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In [9], Scholze and Weinstein show that a certain diagram of per-
fectoid spaces is Cartesian. In this paper, we generalize their result.
This generalization will be used in a forthcoming paper of ours ([6])
to compute certain non-trivial �-adic étale cohomology classes ap-
pearing in the the generic fiber of Lubin-Tate and Rapoport-Zink
towers. We also study the behavior of the vector bundle functor on
the fundamental curve in p-adic Hodge theory, defined by Fargues-
Fontaine, under multilinear morphisms.
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1. Introduction

Let R be a p-adically complete Zp-algebra and let G be a p-divisible group

over R. Let G̃ be the universal cover of G. This is the functor on NilpR
sending an R-algebra S, on which p is nilpotent, to the inverse limit

lim←−
p.

G(S)

where the transition morphisms are given by multiplication by p. When G is

connected, this functor, which is a sheaf of Qp-vector spaces, is represented,

under some mild conditions (see [9, Proposition 3.1.3, Corollary 3.1.5]) by

the formal scheme

Spf R�T
1/p∞

1 , . . . , T
1/p∞

d �

Let k be an algebraically closed field of characteristic p > 0 and let H

be a p-divisible group over k of height h and dimension d. The universal

cover H̃ lifts uniquely to W (k). Let M∞
H be the Rapoport-Zink space at

infinite level, associated with H. This is a formal scheme over Spf W (k)

classifying deformations (up to isogeny) of H together with infinite Drinfeld

level structure. In [9] Scholze and Weinstein show that the adic generic fiber

of M∞
H , denoted by M∞,ad

H,η , has a natural structure of a perfectoid space.

They also prove that as an adic space it embeds canonically inside the h-fold

product of H̃ad
η and is given by two p-adic Hodge theoretic conditions; The

first condition defining a point on a certain flag variety canonically attached

toH via Grothendieck-Messing deformation theory and the second condition

describing the geometric points as certain modifications of vector bundles

on the Fargues-Fontaine curve in p-adic Hodge theory.

Now assume that H has dimension 1. In [4] and [5] we have constructed

exterior powers of p-divisible groups of dimension at most 1. Using the high-

est exterior power of H, some ad-hoc arguments special to the highest exte-

rior power, and their classification of p-divisible groups over OCp
(the ring of

integers of Cp, the p-adic completion of an algebraic closure of Qp), Scholze-
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Weinstein prove that the following diagram is Cartesian

M∞,ad
H,η

det M∞,ad
μp∞ ,η

(
H̃ad

η

)×h

det
μ̃ad
p∞,η

where the horizontal morphisms are given by the determinant morphisms
(suitably defined by taking highest exterior powers), and the vertical morph-
isms are the embeddings to which we alluded above.

In this paper, we investigate the case, where instead of the highest exte-
rior power, we take an arbitrary exterior power of H and generalize Scholze-
Weinstein result by proving that the following diagram is Cartesian:

M∞,ad
H,η

Λr

M∞,ad
∧rH,η

(
H̃ad

η

)×h

Λr

(
∧̃rH

ad

η

)×(hr)
Here the top horizontal morphism is given by using exterior powers of

p-divisible groups and a result in [6], where we show that Drinfeld level struc-
tures are preserved under the operation of taking exterior powers and there-
fore induce a natural morphism from the Lubin-Tate tower to the Rapoport-
Zink tower. The lower horizontal morphism is constructed by a careful study
of multilinear morphisms of vector bundles on the Fargues-Fontaine curve in
p-adic Hodge theory, and using results in [9] and [1] relating universal cover
a p-divisible group G to the global sections of the vector bundle (of slopes
between 0 and 1) over the Fargues-Fontaine curve associated with G.

Although we employ some similar arguments as in the case of r = h
(using the classification of p-divisible groups in terms of vector bundles over
Fargues-Fontaine curve), the ad-hoc arguments used by Scholze-Weinstein
in the case r = h fail in the general case (note that when r = h, there is an
isomorphism ∧hH ∼= μp∞). In the general situation, we had to build a theory
of multilinear morphisms of quasi-coherent sheaves over projective schemes
and use it to study the behavior of the equivalence of categories, from the cat-
egory of isocrystals to the category of vector bundles over Fargues-Fontaine
curve, under multilinear morphisms and tensor operations.

The main theorem of this paper (that that above diagram is Cartesian)
will be used in a forthcoming work ([6]), where we use the wedge morphism
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on the Lubin-Tate tower (morphism M∞
H

Λr

−−→ M∞
∧rH) to study the �-adic

étale cohomology of the generic fiber Rapoport-Zink tower. More precisely,
in [6], we study the contribution of the cohomology of the Lubin-Tate tower,
via the wedge morphism, to the cohomology of the Rapoport-Zink tower.
The p-adic Hodge theoretic description of the Rapoport-Zink tower, given by
Scholze-Weinstein, is so far the best available technology for understanding
the generic fiber of these spaces, as the moduli interpretation of these formal
scheme is lost once we go to the generic fiber. It was therefore important to
have a good understanding of the operation of the wedge morphism, which is
defined in terms of the moduli property of these towers, on the generic fiber.
Another motivation for such a Cartesian diagram comes from the relation to
period morphisms. Let us explain this in more details. Let G be a p-divisible
group over k of height h and dimension d. The Grothendieck-Messing period
morphism is a morphism from the adic generic fiber M∞,ad

