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Absence of irreducible multiple
zeta-values in melon modular graph

functions

Eric D’Hoker and Michael B. Green

The expansion of a modular graph function on a torus of modulus
τ near the cusp is given by a Laurent polynomial in y = πIm (τ)
with coefficients that are rational multiples of single-valued mul-
tiple zeta-values, apart from the leading term whose coefficient is
rational and exponentially suppressed terms. We prove that the
coefficients of the non-leading terms in the Laurent polynomial of
the modular graph function DN (τ) associated with a melon graph
is free of irreducible multiple zeta-values and can be written as a
polynomial in odd zeta-values with rational coefficients for arbi-
trary N ≥ 0. The proof proceeds by expressing a generating func-
tion for DN (τ) in terms of an integral over the Virasoro-Shapiro
closed-string tree amplitude.
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A genus-one modular graph function is an SL(2,Z)-invariant function on
the Poincaré upper half plane H which is associated with a Feynman graph
for a massless scalar field on a torus [1]. Modular graph functions arise as
the basic building blocks for the coefficients of the effective interactions in
a low energy expansion of string theory. One-loop modular graph functions
are given in terms of the classic non-holomorphic Eisenstein series, while
two-loop modular graph functions have been studied only recently in [2, 3].
In particular, their Fourier series representation, as well as their Poincaré
series representation as a sum over cosets Γ∞\SL(2,Z), are by now explicitly
known [4]. The expansion of a generic modular graph function on a torus
with modulus τ ∈ H near the cusp reduces to a Laurent polynomial in 1/y,
where y = π Im τ , plus exponentially suppressed terms. The leading term
in the Laurent polynomial for a modular graph function of weight N is a
rational number multiplying yN and the coefficients of all succeeding terms
are single-valued multiple zeta-values.
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The general structure of modular graph functions with three loops or
more is not understood as explicitly, though many systematic results were
obtained in [2, 5, 6, 7, 8, 9, 10, 11, 12]. One exception is the melon modular
graph functions DN of weight N whose Feynman graph is represented in
Figure 1, and whose full Laurent polynomial was computed in [14] in terms
of multiple zeta-values. The goal of this note is to provide a simple proof that
the coefficients of the Laurent series of DN are actually free of irreducible
multiple zeta-values and given by a polynomial in odd zeta-values only,
plus a leading yN term, both with rational coefficients.1 The full Laurent
polynomial for each DN is given in terms of odd zeta-values by a fairly
simple generating function.

Figure 1: The melon modular graph function DN has N Green functions
joining the points.

We shall denote the modulus of the torus Σ by τ = τ1+ iτ2 with τ1, τ2 ∈
R and τ2 > 0 and choose a local complex coordinate z = α + βτ with
α, β ∈ [−1

2 ,
1
2 ] and volume form d2z = i

2dz ∧ dz̄ = τ2dα ∧ dβ. The modular
graph function DN may be expressed as follows,

DN (τ) =

∫
Σ

d2z

τ2
G(z|τ)N(1)

The scalar Green function G(z|τ) on Σ satisfies the standard Laplace equa-
tion with a unit δ-function source at z = 0 and is given by the following
expression (for a review of Riemann surfaces in string theory and explicit
formulas, see for example [13]),

G(z|τ) = − ln

∣∣∣∣ϑ1(z|τ)
η(τ)

∣∣∣∣
2

+ 2πτ2β
2(2)

1MBG is very grateful to Don Zagier for discussions in 2012 concerning his argu-
ments for the absence of irreducible multiple zeta values in the Laurent polynomial
of DN functions, although this has not appeared in published form. We believe that
the present proof is significantly simpler and leads to expressions for the Laurent
polynomial coefficients that are easier to evaluate.
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where η is the Dedekind eta-function and ϑ1 the Jacobi theta-function.
Equivalently the Green function may be expressed in a Fourier series in
the variable α,

G(z|τ) = 2πτ2(β
2 − |β|+ 1

6)

