

Next we deal with the estimate of
∫ 1

0
εv′2ϕdx. By (3.4) we have∫

[0,1]\I
ε log 1

ε

εv′2(x)ϕ(x)dx≤ 1

ε
max
[0,1]

|ϕ|
∫

[0,1]\I
ε log 1

ε

exp

{
−2γ̃

ε
x

}
dx

≤ ε2θγ̃

2γ̃
max
[0,1]

|ϕ|. (3.31)

Note also that v′≤0. Thus, by (3.5), one has∫
I
ε log 1

ε

∣∣∣∣(εv′2(x)− Λ−(x)

2
v(x)v′(x)

)
ϕ(x)

∣∣∣∣dx
≤−

√
εC⋆

∫
I
ε log 1

ε

exp

{
x

2ε
max
[0,1]

|a|
}
v′(x)|ϕ(x)|dx

≤−ε
1
2 (1−θmax[0,1] |a|)C⋆max

[0,1]
|ϕ|

∫
I
ε log 1

ε

v′(x)dx≤εθ
∗
pC⋆max

[0,1]
|ϕ|, (3.32)
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and ∣∣∣∣∣∣∣∣∣
∫

I
ε log 1

ε

(
−Λ−(x)

2
ϕ(x)+

Λ−(0)

2
ϕ(0)︸ ︷︷ ︸

:=D̃(x)

)
v(x)v′(x)dx

∣∣∣∣∣∣∣∣∣
≤−

(
max
I
ε log 1

ε

|D̃|

) ∫
I
ε log 1

ε

v(x)v′(x)dx≤ 1

2
max
I
ε log 1

ε

|D̃| ε↓0−−→0. (3.33)

Here we have used max
I
ε log 1

ε

exp

{
x
2εmax

[0,1]
|a|
}
≤ε

− θ
2 max

[0,1]
|a|

to obtain the last inequality of

(3.32). Combining (3.31)–(3.33), we arrive at

lim
ε↓0

∫ 1

0

εv′2(x)ϕ(x)dx=
Λ−(0)ϕ(0)

2
lim
ε↓0

∫
I
ε log 1

ε

v(x)v′(x)dx=−Λ−(0)ϕ(0)

4
.

Following the same argument, we can prove lim
ε↓0

∫ 1

0
εw′2ϕdx= Λ+(1)ϕ(1)

4 and complete the

proof of (1.14).
It remains to prove (ii). Let ψ∈C1([0,1]). Multiplying (1.8) by ψ

b and integrating
the expression from 0 to 1, one may check that∫ 1

0

v(x)

ε
ψ(x)dx

=ε

∫ 1

0

ψ(x)

b(x)
v′′(x)dx+

∫ 1

0

a(x)

b(x)
v′(x)ψ(x)dx

=ε

(
ψ(1)

b(1)
v′(1)− ψ(0)

b(0)
v′(0)−

∫ 1

0

(
ψ

b

)′

v′dx

)
− a(0)ψ(0)

b(0)
−
∫ 1

0

(
aψ

b

)′

vdx

ε↓0−−→−ψ(0)
b(0)

(
−
a(0)+

√
a2(0)+4b(0)

2
+a(0)

)
=− 2ψ(0)

Λ−(0)
. (3.34)

Here we have applied (3.3), (3.4), (3.18) and (3.19) to the second line of (3.34). Similarly,

we can prove
∫ 1

0
w
ε ψdx

ε↓0−−→ 2ψ(1)
Λ+(1) . Hence, we obtain that the convergences presented in

(1.13) hold.
Now we assume a(0)>0 and ϕ∈C([0,1]). This implies that for fixed θ>0, there

holds a(z)> a(0)
2 >0 for z∈ Iε log 1

ε
=[0,θε log 1

ε ] as ε>0 is sufficiently small. Then by

(3.5), for ϕ∈C([0,1]), one may use the estimate 1
|Λ−(x)| ≤

|a(x)|+
√
β

2β to check that∣∣∣∣∣∣∣∣
∫

I
ε log 1

ε

(
− 2v′(x)

Λ−(x)
ϕ(x)+

v(x)

ε
ϕ(x)

)
dx

∣∣∣∣∣∣∣∣≤
2C⋆√
ε

∫
I
ε log 1

ε

∣∣∣∣ ϕ(x)Λ−(x)

∣∣∣∣exp{− 1

2ε

∫ x

0

a(z)dz

}
dx,

≤C
⋆

β

(
max
[0,1]

|ϕ|
(
|a|+

√
β
))

ε
θ
4a(0)−

1
2 , as 0<ε≪1. (3.35)
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Note also that, for the case p=1, (3.26) and (3.30) still hold. Combining these two
estimates with (3.35) and particularly taking θ= 4

a(0) >0 and Iε log 1
ε
=[0, 4ε

a(0) log
1
ε ], we

thus arrive at

lim
ε↓0

∫ 1

0

v(x)

ε
ϕ(x)dx=2lim

ε↓0

∫
I
ε log 1

ε

v′(x)

Λ−(x)
ϕ(x)dx=− 2ϕ(0)

Λ−(0)
.