G,η to the flag
variety of rank d quotients of the Dieudonné module of G (a rank h free
W (k)-module). In [3] we have studied various embeddings of flag varieties
and in particular, we have shown that using exterior powers, one obtains a
closed embedding of Ph−1 to the Grassmannian of rank d quotients of a fixed
rank h vector bundle, denoted by Gr(h, d). Our main theorem implies in
particular that the corresponding diagram of period morphism using exterior
powers of p-divisible groups and the closed embedding Ph−1 ↪→ Gr(h, d) is
commutative. One should however note that this diagram is not Cartesian.
In another work of ours, we will investigate the necessary modifications for
making that diagram Cartesian (e.g., by incorporating the group actions of
various reductive groups over these adic spaces in the diagram).

As a byproduct of our work on multilinear morphisms of vector bundles
over the Fargues-Fontaine curve and the intermediary steps of the proof of
the main theorem, we prove that there is a canonical isomorphism

∧rEH ∼= E∧rH

where for a p-divisible group G over a semiperfect ring R, we denote by EG
the associated vector bundle over

Proj
(⊕
d≥0

(
B+

cris(R)
)ϕ=pd)

Here, as usual, B+
cris(R) is one of Fontaine’s period rings appearing in p-adic

Hodge theory. The proof of this result, which can be stated without using
Rapoport-Zink spaces and their p-adic Hodge theoretic description, uses the
machinery of [9] and our proof of the main theorem.
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2. Preliminaries

2.1. Rank and the exterior power of a matrix

In this subsection, we show that the rank of a matrix is determined by the

rank of the exterior powers of it (see Lemma 2.10).

Notations 2.1. Let R be a ring and A an element of Mn(R). Fix 1 ≤ d ≤ n.

We denote by ∧dA ∈ M(nd)
(R), the matrix whose entries are the d-minors

of A. �

Definition 2.2. Let R be a ring and A ∈ Mn(R). For i ≥ 0, the i-th

determinantal ideal of A, denoted by Ui(A) is the ideal of R generated by

i× i-minors of A. So, we have a chain:

0 = Un+1(A) ⊂ Un(A) = det(A)R ⊂ Un−1(A) ⊂ . . .

· · · ⊂ U1(A) ⊂ U0(A) = R �

Lemma 2.3. Let ϕ : R → S be a ring homomorphism, then for any A ∈
Mn(R), and any i ≥ 0, we have

Ui

(
ϕ(A)

)
= Ui(A)S(2.4)

Proof. This follows immediately from the definition.

Definition 2.5. Let R be a ring and A an element of Mn(R). We say that

the rank of A is r if all minors of size r + 1 are zero and all minors of size

r generate the unit ideal of R. In other words, we have Ur(A) = R and

Ur+1(A) = 0. �

Remark 2.6. (i) Note that the rank of a matrix is not always defined.

(ii) It follows from Lemma 2.3 that the rank of a matrix (when it is defined)

is preserved under base change. ♦

Lemma 2.7. Let R be a ring and A ∈ Mn(R). Then, rank(A) = r if and

only if for all p ∈ Spec(R), rank(Ap) = r, where Ap is the image of A in

Mn(Rp).

Proof. If rank(A) = r, then by previous remark, A has rank r in all local-

izations. Now assume that A has rank r in all localizations. This means that

Ur+1(A) is zero in all localizations (using 2.4), and so it is zero. Similarly,

Ur(A) is the unit ideal in all localizations, and so it is the unit ideal.
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Lemma 2.8. Let R be a ring and A ∈ Mn(R). Then, rank(A) = r if and

only if the cokernel of the R-linear morphism : Rn → Rn defined by A is a

projective R-module of rank n− r.

Proof. Let us denote this cokernel by W . Recall that the i-th Fitting ideal,

Fiti(W ), of W is the ideal Un−i(A). [10, Lemma 07ZD] states that W is

finitely generated projective of rank n − r if and only if Fitn−r−1(W ) = 0

and Fitn−r(W ) = R, which is equivalent to rank(A) = r

Lemma 2.9. Let R be a ring and let

M
α−→ N

π−→ W → 0

be an exact sequence of finitely generated projective R-modules with W of

rank 1 and M and N of the same rank. Let K be the kernel of π. Choose

d < rankM . Then we have a canonical exact sequence

∧dM
∧dα−−−→ ∧dN → ∧d−1K ⊗R W → 0.

Proof. Let K denote the kernel of π, then, it is finitely generated projective

and we have a split short exact sequence

0 → K → N → W → 0

and so, since W has rank 1, we have ∧dN ∼= ∧dK⊕∧d−1K⊗W . This means

that the sequence

0 → ∧dK → ∧dN → ∧d−1K ⊗W → 0

is exact. Now, since ∧dM → ∧dK is an epimorphism, it follows that the

sequence

∧dM
∧dα−−−→ ∧dN → ∧d−1K ⊗R W → 0

is exact as desired.