+
∑
m �=0

∑
k

1

|m|e
2πim(α+βτ1+kτ1)−2πτ2|m(k+β)|(3)

The Green function is normalized so that D1 =
∫
Σ d2z G(z|τ) = 0. The full

Laurent polynomial of DN (τ) in terms of the variable y = πτ2 near the cusp
y → ∞ was obtained in [14] by substituting the expression for G(z|τ) of (3)
into (1) to obtain,

DN (τ) =
yN

3N
2F1(1,−N ; 32 ;−

3
2)

+

N−2∑
k=0

∑
k1,k2,k3≥0

k1+k2+k3=k

2(−)k2N ! (2k1 + k2)!(2y)
k3−k1−1

6k2 (N − k)! k1! k2! k3!

×S(N − k, 2k1 + k2 + 1) +O(e−4y)(4)

where 2F1 is the hypergeometric function. The coefficients S(M,N) are de-
fined for M,N ≥ 1 by the following multiple series,

S(M,N) =
∑
mr �=0

r=1,··· ,M

δ(
∑

r mr)

|m1 · · ·mM |(|m1|+ · · ·+ |mM |)N(5)

Zagier showed (Appendix A of [14]) that S(M,N) is expressible as a linear
combination of multiple zeta-values,

S(M,N) =
∑

a1,··· ,ar∈{1,2}
a1+···+ar=M−2

M ! 22r+2−M−N ζ(N + 2, a1, · · · , ar)(6)

where a multiple zeta-value of depth 
 is defined by,

ζ(s1, · · · , s�) =
∑

n1>n2>···>n�≥1

1

ns1
1 · · ·ns�

�

(7)

It was conjectured in [14], on the basis of results obtained for low values of
N , that the coefficients of the Laurent expansion of DN are actually free
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of irreducible multiple zeta-values (namely those which cannot be expressed
as a polynomial in zeta-values). Since Zerbini’s explicit calculations [6] of
the Laurent polynomials of various modular graph functions do exhibit ir-
reducible zeta-values, the conjecture on DN is non-trivial and implies an
arithmetic simplicity of the DN functions not shared by general modular
graph functions. Zagier has argued in an unpublished paper that the con-
jecture holds, but his procedure is quite involved [15] and appears to follow
a different path from the simple proof of the theorem below that will be
presented in this note.

Theorem 1. The Laurent polynomial, in y = πτ2 at the cusp y → ∞, of
the modular graph function DN (τ) satisfies the following properties,

1. it is free of irreducible multiple zeta-values;
2. the coefficient of its leading monomial yN is rational, while the coeffi-

cient of each one of its sub-leading monomials is a polynomial in odd
zeta-values with rational coefficients;

3. it is homogeneous in the weight and of total weight N , provided we
assign weight n to ζ(n) and weight 1 to y.

To prove the theorem, we use a generating function for the modular
graph functions DN ,

D(s|τ) =
∞∑

N=0

sN

N !
DN (τ) =

∫
Σ

d2z

τ2
esG(z|τ)(8)

Having assigned weight N to the modular graph function DN (τ) it is natural
to assign weight −1 to the variable s so that the generating function D(s|τ)
has weight zero. We shall use equation (2) for the Green function G(z|τ)
and express ϑ1(z|τ) and η(τ) in terms of their respective infinite product
formulas to obtain,

ϑ1(z|τ)
η(τ)

= i eiπτ/6
(
eiπz − e−iπz

) ∏
α=±1

∞∏
n=1

(
1− e2πinτ+α2πiz

)
(9)

Since the Green function G(z|τ) and the domain of integration Σ = {α, β ∈
[−1

2 ,
1
2 ]} are invariant under z → −z, we may restrict the integration to

α ∈ [−1
2 ,

1
2 ] and β ∈ [0, 12 ] upon including an overall factor of 2, so that we

have,

D(s|τ) = 2

∫ 1

2

0
dβ

∫ 1

2

− 1

2

dα esG(z|τ)(10)