On the other hand, if a(1)>0, we can apply the same argument to w
ε and obtain

limε↓0
∫ 1

0
w
ε ϕdx=

2ϕ(1)
Λ+(1) . Therefore, the proof of Proposition 1.2 is complete.

Remark 3.3. (3.26) and (3.30) hold for p=1. By (3.26), (3.30) and (3.35) with
θ= 4

a(0) >0, this implies θ
4a(0)−

1
2 =

1
2 in (3.35). Hence, Claim 1 still holds for p=1.

4. Proof of Theorems 2.1 and 2.2

4.1. Proof of Theorem 2.1. By (1.16) and (1.18), we know that there exists
η∗>0 such that (1.12) holds as ε∈ (0,η∗). Hence, as ε∈ (0,η∗), the uniqueness of u
follows immediately from Proposition 1.1. Next, we shall claim (1.19), (1.22) and (2.2)
as follows. Since (1.12) implies that u(0) and u(1) are uniquely determined by system
(1.10) with (1.11), for smooth functions g0 and g1, applying Proposition 1.2(ii) to (1.11)
gives (1.19). The interior estimate (1.22) of u is a direct consequence of (1.7), (1.19)
and Proposition 3.1(i) with (3.1)–(3.2). Moreover, by (1.7), (1.19) and (3.18), we ob-
tain (2.2). As a consequence, a constant η<min{η∗,ε⋆(γ,γ̃)} can be determined so that
for ε∈ (0,η) there hold the following properties:

u(0)<0<u(1) andu′(0), u′(1)>0 if B0 andB1 satisfy (1.23), (4.1)

u(0), u(1)>0 andu′(0)<0<u′(1) if B0 andB1 satisfy (1.24), (4.2)

where ε⋆(γ,γ̃) was defined in Proposition 3.1(i).
Recall that u(x)=u(0)v(x)+u(1)w(x) (see (1.7)) and, for x∈ (0,1), v(x) and w(x)

exponentially decay to zero as ε approaches zero. Before proving (i)–(iii), we have to
establish pointwise asymptotics of v and w.

Proposition 4.1. Let κ= 1
2 for the case a(x)≥0 and κ∈ (0, 12 ) be arbitrary for

the case min[0,1]a<0. Under the same hypotheses as in Proposition 1.2, there exists a
positive constant Cκ depending on κ (independent of ε) such that, for ε>0,∥∥∥∥v(x)−exp

{∫ x

0

Λ−(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

+

∥∥∥∥w(x)−exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

≤Cκε
κ, (4.3)

where Λ±(z) was defined in (1.5) and the C2
ε-norm was defined by (2.1).

Proposition 4.1 seems to be well known, but we could not find a suitable reference
for it. We prudently provide a proof here for the reader’s satisfaction. The proof will
be stated in Section 4.3 for the sake of convenience.

Using this preliminary step, we are in a position to deal with (2.3). Firstly, by (1.7),
(1.19) and (2.1) we have

u(x)−
(
B0exp

{∫ x

0

Λ−(z)

2ε
dz

}
+B1exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

})
=u(0)

(
v(x)−exp

{∫ x

0

Λ−(z)

2ε
dz

})
+(u(0)−B0)exp

{∫ x

0

Λ−(z)

2ε
dz

}



424 SINGULARLY PERTURBED EQUATIONS WITH NONLOCAL BOUNDARY EFFECTS

+u(1)

(
w(x)−exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

})
+(u(1)−B1)exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

}
. (4.4)

By (4.3) with a fixed κ and (4.4), one may check that∥∥∥∥u(x)−(B0 exp

{∫ x

0

Λ−(z)

2ε
dz

}
+B1 exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

})∥∥∥∥
C2

ε([0,1])

≤|u(0)|
∥∥∥∥v(x)−exp

{∫ x

0

Λ−(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

+ |u(0)−B0|
∥∥∥∥exp{∫ x

0

Λ−(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

+ |u(1)|
∥∥∥∥w(x)−exp

{
−
∫ 1

x

Λ+(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

+ |u(1)−B1|
∥∥∥∥exp{−∫ 1

x

Λ+(z)

2ε
dz

}∥∥∥∥
C2

ε([0,1])

≤max{|u(0)|,|u(1)|}Cκεκ+
(
sup
ε>0

Mε(Λ)

)
(|u(0)−B0|+ |u(1)−B1|)

≤C̃κ(εκ+ |u(0)−B0|+ |u(1)−B1|). (4.5)

Here Mε(Λ) is defined as the maximum of
∥∥∥exp{∫ x0 Λ−(z)

2ε dz
}∥∥∥

C2
ε([0,1])

and∥∥∥exp{−∫ 1

x
Λ+(z)
2ε dz

}∥∥∥
C2

ε([0,1])
, and we have verified via (2.1) that Mε(Λ) is uniformly

bounded for ε>0. Since both u(0) and u(1) are uniformly bounded for ε>0, C̃κ>0
can be chosen so that it is independent of ε.