Lemma 2.10. Let R be a ring, A ∈ Mn(R) and d < n. Then A has rank

n− 1 if and only if the matrix ∧dA ∈ M(nd)
(R) has rank

(
n−1
d

)
.

Proof. Assume that rank(A) = n − 1. Then, by Lemma 2.8, we have an

exact sequence

Rn A−−→ Rn → W → 0

https://stacks.math.columbia.edu/tag/07ZD
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where W is free of rank 1. By Lemma 2.9, we have an exact sequence

∧d(Rn)
∧dA−−−→ ∧d(Rn) → ∧d−1K ⊗R W → 0

where K denotes the image of A : Rn → Rn and has rank n − 1. The free
R-module ∧d−1K ⊗R W has rank

(
n−1
d−1

)
and so, again by Lemma 2.8, ∧dA

has rank
(
n
d

)
−
(
n−1
d−1

)
=

(
n−1
d

)
.

Conversely, assume that ∧dA has rank
(
n−1
d

)
. By Lemma 2.7, we can

assume that R is a local ring with maximal ideal m and residue field κ. Let
r be the rank of A modulo m (that we denote by Ā). Thus Ā is equivalent
(over κ) to the matrix (

Ir 0
0 0

)
(here Ir is the identity matrix of size r) which implies that ∧dA modulo m

is equivalent to the matrix (
I(rd)

0

0 0

)
We therefore have:(

n− 1

d

)
= rank(∧dA) = rank(∧dĀ) =

(
r

d

)
where the second equality follows from Remark 2.6 (ii). Since d < n, this
implies that r = n− 1.

So, Un−1(Ā) = κ, and therefore the determinantal ideal Un−1(A) is the
unit ideal. In order to prove that A has rank n − 1, we have to show that
det(A) = 0. Since there is an invertible minor of size n− 1, by a generalized
pivot method (see e.g. [7, 5.9]), we can show that A is equivalent to the
matrix (

In−1 0
0 det(A)

)
and so, ∧dA is equivalent to the matrix(

I(n−1

d ) 0

0 det(A)I(n−1

d−1)

)

Since ∧dA has rank
(
n−1
d

)
, this implies that det(A) = 0.



706 S. Mohammad Hadi Hedayatzadeh

2.2. Elements from p-adic Hodge theory

In this subsection we recall some definitions and results from p-adic Hodge
theory.

Definition 2.11. Let R be a ring of characteristic p > 0. It is called semiper-
fect if its Frobenius is surjective. �

We have the following result of Fontaine:

Proposition 2.12 ([9], Proposition 4.1.3.). Let R be a semiperfect ring
of characteristic p > 0. Let R� := lim←−Frob

R be the tilt of R. Denote by

Acris(R) the p-adic completion of the PD hull of the surjection W (R�) � R.
Then, Acris(R) is the universal p-adically complete PD thickening of R, and
its construction is functorial in R. In particular it has a natural Frobenius
morphism ϕ : Acris(R) → Acris(R) coming from the Frobenius of R.

Set B+
cris(A) := Acris(R)[1/p].

Definition 2.13. Let R be a semiperfect ring of characteristic p > 0.

(i) A Dieudonné module over R is a finitely generated projective Acris(R)-
module M together with Acris(R)-linear homomorphisms

F : M ⊗Acris(R),ϕ Acris(R) → M

V : M → M ⊗Acris(R),ϕ Acris(R)

such that FV = p = V F .
(ii) An isocrystal over R is a finitely generated projective B+

cris(R)-module
N together with a B+

cris(R)-linear isomorphism

F : N ⊗B+
cris(R),ϕ B+

cris(R) → N

We say that N is integral if there is a finitely generated projective
Acris(R)-module M such that N = M [1/p] and

F (M ⊗Acris(R),ϕ Acris(R)) ⊂ M

By abuse of notation, we will denote by F the ϕ-semilinear morphism send-
ing m to F (m⊗1). We will also denote by Mσ the base change M⊗Acris(R),ϕ

Acris(R) or M ⊗B+
cris(R),ϕ B+

cris(R). �
Remark 2.14. Note that when Acris(R) is p-torsion-free (e.g., when R is
the quotient of a perfect ring by an ideal generated by a regular sequence),
the Frobenius F : M → M is injective. ♦
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Definition 2.15. LetN be an isocrystal over R. We denote the isomorphism

pF−1 : N → N ⊗B+
cris(R),ϕ B+

cris(R)

by V and call it the Verschiebung of N . �
Example 2.16. Let k be a perfect field of characteristic p and G a p-
divisible group over k. Let R be a semiperfect k-algebra, then the finite
free Acris(R)-module D(G)⊗W (k) Acris(R) has a natural Frobenius and Ver-
schiebung (extending F and V of D(G)), making it a Dieudonné module
over R. The ϕ-semilinear Frobenius