Absence of irreducible multiple zeta-values 319

In the domain α ∈ [−1
2 ,

1
2 ], β ∈ [0, 12 ] the contribution to (9) from the infinite

product in n equals 1 up to terms that are exponentially suppressed in τ and
of order O(e−πτ2), uniformly throughout Σ. As a result, the Green function
in (10) may be simplified as follows,

G(z|τ) =
πτ2
3

+ 2πτ2(β
2 − β)

− ln |1− e2iπ(α+τ1β)−2πτ2β|2 +O(e−πτ2)(11)

uniformly in the domain α ∈ [−1
2 ,

1
2 ], β ∈ [0, 12 ], and the generating function

reduces to,2

D(s|τ) = 2 eπsτ2/3
∫ 1

2

0
dβ

∫ 1

2

− 1

2

dα e2πsτ2(β
2−β)

∣∣∣1− e2πi(α+τ1β)−2πβτ2
∣∣∣−2s

+O(e−2πτ2)(12)

Changing integration variables (α, β) → (α−τ1β, β) and using the periodic-
ity of the integrand and integration domain in α with period 1, we establish
that all dependence on τ1 cancels out of the generating function D(s|τ), up
to exponentially suppressed terms which do not contribute to the Laurent
polynomial in τ2 of DN (τ), and we obtain,

D(s|τ) = 2 eπsτ2/3
∫ 1

2

0
dβ

∫ 1

0
dα e2πsτ2(β

2−β)
∣∣∣1− e2πiα−2πβτ2

∣∣∣−2s

+O(e−2πτ2)(13)

Next, we isolate the contribution in which the absolute value is set to 1,

D(s|τ) = D0(s|τ) +D1(s|τ)(14)

where D0 is the generating function of the leading term in y = πτ2 familiar
from (4),

D0(s|τ) = 2

∫ 1
2

0
dβ e2πsτ2(β

2−β+
1
6)

=

∞∑
N=0

sNyN

3NN !
2F1(1,−N ; 32 ;−

3
2)(15)

2Note that the terms of order O(e−πτ2) in the Green function cancel upon inte-
gration over α, so that the leading exponential terms that are being neglected are
of order O(e−2πτ2).
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The remaining contribution then takes the following form,

D1(s|τ) = 2 esy/3
∫ 1

2

0
dβ

∫ 1

0
dα e2sy(β

2−β)

×
(∣∣∣1− e2πiα−2βy

∣∣∣−2s
− 1

)
+O(e−2πτ2)(16)

Taylor expanding the exponential of the 2syβ2 term in the integrand in
powers of s, we find the following representation,

D1(s|τ) = 2 esy/3
∞∑
k=0

(2ys)k

k!

∫ 1
2

0
dβ

∫ 1

0
dαβ2k e−2syβ

×
(∣∣∣1− e2πiα−2βy

∣∣∣−2s
− 1

)
+O(e−2πτ2)(17)

Observing that, for each value of k, the following integral is exponentially
suppressed in τ2,∫ ∞

1

2

dβ

∫ 1

0
dαβ2k e−2syβ

(∣∣∣1− e2πiα−2βy
∣∣∣−2s

− 1

)
= O(e−2πτ2)(18)

we may extend the integration domain for β in (17) to the half line β > 0
since the difference is proportional to the above exponentially suppressed
integral, and we find,

D1(s|τ) = 2 esy/3
∞∑
k=0

(2ys)k

k!