To complete the proof of (2.3), we need to estimate |u(0)−B0| and |u(1)−B1| with
respect to ε as 0<ε≪1. By (1.10) and (1.20)–(1.21), we can obtain[

u(0)−B0

u(1)−B1

]
=

(
I− 1

ε
A(v,w)
ε

)−1(
1

ε
A(v,w)
ε −A

)[
B0

B1

]
. (4.6)

Applying the Cauchy–Schwarz inequality to (4.6), one may make appropriate manipu-
lations to arrive at

|u(0)−B0|+ |u(1)−B1|≤
√
2(|B0|+ |B1|)

∥∥∥∥∥
(
I− 1

ε
A(v,w)

ε

)−1
∥∥∥∥∥
HS

∥∥∥∥1εA(v,w)
ε −A

∥∥∥∥
HS

, (4.7)

where ||A||HS :=
√
trace(ATA) (the standard Hilbert–Schmidt norm). On the other

hand, by (1.11), (1.16), (3.25) and Remark 3.3,

∥∥∥∥(I− 1
εA

(v,w)
ε

)−1
∥∥∥∥
HS

is uniformly

bounded and ∥∥∥∥1εA(v,w)
ε −A

∥∥∥∥
HS

≲εθ
∗
p , as 0<ε≪1.

As a consequence, by (4.7) we obtain |u(0)−B0|+ |u(1)−B1|≲εθ
∗
p . This along with

(4.5) yields (2.3), where we choose κ=θ∗p=
1
2 if a≥0, and κ=θ∗p ∈ (0, 12 ) if min[0,1]a<0.

It remains to prove (i) and (ii).

Proof. (Proof of (i) and (ii)). Following the same argument as (3.9), one obtains(
u′(x)exp

{∫ 1

x

a(z)

ε
dz

})′

=
b(x)

ε2
u(x)exp

{∫ 1

x

a(z)

ε
dz

}
, x∈ [0,1]. (4.8)
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We now assume (1.23). By (4.1) and (4.8), we get u′>0 on (0,1). This completes the
proof of (i). To prove (ii), we assume (1.24). Then, by the strong maximum principle,
Equation (1.1)–(1.2) with b(x)≥β>0 and (4.2) implies that u attains its minimum
value at an interior point pε∈ (0,1) and u(pε)>0=u′(pε). Along with (4.8), it yields
u′(x1)<0<u′(x2) for x1∈ (0,pε) and x2∈ (pε,1). This also obtains the uniqueness of
pε.

We shall next claim (2.5) by contradiction. Firstly, setting x=pε in (1.7) and using
(4.2) and u′(pε)=0, we obtain

|v′(pε)|=
u(1)

u(0)
w′(pε). (4.9)

Note also that u(1)
u(0) ∼

B1

B0
and w′ are positive if ε>0 is sufficiently small. Suppose

that, on the contrary, limsup
ε↓0

pε

ε = c<∞. Then by (1.19), (3.4) and (4.9), we have

|v′(pε)|≲ε−1exp{− γ̃
ε } as 0<ε≪1. Along with (3.5), one may check that

0<v(pε)≤
2

Λ−(pε)

(√
εC⋆ exp

{
− 1

2ε

∫ pε

0

a(z)dz

}
+ε|v′(pε)|

)
≤
max[0,1] |a|+

√
β

β

(√
εC⋆ exp

{
cmax
[0,1]

|a|
}
+O(1)exp

{
− γ̃
ε

})
≲
√
ε, as 0<ε≪1. (4.10)

Here we have used the inequality (3.28). Moreover, by (4.3) with a fixed κ∈ (0, 12 ) and
(4.10), we arrive at

exp

{∫ pε

0

Λ−(z)

2ε
dz

}
≲εκ as 0<ε≪1.

Particularly,
∫ pε

0
Λ−(z)
2ε dz≲κlogε

ε↓0−−→−∞ which gives a contradiction since 0>∫ pε

0
Λ−(z)
2ε dz≥ pε

2εmin
[0,1]

Λ− and limsup
ε↓0

pε

ε = c<∞. Hence, we obtain lim
ε↓0

pε

ε =∞. Simi-

larly, we can prove lim
ε↓0

1−pε

ε =∞. Therefore, we rigorously arrive at (2.5) and complete

the proof of (ii).
The proof of Theorem 2.1 is thus complete.