F : D(G)⊗W (k) Acris(R) → D(G)⊗W (k) Acris(R)

is given by the formula x⊗ a �→ F (x)⊗ ϕ(a). �
Definition 2.17. Let R be a semiperfect ring of characteristic p > 0 and let
G be a p-divisible group over R. The Dieudonné module of G, denoted by
D(G) is the evaluation of the crystal of G on the PD thickening Acris(R) →
R. This defines a functor from the category of p-divisible groups over R to
the category of Dieudonné modules over R. �
Definition 2.18. Let R be a semiperfect ring of characterisitc p > 0. We
denote by PR the graded Qp-algebra

PR =
⊕
d≥0

(
B+

cris(R)
)ϕ=pd

Let (N,F ) be an isocrystal over R. We define the graded PR-module

Ngr :=
⊕
d≥0

NF=pd+1

and denote by EN the associated quasi-coherent sheaf over ProjPR. Note
that the degree d elements of Ngr are NF=pd+1

. �
Let us fix a complete and algebraically closed extension C of Qp. Recall

(cf. [1] Ch. 6, §6.1) that the Fargues-Fontaine curve is X := ProjPOC/p.
Throughout this paper, we will reserve the letter X for this curve. If N is
an isocrystal over OC/p, then EN is a vector bundle over X of rank equal
to the height of N .

There is a natural morphism, called Fontaine’s morphism

Θ : B+
cris(OC/p) → C
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which defines a closed embedding i∞ : {∞} → X. In fact, if k is a

perfect field of characteristic p and (R,R+) is a perfectoid affinoid

(W (k)[1/p],W (k))-algebra, we have Fontaine’s morphism

Θ : B+
cris(R

+/p) → R

Let (N,F ) be an isocrystal over OC/p. We have a canonical isomorphism

Γ(X, EN ) ∼= NF=p(2.19)

2.3. Universal cover of p-divisible groups

Definition 2.20. Let S be a scheme and G a p-divisible group over S. The

p-adic Tate module of G is the sheaf of Zp-modules

Tp(G) := lim←−
n

G[pn]
�

Remark 2.21. Note that we have a canonical isomorphism of Zp-sheaves:

Tp(G) ∼= HomS(Qp/Zp, G)(2.22) ♦

Notations 2.23. Let R be a ring on which p is topologically nilpotent,

and denote by NilpopR the category opposite of the category of R-algebras on

which p is nilpotent. �

Definition 2.24. Let (R,R+) be a complete affinoid
(
W (k)[1/p],W (k)

)
-

algebra and assume that R+ is bounded. Define the adic generic fiber functor

( )adη : (NilpopR+)
∼ → (CAffop(R,R+))

∼

by sending a sheaf F to the sheafification of

(S, S+) �→ lim−→
S0⊂S+

lim←−
n

F(S0/p
n)

where CAff(R,R+) is the category of complete affinoid (R,R+)-algebras and

the direct limit runs over all open and bounded sub-R+-algebras S0 of S+

(for a discussion on the topology of (NilpopR+)∼ see [8, Ch. 2] and for more

details on the adic generic functor, see [9, §2.2]). �
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Definition 2.25. Let R be a ring on which p is topologically nilpotent and

let G be a p-divisible group over R. We will consider G as the sheaf on

NilpopR , sending an R-algebra S to lim−→G[pn](S). The universal cover of G,

denoted by G̃ is the sheaf of Qp-vector spaces on NilpopR that sends S to

lim←−
p·

G(S)

where the transition morphisms are the multiplication-by-p morphism (cf.

[1], Ch. 4, Définition 4.5.1., or [9], §3). We extend this functor to R-algebras

on which p is topologically nilpotent, by sending such an R-algebra S to the

limit

lim
←−
n

G̃(S/pn)

�

Let us list some properties of the universal cover that we will use through-

out the paper:

Proposition 2.26. Let R be a ring on which p is topologically nilpotent and

fix a p-divisible group G over R. We denote by D(G) the Dieudonné module

of G over R (when R is semiperfect).

(1) if p is nilpotent in R, then we have a canonical isomorphism

G̃(R) ∼= HomR(Qp/Zp, G)[1/p](2.27)

(2) if R is p-adically complete, then we have a canonical isomorphism

G̃(R) ∼= G̃(R/p) ∼= HomR/p(Qp/Zp, G)[1/p](2.28)

(3) there is a canonical isomorphism of Qp-sheaves

G̃ ∼= Tp(G)[1/p]

where again Tp(G) is the p-adic Tate module of G, seen as a sheaf.

(4) assume that R is an f -semiperfect ring (meaning that the tilt R� is

f -adic), then we have a canonical isomorphism

G̃(R) ∼=
(
D(G)[1/p]

)F=p
(2.29)
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(5) let R be a perfect field. Then, the universal cover G̃ lifts uniquely
to W (R) and for any perfectoid affinoid (W (R)[1/p],W (R))-algebra
(S, S+), we have a canonical isomorphism

G̃ad
η (S, S+) ∼=

(
D(G)⊗W (k) B

+
cris(S

+/p)
)F=p

(2.30)

Proof. See [9, §3 and §5].