∫ 1

0
dα

∫ ∞

0
dβ β2k e−2syβ

×
(∣∣∣1− e2πiα−2βy

∣∣∣−2s
− 1

)
+O(e−2πτ2)(19)

Changing variables from α, β to w = e2πiα−2βy, the domain of integration
for w becomes the unit disc, and we have,

D1(s|τ) =
esy/3

2π

∞∑
k=0

sk Lk(s)

k! (2y)k+1
+O(e−2πτ2)(20)

where the coefficients Lk(s) are independent of y and given by,

Lk(s) = 2

∫
|w|≤1

d2w

|w|2 |w|
s
(
|1− w|−2s − 1

)(
ln |w|

)2k
(21)
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The contribution from the first term in the parentheses in the integrand
is invariant under w → w−1 for all k, s. Thus, we may complete its w-
integration into the full complex plane,

Lk(s) =

∫
C

d2w

|w|2 |w|
s|1− w|−2s(ln |w|)2k

−2

∫
|w|≤1

d2w

|w|2 |w|
s(ln |w|)2k(22)

Next, we introduce the following generating function for the coefficients
Lk(s),

L(s, ξ) =
∞∑
k=0

ξ2k

(2k)!
Lk(s)(23)

The integral representation for L(s, ξ) is derived from the one for Lk(s),

L(s, ξ) =

∫
C

d2w

|w|2 |w|
s+ξ|1− w|−2s

−
∫
|w|≤1

d2w

|w|2 |w|
s(|w|ξ + |w|−ξ)(24)

where we have used the fact that all odd powers of ξ in the first integral
vanish since their integrands are odd under w → w−1. The evaluation of the
second integral is straightforward while the evaluation of the first integral is
familiar from Shapiro’s treatment of the Virasoro-Shapiro amplitude [16],∫

C

d2w |w|−2−2a|1− w|−2s

=
πs

(s+ a)(−a)

Γ(1− s)Γ(1− a)Γ(1 + s+ a)

Γ(1 + s)Γ(1 + a)Γ(1− s− a)
(25)

Setting a = −1
2(s+ ξ) we find the following expression for L(s, ξ),

L(s, ξ) = 4πs

s2 − ξ2

(
Γ(1− s)Γ(1 + s+ξ

2 )Γ(1 + s−ξ
2 )

Γ(1 + s)Γ(1− s+ξ
2 )Γ(1− s−ξ

2 )
− 1

)
(26)

The function L(s, ξ) is even in ξ, as expected from its original definition. It
is standard to express the ratio of Γ-functions in terms of an exponential of
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odd zeta-values, and we find,

L(s, ξ) =
4πs

s2 − ξ2

(
exp

{ ∞∑
m=1

2ζ(2m+ 1)

2m+ 1

×
[
s2m+1 − (s+ ξ)2m+1 + (s− ξ)2m+1

22m+1

]}
− 1

)
(27)

The coefficients Lk(s) are recovered by expanding the function L(s, ξ)
given by (27) in powers of ξ and using the definition (23). Substituting the
coefficients Lk(s) obtained in this manner into (20) and expanding in powers
of s provides an efficient practical construction of the Laurent polynomial
for the modular graph function DN for arbitrary N .

It is evident that the resulting expressions for Lk(s) and thus for the Lau-
rent polynomial of DN are free of irreducible multiple zeta-values, thereby
proving part 1. of Theorem 1.

Furthermore, it follows from (20) and (8) that the coefficients of all
the terms in the Laurent polynomial in (4), apart from the term of order
yN , are polynomials in odd zeta-values with rational coefficients, while the
coefficient of yN is given by the first term in (4), which is a rational number.
This proves part 2. of Theorem 1.

Finally, assigning weight −1 to the parameter s and weight 0 to the
generating function D(s|τ), as we had argued already earlier based on the
weight assignment of DN (τ), and further assigning weight −1 to the auxil-
iary variable ξ, we deduce that the weight of L(s, ξ) is 2, so that the weight
of the coefficient Lk(s) is 2k + 2. Combining this result with the Laurent
expansion in (20), and using the standard assignment of weight 1 to π, then
establishes that DN (τ) is given by a term in yN times a rational number
plus a Laurent polynomial in y whose coefficients are polynomials in odd
zeta-values with total weight N . This proves part 3. of Theorem 1.
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