4.2. Proof of Theorem 2.2. In this section we assume (2.12). Note that for
the solution uτ of Equation (1.1) equipped with the boundary condition (1.3), (1.7) and
(3.3)–(3.4) still hold. Thus, it suffices to prove (2.6)–(2.9). We first assume τ <1. Then
by (1.7), Proposition 1.2(ii) and (3.7), one finds estimates

ε−τ

∣∣∣∣∫ 1

l0

g0(x)uτ (x)dx

∣∣∣∣≤ε−τ

(
|uτ (0)|

∣∣∣∣∫ 1

l0

g0(x)v(x)dx

∣∣∣∣+ |uτ (1)|
∣∣∣∣∫ 1

l0

g0(x)w(x)dx

∣∣∣∣)
≲ε1−τ (|uτ (0)|+ |uτ (1)|),

and

ε−τ

∣∣∣∣∫ l1

0

g1(x)uτ (x)dx

∣∣∣∣≤ε−τ

(
|uτ (0)|

∣∣∣∣∫ l1

0

g1(x)v(x)dx

∣∣∣∣+ |uτ (1)|
∣∣∣∣∫ l1

0

g1(x)w(x)dx

∣∣∣∣)
≲ε1−τ (|uτ (0)|+ |uτ (1)|),
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as 0<ε≪1. Applying these two estimates to (1.3) gives∑
i=0,1

|uτ (i)−µi|≲ε1−τ
∑
i=0,1

(|uτ (i)−µi|+ |µi|).

This, along with 1−τ >0, directly implies
∑
i=0,1

|uτ (i)−µi|≲ ε1−τ

1−O(1)ε1−τ

∑
i=0,1

|µi|, i.e.,

(uτ (0),uτ (1))
ε↓0−−→ (µ0,µ1). Then, using (3.18) and (3.20) and following the similar

argument as (2.2), we obtain (2.6) and complete the proof of (i).
To prove (ii), we now assume τ >1. Then for (1.25), we have

det

(
ετ−1I− 1

ε
A(v,w)
ε

)
ε↓0−−→−detA∗,

where A∗ was defined in (1.16). As a consequence, solving uτ (0) and uτ (1) via (1.25)
and taking the limit with ε↓0, we obtain (2.7) and (2.8), which along with the max-

imum principle yields max
[0,1]

|uτ |≤max{|uτ (0)|, |uτ (1)|}
ε↓0−−→0. Moreover, (2.9) follows

from (1.7), (2.7)– (2.8) and (3.18), and we prove (ii). Therefore, the proof of Theo-
rem 2.2 is complete.

4.3. Proof of Proposition 4.1. In this proof, we will not use the definition of
(1.4) for the sake of clarity in all estimates.

When a≥0, the proof is trivial. In what follows we focus on the case that a(x)
changes its sign on [0,1]. Firstly, we set

V0(x)=exp

{
−
∫ x

0

a(z)+
√
a2(z)+4b(z)

2ε
dz

}
,

which satisfies

εV ′
0 +

a+
√
a2+4b

2
V0=0, V0(0)=1 andV0(1)≤ exp

{
− β

(max[0,1] |a|+
√
β)ε

}
. (4.11)

Here we have again used the inequality (3.28) for estimating V0(1). Along with (3.5),
one can check via simple calculations that∣∣∣∣∣

(
v

V0

)′

(x)

∣∣∣∣∣≤ C⋆√
εV0(x)

exp

{
−
∫ x

0

a(z)

2ε
dz

}
. (4.12)

By this differential inequality we can infer an estimate

|v(x)−V0(x)|≤
C⋆√
ε

∫ x

0

exp

{
−
∫ y

0

a(z)

2ε
dz

}
V0(x)

V0(y)
dy

≤C
⋆

√
ε

(
max
y∈[0,x]

exp

{
−
∫ y

0

a(z)

2ε
dz

})∫ x

0

exp

{
−
∫ x

y

√
a2(z)+4b(z)

2ε
dz

}
dy

≤C⋆
√
ε

β
max
y∈[0,x]

exp

{
−
∫ y

0

a(z)

2ε
dz

}
(4.13)
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since
√
a2(x)+4b(x)≥2

√
β. In particular, for each κ∈ (0, 12 ), let us define

θ̃(κ)=max

 1−2κ

1+max
[0,1]

|a|
,
κ

β

(
max
[0,1]

|a|+
√
β

)
,
κ

γ

. (4.14)

Then for 0≤y≤x≤ θ̃(κ)ε log 1
ε , one obtains∣∣∣∣∫ y

0

a(z)

2ε
dz

∣∣∣∣≤(κ− 1

2

)
logε.