Remark 2.31. Note that when p is merely topologically nilpotent, we ex-
tend the definitions of G̃ and Tp(G) by taking inverse limits over truncations
by powers of p. So, in the isomorphism of part (3) of the Proposition, the
localization at 1/p is before taking inverse limits. In other words, for a ring
R in which p is topologically nilpotent (and not nilpotent), we have

G̃(R) ∼= lim
←−
n

G̃(R/pn) ∼= lim
←−
n

(
Tp(G)(R/pn)[1/p]

) ∼= (
TpG[1/p]

)
(R)(2.32)

whereas, (
Tp(G)(R)

)
[1/p] ∼=

(
lim←−
n

Tp(G)(R/pn)
)
[1/p]

and these two inverse limits are not isomorphic. Isomorphism (2.32) yields
a canonical embedding of Zp-sheaves:

Tp(G) ↪→ G̃(2.33) ♦
Remark 2.34. As we said in part (5) of Proposition 2.26, when R is a
perfect field, the universal cover G̃ of G lifts uniquely to W (R), and we will
denote the lift by G̃ as well. ♦
Lemma 2.35. Let k be a perfect field of characteristic p > 0 and G a
p-divisible group over k. Let G̃ be the unique lift of the universal cover of
G to W (k), and EG the vector bundle over the Fargues-Fontaine curve X
associated with G, i.e., ED(G)⊗W (k)B

+
cris(OC/p). Then, for any natural number

n, we have a canonical bijection:

G̃ad
η (C,OC)

×n ∼= HomX(O⊕n
X , EG)(2.36)

Proof. This following by combining isomorphisms (2.19) and (2.30), and
observing that we have

HomX(OX , EG) ∼= Γ(X, EG).
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Lemma 2.37. Let G be a p-divisible group over a perfect field k of charac-
teristic p, and (R,R+) a perfectoid affinoid

(
W (k)[1/p],W (k)

)
-algebra. The

following diagram is commutative

G̃ad
η (R,R+)

qlog

∼= (
D(G)⊗W (k) B

+
cris(R

+/p)
)F=p

Θ

D(G)⊗W (k) R

where qlog : G̃ad
η → D(H) ⊗ Ga is the quasi-logarithm (see [9, §3.2 and

§6.3]).
Proof. This follows from Lemma 3.5.1 and Theorem 4.1.4. in [9].

3. Multilinear theory

3.1. Multilinear morphisms of graded modules

In this subsection, we define multilinear morphisms of graded modules over
graded rings and show that they induce multilinear morphisms between their
associated quasi-coherent sheaves over the Proj.

Notations 3.1. Let Σ and Δ be sets and � : Σ×r → Δ a map. Let h ≥ r.
We denote by Λr� (or even Λr if � is understood from the context), the
following map:

Λr� : Σ×h → Δ×(hr)

(x1, . . . , xh) �→
(
�(xi1 , . . . , xir)

)
1≤i1<···<ir≤h

Now, if C is a category, Σ,Δ : C → Ens are functors and � : Σ×r → Δ is
a natural transformation, we can define the natural transformation Λr� in
the same fashion. �

Definition 3.2. Let S =
⊕

d≥0 Sd be a graded ring and M,M1, . . . ,Mr, N
graded S-modules. A graded multilinear morphism

τ : M1 × · · · ×Mr → N

is a multilinear morphism of S0-modules such that for all d1, . . . , dr ≥ 0, we
have

τ(Md1
× · · · ×Mdr

) ⊂ Nd1+···+dr
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We denote by Multgr(M1 × · · · × Mr, N) the Abelian group of all such
multilinear morphisms. Similarly, we denote by Altgr(M

×r, N) (respectively
Symgr(M

×r, N)) the subgroup of Multgr(M
×r, N) consisting of alternating

(respectively symmetric) elements. When r = 1, we obtain the usual notion
of graded morphism of graded modules. �
Definition 3.3. Let S =

⊕
d≥0 Sd be a graded ring and M,N graded S-

modules. For i ≥ 0, we denote by i-Hom(M,N) the group Homgr(M,N [i]).
We call elements of this group i-graded morphisms. Using notations in [2],
we denote the graded S-module ⊕i≥0 i-Hom(M,N) by ∗HomS(M,N). �
Lemma 3.4. Let S =

⊕
d≥0 Sd be a graded ring and M1, . . . ,Mr, N graded

S-modules. Under the canonical isomorphism

Θ : MultS(M1 × · · · ×Mr, N) ∼= MultS
(
M1 × · · · ×Mr−1,Hom(Mr, N)

)(3.5)

The subgroup Multgr(M1 × · · · ×Mr, N) is mapped onto the subgroup

Multgr
(
M1 × · · · ×Mr−1, ∗HomS(Mr, N)

)
Proof. Recall that the isomorphism (3.5) sends ϕ to

Θ(ϕ) : (m1, . . . ,mr−1) �→ [mr �→ ϕ(m1, . . . ,mr)]

Take ϕ ∈ MultS(M1 × · · · ×Mr, N), then ϕ is graded if and only if

ϕ(Md1
, . . . ,Mdr

) ⊂ Nd1+···+dr

if and only if

Θ(ϕ)(Md1
, . . . ,Mdr−1

)(Mdr
) ⊂ Nd1+···+dr

if and only if

Θ(ϕ)(Md1
, . . . ,Mdr−1

) ⊂ (d1 + · · ·+ dr−1)-Hom(Mr, N)

if and only if Θ(ϕ) is graded.

Lemma 3.6. Let S =
⊕

d≥0 Sd be a graded ring and M,N graded S-

modules. Set Y := ProjS. For a graded S-module P , we denote by P̃
the associated OY -module. There is a canonical and functorial morphism
of OY -modules (

∗HomS(M,N)
)̃
→ HomOY

(M̃, Ñ)(3.7)
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Proof. Let f ∈ Sd be a homogenous element of degree d and U = D+(f)
the special open subset of Y attached to f . For a graded S-module P we
have P̃|U

∼= P̃(f) and so, it is enough to show that we have a canonical and
functorial morphism(

∗HomS(M,N)
)
(f)

→ HomS(f)
(M(f), N(f))

compatible with restrictions D+(f) → D+(g). So, let
ϕ
fn be a degree zero

quotient in
(
∗HomS(M,N)

)
(f)

, so, ϕ has degree nd. We send this quotient

to the morphism M(f) → N(f) that sends
mid

f i to ϕ(mid)
fn+i . It is now straight-

forward to check that all the required conditions are satisfied and thus, we
have the desired morphism(

∗HomS(M,N)
)̃
→ HomOY

(M̃, Ñ)

Proposition 3.8. Let S =
⊕

d≥0 Sd be a graded ring and M1, . . . ,Mr,M,N

graded S-modules. Set Y = ProjS and for i = 1, . . . , r, let M̃i (respectively
M̃, Ñ) be the OY -module associated with Mi (respectively M,N). Then there
are canonical and functorial homomorphisms

Multgr(M1 × · · · ×Mr, N) → MultOY
(M̃1 × · · · × M̃r, Ñ)(3.9)

Altgr(M
×r, N) → AltOY

(M̃×r, Ñ)(3.10)

Symgr(M
×r, N) → SymOY

(M̃×r, Ñ)(3.11)

where on the right hand sides we have respectively the group of multilinear,
alternating and symmetric morphisms of OY -modules.

Proof. We will prove the first statement and the other two will be similar
(and in fact follow from it). We are going to prove the statement by induction
on r. For r = 1, this follows from functoriality of the ( )̃ construction. So,
assume the result holds for r and we want to prove it for r + 1. By Lemma
3.4, we have an isomorphism

Multgr(M1 × · · · ×Mr+1, N) ∼= Multgr
(
M1 × · · · ×Mr, ∗HomS(Mr+1, N)

)
By induction hypothesis, there is a morphism from the right hand side to

MultOY

(
M̃1 × · · · × M̃r,

(
∗HomS(Mr+1, N)

)̃)
and composing with morphism (3.7), we obtain a morphism to

MultOY

(
M̃1 × · · · × M̃r,HomOY

(M̃, Ñ)
)
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which is isomorphic to

MultOY
(M̃1 × · · · × M̃r+1, Ñ)

All these morphisms being canonical and functorial, we obtain the desired
morphism

Multgr(M1 × · · · ×Mr+1, N) → MultOY
(M̃1 × · · · × M̃r+1, Ñ)

and the proof is achieved.

3.2. Multilinear morphisms of vector bundles on the
Fargues-Fontaine curve

In this subsection, we show how multilinear morphisms of Dieudonné mod-
ules and isocrystals define, in a natural way, multilinear morphisms be-
tween their associated vector bundles on the Fargues-Fontaine curve of p-
adic Hodge theory.

Throughout this subsection, R is a semiperfect ring of characterisitc
p > 0.

Definition 3.12. Let M,M1, . . . ,Mr and N be isocrystals over R. A mul-
tilinear morphism

τ : M1 × · · · ×Mr → N

is a B+
cris(R)-multilinear morphism of B+

cris(R)-modules making the following
diagrams commutative (i = 1, . . . , r):

Mσ
1 × · · · ×Mσ

r
τσ

Nσ

FM1 × · · · ×Mi−1 ×Mσ
i ×Mi+1 × · · · ×Mr

Id×···×Id×F×Id×···×Id

V×···×V×Id×V×···×V

M1 × · · · ×Mr τ N

In other words, for all i = 1, . . . , r and all x1, . . . , xr (in the appropriate
module!), we have

F
(
τσ(V x1, . . . , V xi−1, xi, V xi+1, . . . , V xr)

)
=

τ(x1, . . . , xi−1, Fxi, xi+1, . . . , xr)(3.13)
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We will denote the B+
cris(R)-module of all such multilinear morphisms with

MultR(M1 × · · · ×Mr, N)

and if the chance of confusion is little, we drop R from the notation. Simi-
larly, we denote by AltR(M

×r, N) (respectively SymR(M
×r, N)) the subset

of MultR(M
×r, N) consisting of alternating (respectively symmetric) ele-

ments. �
Proposition 3.14. Let M1, . . . ,Mr and N be isocrystals over R. Then,
every multilinear morphism