Along with (4.13), one can use the estimate exp

− β(
max
[0,1]

|a|+
√
β

)
ε

≪εκ to obtain

max
x∈[0,θ̃(κ)ε log 1

ε ]
|v(x)−V0(x)|≤

1+C⋆√
β

εκ, (4.15)

as ε>0 is sufficiently small. On the other hand, we notice that v and V0 are strictly
decreasing on [0,1]. Thus, by (3.3) and (4.14) we have

max
x∈[θ̃(κ)ε log 1

ε ,1]
|v(x)−V0(x)|≤v

(
θ̃(κ)ε log

1

ε

)
+V0

(
θ̃(κ)ε log

1

ε

)

≤εθ̃(κ)γ+ε
θ̃(κ)β/

(
max
[0,1]

|a|+
√
β

)
≤2εκ, as 0<ε≪1. (4.16)

As a consequence, by (4.15)–(4.16) we obtain max
[0,1]

|v−V0|≤max{ 1+C⋆
√
β
,2}εκ as 0<ε≪

1. Furthermore, since 0≤v, V0≤1, there must exist a constant C1,κ≥max{ 1+C⋆
√
β
,2}

depending on κ (independent of ε) such that

max
[0,1]

|v−V0|≤ C1,κε
κ, for ε>0. (4.17)

Moreover, by (4.11) we have the identity

ε(v−V0)′=εV0
(
v

V0

)′

− a+
√
a2+4b

2
(v−V0),

together with (3.4), (4.12) and (4.17), one can follow the similar arguments as in (4.14)–
(4.16) to arrive at

εmax
[0,1]

|(v−V0)′|≤C⋆
√
εexp

{∫ θ̃(κ)ε log 1
ε

0

|a(z)|
2ε

dz

}
+ε max

[θ̃(κ)ε log 1
ε ,1]

|(v−V0)′|

+max
[0,1]

a+
√
a2+4b

2
|v−V0|≤C2,κε

κ, for ε>0, (4.18)

where C2,κ relying on κ is a positive constant independent of ε. Combining (4.17) with
(4.18) and using the equation of v in (1.8), we can deal with the estimate of ε2(v−V0)′′
and arrive at

||v−V0||C2
ε([0,1])

≤C3,κε
κ, for ε>0, (4.19)



428 SINGULARLY PERTURBED EQUATIONS WITH NONLOCAL BOUNDARY EFFECTS

with an ε-independent constant C3,κ>C1,κ+C2,κ.

Applying the same argument to |w−W0| withW0=exp

{
−
∫ 1

x

a(z)+
√
a2(z)+4b(z)

2ε dz

}
,

we can prove

||w−W0||C2
ε([0,1])

≤C3,κε
κ, for ε>0. (4.20)

(4.3) follows immediately from (4.19)–(4.20) with Cκ=2C3,κ, and the proof of Propo-
sition 4.1 is therefore complete.

5. Proof of Theorem 2.3

5.1. Proof of Theorem 2.3(i). Recall a property that max[0,1]vw exponen-
tially decays to zero as ε↓0 (cf. (3.7)). This along with (1.7) gives a formal intuition
that |u(x)|p≈ |u(0)|pvp(x)+ |u(1)|pwp(x), x∈ [0,1], as 0<ε≪1. However, a main dif-
ficulty is to rigorously investigate the asymptotic behavior of u(0) and u(1). We first
establish apriori asymptotic estimates for nonlocal coefficients in (2.10) with 0<ε≪1.

Lemma 5.1 (Apriori asymptotic estimate). Under the same hypotheses as in Theo-
rem 2.3(i), for G ∈C([0,1]) with G(0)G(1) ̸=0 and p>1, we have∣∣∣∣∫ 1

0

G(x)(|u(x)|p−|u(0)|pvp(x)−|u(1)|pwp(x))dx
∣∣∣∣

≤p2pmax
[0,1]

|G|max{|u(0)|p,|u(1)|p}exp
{
− γ

2ε

}
, (5.1)

as 0<ε≪1.

Proof. For the convenience in the argument later, let us set
J1(p)=

∫ 1
2

0

G(x)(|u(x)|p−|u(0)|pvp(x)−|u(1)|pwp(x))dx,

J2(p)=

∫ 1

1
2

G(x)(|u(x)|p−|u(0)|pvp(x)−|u(1)|pwp(x))dx.
(5.2)

Then, for x∈ [0, 12 ], one obtains

||u(x)|p−|u(0)|pvp(x)|≤ p

(
max

{
max
[0, 12 ]

|u|,|u(0)|max
[0, 12 ]

v

})p−1 ∣∣u(x)−u(0)v(x)∣∣
≤ p(|u(0)|+ |u(1)|)p−1 |u(1)|exp

{
− γ

2ε

}
≤ p2p−1max{|u(0)|p,|u(1)|p}exp

{
− γ

2ε

}
. (5.3)

Here we have used an elementary inequality∣∣|A|p−|B|p
∣∣≤pmax{|A|, |B|}p−1|A−B|

and (1.7). This along with (3.3) yields the estimate max
[0, 12 ]

|u(x)|≤ |u(0)|+ |u(1)| and we

thus arrive at the last estimate of (5.3). As a consequence,

|J1(p)|≤max
[0, 12 ]

|G|
(
p2p−2max{|u(0)|p,|u(1)|p}exp

{
− γ

2ε

}
+

|u(1)|p

2
exp

{
−pγ
2ε

})
≤p2p−1max

[0, 12 ]
|G|max{|u(0)|p, |u(1)|p}exp

{
− γ

2ε

}
.