M1 × · · · ×Mr → N

induces, by restriction, a graded Qp-multilinear morphism (in the sense of
Definition 3.2, see also Definition 2.18)

M1,gr × · · · ×Mr,gr → Ngr

in other words, restriction defines a homomorphism

Mult(M1 × · · · ×Mr, N) → Multgr(M1,gr × · · · ×Mr,gr → Ngr)(3.15)

Proof. Let τ : M1 × · · · × Mr → N be a multilinear morphism and take
elements mdi

∈ Mi,di
(i = 1, . . . , r), i.e., F (mdi

⊗ 1) = pdi+1mdi
. We have to

show that τ(md1
, . . . ,mdr

) is of degree pd1+···+dr , i.e., lies in NF=pd1+···+dr+1

.
Since we have

F (mdi
⊗ 1) = pdi+1mdi

= F (V pdimdi
)

and F is injective, for all i we have

mdi
⊗ 1 = V (pdimdi

)

and so we have the following series of equalities:

F
(
τ(md1

, . . . ,mdr
)⊗ 1

)
= Fτσ(md1

⊗ 1, . . . ,mdr
⊗ 1) =

Fτσ
(
md1

⊗ 1, V (pdimd2
), . . . , V (pdimdr

)
) (3.13)

=

τ
(
F (md1

⊗ 1), pd2md2
, . . . , pdrmdr

)
= τ

(
pd1+1md1

, pd2md2
, . . . , pdrmdr

)
=

pd1+···+dr+1τ(md1
, . . . ,mdr

)

and the proof is achieved.
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Corollary 3.16. Let M1, . . . ,Mr and N be isocrystals over R. Let τ : M1×
· · ·×Mr → N be a multilinear morphism, then the restriction of τ to MF=p

1 ×
· · ·×MF=p

r factors through the subset NF=p of N , i.e., we have the following

commutative diagram:

M1 × · · · ×Mr
τ

N

MF=p
1 × · · · ×MF=p

1 τ NF=p
1

So, we have a homomorphism

Mult(M1 × · · · ×Mr, N) → Mult(MF=p
1 × · · · ×MF=p

r , NF=p)(3.17)

Proof. This follows from the definition of graded multilinear morphism and

the proposition.

Remark 3.18. We have statements similar to the previous proposition and

corollary for alternating and symmetric multilinear morphisms. So, for ex-

ample, if M and N are isocrystals over R, then we have a homomorphism:

Alt(M r, N) → Alt
(
(MF=p)×r, NF=p

)
(3.19) ♦

Corollary 3.20. Let M be an isocrystal over R and fix a natural number r.

Assume that ∧r
B+

cris(R)
M has a Frobenius F (i.e., is an isocrystal over R)

such that the universal alternating morphism of B+
cris(R)-modules

λM : M×r → ∧r
B+

cris(R)
M

(m1, . . . ,mr) �→ m1 ∧ · · · ∧mr

is a multilinear morphism in the sense of Definition 3.12. Then, this alter-

nating morphism induces a morphism

∧r
Qp
(MF=p) →

(
∧r
B+

cris(R)
M

)F=p
(3.21)

Proof. If in (3.19) we replace N with ∧rM , then the image of λM is an

alternating morphism

λM : (MF=p)×r → (∧rM)F=p(3.22)
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and therefore, it induces a canonical homomorphism

∧r
Qp
(MF=p) → (∧rM)F=p

as desired.

Construction 3.23. Using Notations 3.1, from

λM : (MF=p)×r → (∧rM)F=p

we obtain a morphism

ΛrλM : (MF=p)×h →
(
(∧rM)F=p

)×(hr)
(3.24) �
Proposition 3.25. Let M,M1, . . . ,Mr and N be isocrystals over R. There
are natural and functorial homomorphisms

Mult(M1 × · · · ×Mr, N) → Mult(EM1
× · · · × EMr

, EN )(3.26)

Alt(M×r, N) → Alt(E×r
M , EN )(3.27)

Sym(M×r, N) → Sym(E×r
M , EN )(3.28)

Proof. The first homomorphism is the composition of homomorphisms (3.9)
and (3.15). The others are given in a similar fashion (using Proposition 3.8
and Remark 3.18).

Remark 3.29. Let R be OC/p. Taking global sections, induces a homo-
morphism (using the canonical isomorphism (2.19))

Mult(EM1
× · · · × EMr

, EN ) → Mult(MF=p
1 × · · · ×MF=p

r , NF=p)

whose composition with homomorphism (3.26) is nothing but homomorph-
ism (3.17). ♦
Corollary 3.30. Let M be an isocrystal over R satisfying the condition of
Corollary 3.20. Then, we have a canonical morphism of OX-modules:

LM : ∧r
OX

EM → E∧rM(3.31)

Proof. By Proposition 3.25 we have a homomorphism

Alt(M×r,∧rM) → Alt(E×r
M , E∧M ) ∼= Hom(∧rEM , E∧rM )

The universal alternating morphism M×r → ∧rM now gives the desired
morphism LM .
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3.3. Multilinear theory of p-divisible groups

In this subsection we recall some constructions and results on multilinear

theory of p-divisible groups from [5], and further develop the theory to study

multilinear constructions of the universal covers of p-divisible groups and

their adic generic fiber. From now on (until the end of the paper), we will

assume that p is an odd prime number.