(5.4)
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Similarly, we have

|J2(p)|≤p2p−1max
[ 12 ,1]

|G|max{|u(0)|p,|u(1)|p}exp
{
− γ

2ε

}
. (5.5)

Combining (5.2) with (5.4)–(5.5), we therefore arrive at (5.1) and complete the proof
of Lemma 5.1.

Combining (1.13) with (5.1) gives an estimate as follows∣∣∣∣1ε
∫ 1

0

G(x)|u(x)|pdx−J3(p)

∣∣∣∣≤ p2p

ε
max
[0,1]

|G|max{|u(0)|p,|u(1)|p}exp
{
− γ

2ε

}
+Oε,

(5.6)
where

J3(p)=
2

p

(
− G(0)
Λ−(0)

|u(0)|p+ G(1)
Λ+(1)

|u(1)|p
)

and Oε denotes a quantity approaching to zero as ε↓0. In particular, by applying (5.6)
to the boundary condition (2.10) of u(0) and u(1), one immediately obtains that u(0)
and u(1) are uniformly bounded as 0<ε≪1, and

lim
ε↓0

(
u(0)− 2

p0

(
− g0(0)

Λ−(0)
|u(0)|p0111{0}(l0)+

g0(1)

Λ+(1)
|u(1)|p0

))
=µ0 (5.7)

and

lim
ε↓0

(
u(1)− 2

p1

(
− g1(0)

Λ−(0)
|u(0)|p1 + g1(1)

Λ+(1)
|u(1)|p1111{1}(l1)

))
=µ1. (5.8)

Note that when u(0) and u(1) are determined, Equation (1.1) has a unique solution u.
Since u(0) and u(1) satisfying (5.7) and (5.8) are uniformly bounded to ε, and (2.13)
has a solution (X0,X1)=(B∨

0 ,B
∨
1 ), we conclude that there exists a solution u to the

Equation (1.1) with the boundary condition (2.10), and this u satisfies (u(0),u(1))
ε↓0−−→

(B∨
0 ,B

∨
1 ). This along with (1.7), (3.18) and (3.20), gives (2.15). Moreover, (2.3) with

(B0,B1)=(B∨
0 ,B

∨
1 ) immediately follows, and the proof of Theorem 2.3(i) is therefore

complete.

5.2. Proof of Theorem 2.3(ii). Following similar argument of Lemma 5.1, we
shall deal with nonlocal terms in the boundary condition (2.11) as follows.

Lemma 5.2. Under the same hypotheses as in Theorem 2.3(ii), for g∈C([0,1]) with
g(0)g(1) ̸=0 there holds

ε

∫ 1

0

g(x)(u′(x))
2
dx=

1

4

(
−Λ−(0)g(0)u

2(0)+Λ+(1)g(1)u
2(1)

)
(1+Oε) (5.9)

as 0<ε≪1, where the quantity Oε
ε↓0−−→0 was defined in (5.6).

Proof. Let us define

J4=
1

4

(
−Λ−(0)g(0)u

2(0)+Λ+(1)g(1)u
2(1)

)
.
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By (1.7) and (3.7), we have

max
x∈[0,1]

∣∣∣∣(u′(x))2(x)−
(
u2(0)(v′(x))2(x)+u2(1)(w′(x))2(x)

)∣∣∣∣≤ (
u2(0)+u2(1)

)
exp

{
− γ̃

2ε

}
,

together with (1.14) subject to ϕ=g, it yields∣∣∣∣ε∫ 1

0

g(x)(u′(x))2dx−J4

∣∣∣∣≤εmax
[0,1]

|g|
(
u2(0)+u2(1)

)
exp

{
− γ̃

2ε

}
+Oε

ε↓0−−→0.

Since g(0)g(1) ̸=0, we have
(
u2(0)+u2(1)

)
εexp

{
− γ̃

2ε

}
≪|J4| as 0<ε≪1. Hence, we

arrive at (5.9) and complete the proof of Lemma 5.2.

Applying (5.9) to the boundary condition (2.11), one further obtains that u(0) and
u(1) are uniformly bounded as 0<ε≪1, and

lim
ε↓0

(
u(0)− 1

4

(
−Λ−(0)g0(0)u

2(0)111{0}(l0)+Λ+(1)g0(1)u
2(1)

))
=µ0

and

lim
ε↓0

(
u(1)− 1

4

(
−Λ−(0)g1(0)u

2(0)+Λ+(1)g1(1)u
2(1)111{1}(l1)

))
=µ1.

Since (2.14) has a solution (X0,X1)=(B∧
0 ,B

∧
1 ), by following a similar argument as in

the proof of Theorem 2.3, we obtain that there exists a solution u to the Equation (1.1)

with the boundary condition (2.11), and this u satisfies (u(0),u(1))
ε↓0−−→ (B∧

0 ,B
∧
1 ). It

follows that u satisfies (2.16) and (2.3) with (B0,B1)=(B∧
0 ,B

∧
1 ). This completes the

proof of Theorem 2.3(ii).

6. Asymptotics of the inhomogeneous case — Proof of Theorem 2.4
We shall first prove the existence and uniqueness of (2.17) with the boundary con-

dition (1.2) as ε∈ (0,η), where η>0 has been defined in Theorem 2.1. For this end, let
us consider the equation

ε2Q′′
ε +εaQ

′
ε−bQε=f in (0,1),

Qε|x=0,1 = −

(
f

b
+ε

a

b

(
f

b

)′
)∣∣∣∣∣

x=0,1

.
(6.1)

Since b>0, for each ε>0 Equation (6.1) has a unique solution. Setting

Ũε=u−Qε, (6.2)

one may check that Ũε is a solution of (1.1) with the boundary condition

Ũε(0)= µ̃ε(0)+
1

ε

∫ 1

l0

g0Ũεdx, Ũε(1)= µ̃ε(1)+
1

ε

∫ l1

0

g1Ũεdx, (6.3)

where

µ̃ε(0)=µ0+

(
f

b
+ε

a

b

(
f

b

)′
)
(0)+

1

ε

∫ 1

l0

g0Qεdx,
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µ̃ε(1)=µ1+

(
f

b
+ε

a

b

(
f

b

)′
)
(1)+

1

ε

∫ l1

0

g1Qεdx.

Note that the equation of Ũε with (6.3) has the same form as (1.1)–(1.2), and

µ̃ε(j)’s are independent of Ũε. Thus, under the assumption (1.18), by Proposition 1.1

and Theorem 2.1 we obtain the existence and uniqueness of Ũε for ε∈ (0,η). This implies
the existence and uniqueness of (2.17) with the boundary condition (1.2).

The proof of (2.23) follows several steps. We first set

Qε(x)=Qε(x)+
f(x)

b(x)
+ε

a(x)

b(x)

(
f(x)

b(x)

)′

, x∈ [0,1].

Along with (6.1), we calculate directly to obtain the equation of Qε as

ε2Q′′
ε +εaQ

′
ε−bQε=ε

2

[(
f

b

)′′

+a

(
a

b

(
f

b

)′
)′]

+ε3

(
a

b

(
f

b

)′
)′′

in (0,1), (6.4)

and Qε(0)=Qε(1)=0. Since a, b and f are smooth functions defined on [0,1] and they
are independent of ε, by (6.4) we have sup

(0,1)

|ε2Q′′
ε +εaQ

′
ε−bQε|=O(1)ε2. Applying the

maximum principle to (6.4) and using (6.2) immediately yields

max
[0,1]

∣∣∣∣∣u− Ũε+
f

b
+ε

a

b

(
f

b

)′
∣∣∣∣∣=max

[0,1]
|Qε|≲ε2,

which implies the precise first two-order terms of µ̃ε(j), j=0,1, with respect to 0<ε≪1:∣∣∣∣µ̃ε(0)− m0(0)

ε
−m1(0)

∣∣∣∣+ ∣∣∣∣µ̃ε(1)− m0(1)

ε
−m1(1)

∣∣∣∣≲ε, (6.5)

where mi(j)’s have been defined in (2.20). Since max
[0,1]

|Qε| and the right-hand side of

(6.4) are uniformly bounded by ε2, by applying the standard elliptic estimate to the
Equation (6.1), we obtain ||Qε||C2

ε([0,1])
≲ε2, i.e.,∥∥∥∥∥u− Ũε+

f

b
+ε

a

b

(
f

b

)′
∥∥∥∥∥
C2

ε([0,1])

≲ε2, (6.6)

where the C2
ε([0,1])-norm has been defined by (2.1).

Although the equation of Ũε has the same form as (1.1), µ̃ε(0) and µ̃ε(1) in (6.3)

depend on ε and the asymptotics of Ũε should be dealt with carefully. Let

Uε=
1

ε

(
Ũε−

U0

ε
−U1

)
. (6.7)

Then, by (2.18), (2.19), (6.3) and (6.5) we have

ε2U′′
ε (x)+εa(x)U

′
ε(x)−b(x)Uε(x)=0, x∈ (0,1), (6.8)

and

limsup
ε↓0

(∣∣∣∣Uε(0)− 1

ε

∫ 1

l0

g0Uεdx

∣∣∣∣+
∣∣∣∣∣Uε(1)− 1

ε

∫ l1

0

g1Uεdx

∣∣∣∣∣
)
<∞. (6.9)
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Comparing (1.1)–(1.2) with (6.8)–(6.9), we can apply Theorem 2.1 directly to (6.8)–
(6.9) (see, mainly, (1.19), (1.20), (1.21) and (2.3)), and conclude that ||Uε||C2

ε([0,1])
is

uniformly bounded as 0<ε≪1. This along with (6.7) arrives at∥∥∥∥Ũε− U0

ε
−U1

∥∥∥∥
C2

ε([0,1])

≲ε, (6.10)

as 0<ε≪1. Combining (6.6) and (6.10), we therefore arrive at (2.23).
Now we state the proof of (i). Note that det(I−A∗) ̸=0. Thus, by (1.16) and

(2.21)–(2.22), it is easy to check that B0=B1=0 implies m0(0)=m0(1)=0. Hence, for
ε∈ (0,η), by the uniqueness of (cf. Theorem 2.1), m0(0)=m0(1)=0 asserts U0≡0 on
[0,1]. Along with (2.23), we obtain∥∥∥∥u−U1+

f

b

∥∥∥∥
C2

ε([0,1])

≲ε as 0<ε≪1.

The uniform boundedness of u with respect to 0<ε≪1 follows directly from the uniform
boundedness of U1 since m1(0) and m1(1) are finite. This completes the proof of (i).

It remains to prove (ii). Since equations (2.18) and (2.19) have the same forms as
(1.1)–(1.2), by the result of (1.1)–(1.2) we know that U0 and U1 are uniformly bounded

as 0<ε≪1. Applying the estimate (2.3) to U0 and U1, we obtain max
K

(
|U0|
ε + |U1|

)
ε↓0−−→

0 exponentially. Here we have used the properties |Λ−(x)|≥2β

(
max
[0,1]

|a|+
√
β

)−1

(cf.

(3.28)) and min
x∈K

{x,1−x}>0 (independent of ε). Hence, by (2.23) we obtain max
K

|u+
f
b |

ε↓0−−→0 and prove the uniform boundedness of u in K as 0<ε≪1.

Now we want to prove (2.24) and (2.25). Assume B0 ̸=0. Then, obviously |U0(0)|
ε →

∞ as ε↓0, and by (6.6) and (6.10), u(x) and U0(x)
ε both share the same leading order

term as x is sufficiently close to the left boundary point. Hence, it suffices to deal
with the asymptotics of U0

ε with respect to 0<ε≪1, since U1 is uniformly bounded.
Applying (2.3) to (2.18), one arrives at∣∣∣∣∣U0(ζ0εlog

q
ε )−

(
B0 exp

{
ζ0ε log

q
ε∫

0

Λ−(z)
2ε dz

}
+B1 exp

{
−

1∫
ζ0ε log

q
ε

Λ+(z)
2ε dz

})∣∣∣∣∣≲εθ∗1 (6.11)

with θ∗1 ∈ (0, 12 ] defined by (2.4). Since ζ0ε log
q
ε →0 as ε↓0 and Λ− is continuous at x=0,

there holds 1
ζ0ε log

q
ε

∫ ζ0ε log q
ε

0
Λ−(z)dz

ε↓0−−→Λ−(0). Along with (6.11), we thus obtain

u(ζ0ε log
q

ε
)≈ ε−1U0(ζ0ε log

q

ε
)

≈B0ε
−1exp

{∫ ζ0ε log
q
ε

0

Λ−(z)

2ε
dz

}

≈B0q
ζ0
2 Λ−(0)ε−

ζ0
2 Λ−(0)−1, for ζ0∈ (0,

2θ∗1
|Λ−(0)|

). (6.12)

Here, for ζ0∈ (0,
2θ∗1

|Λ−(0)| ), we have used (2.23) and the following results to verify the

above asymptotics:

exp

{
−
∫ 1

ζ0ε log
q
ε

Λ+(z)

2ε
dz

}
ε↓0−−→0 exponentially,
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exp

{∫ ζ0ε log
q
ε

0

Λ−(z)

2ε
dz

}
≫εθ

∗
1 , for ζ0∈ (0,

2θ∗1
|Λ−(0)|

).

As a consequence, there holds

ε1+
ζ0
2 Λ−(0)u(ζ0ε log

q

ε
)
ε↓0−−→B0q

ζ0
2 Λ−(0), for ζ0∈ (0,

2θ∗1
|Λ−(0)|

).

Using (2.23) and following the same argument utilized in (6.12), for ζ0>0 we can prove

εu(ζ0ε)
ε↓0−−→B0exp

{
ζ0
2
Λ−(0)

}
and finish the proof of (2.24). When B1 ̸=0, by the same argument we can obtain
(2.25). Therefore, the proof of Theorem 2.4 is complete.
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