Notations 3.32. We denote by BT h,BTh,≤1,BT n
h and BT n

h,≤1 respectively

the smooth algebraic stack of p-divisible groups of height h, p-divisible

groups of height h and dimension at most 1, truncated Barsotti-Tate groups

of height h and level n and truncated Barsotti-Tate groups of height h, level

n and dimension at most 1. �

Let us recall the definition of multilinear morphisms of p-divisible groups:

Definition 3.33. Let S be a scheme and G0, . . . , G1, . . . , Gr be p-divisible

groups over S. A multilinear morphism ϕ : G1×· · ·×Gr → G0 is an inverse

system (ϕn) of multilinear morphisms of fppf sheaves

ϕn : G1[p
n]× · · · ×Gr[p

n] → G0[p
n]

compatible with the projections Gi[p
n+1] � Gi[p

n], in the sense that for all

n, the following diagram is commutative:

G1[p
n+1]× · · · ×Gr[p

n+1]
ϕn+1

G0[p
n+1]

G1[p
n]× · · · ×Gr[p

n] ϕn
G0[p

n]

Alternating and symmetric multilinear morphisms are defined similarly. �

Lemma 3.34. Let S be a scheme and G,G0, . . . , G1, . . . , Gr be p-divisible

groups over S. There are canonical homomorphisms, functorial in all argu-

ments

Mult
(
G1 × · · · ×Gr, G0

)
→ MultZp

(
Tp(G1)× · · · × Tp(Gr), Tp(G0)

)(3.35)

Alt
(
G×r, G0

)
→ AltZp

(
Tp(G)×r, Tp(G0)

)
(3.36)

Sym
(
G×r, G0

)
→ SymZp

(
Tp(G)×r, Tp(G0)

)
(3.37)
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Proof. Let ϕ : G1 × · · · × Gr → G0 be a multilinear morphism. Taking the
inverse limit of

ϕn : G1[p
n]× · · · ×Gr[p

n] → G0[p
n]

and observing that inverse limit commutes with products, we obtain a mul-
tilinear morphism

Tp(ϕ) : Tp(G1)× · · · × Tp(Gr) → Tp(G0)

By construction, this homomorphism is functorial in all arguments (as is the
Tate module construction). Alternating and symmetric multilinear morph-
isms are preserved under the homomorphism Tp thus defined.

Theorem 3.38. Fix natural numbers 1 ≤ r ≤ h. There exists a unique
morphism of stacks

∧r : BT n
h,≤1 → BT n

(hr)

satisfying the following

(1) by taking the limit, ∧r induces a morphism

BTh,≤1 → BT(hr)

(2) if S is a scheme and G is in BTh,≤1(S), then we have a canonical
isomorphism

(∧rG)[pn] ∼= ∧r(G[pn])(3.39)

(3) if G is in BTh,≤1(S), then for any s ∈ S, we have

dim(∧rG)(s) =

(
h− 1

r − 1

)
· dimG(s)

(4) if G is in BT n
h,≤1(S), then ∧rG has the categorical property of exterior

powers, i.e., there is an alternating morphism of fppf sheaves

λG : G×r → ∧rG

that makes ∧rG the rth-exterior power of G in the category of finite
flat groups schemes over S. In particular, for every S-scheme Y , there
is a natural homomorphism

λ∗(Y ) : ∧r
(
G(Y )

)
→ (∧rG)(Y )

of Y -valued points.
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(5) if G is in BTh,≤1(S), the universal alternating morphisms

λG[pn] : G[pn]×r → ∧r(G[pn])

define an alternating morphism

λG : G×r → ∧rG(3.40)

that is universal in the category of p-divisible groups.
(6) let G be in BTh,≤1(S). The alternating morphism

Tp(G)× · · · × Tp(G) → Tp(∧rG)(3.41)

given by the universal alternating morphism λG and using (3.36) is
universal, i.e., it induces an isomorphism of Zp-sheaves:

∧r
(
Tp(G)

) ∼= Tp(∧rG)(3.42)

(7) if G is in BT n
h,≤1(S) and α : (Z/pn)h → G(S) is a Drinfeld level

structure, then the composition

∧r
(
(Z/pn)h

) ∧rα−−−→ ∧r
(
G(S)

) λ∗(S)−−−−→ (∧rG)(S)

(still denoted by ∧rα) is a Drinfeld level structure.
(8) if k is a perfect field of characteristic p and G is in BTh,≤1(Spec(k)),

then, we have a canonical isomorphism of Dieudonné modules

D(∧rG) ∼= ∧r
W (k)

(
D(G)

)
(3.43)

Proof. This is [6, Theorem A], which relies on [4, Theorem 3.39 & Proposi-
tion 3.31] and [5, Theorem 3.25].

Lemma 3.44. Let R be a ring on which p is topologically nilpotent. Let
G,G0, . . . , Gr be p-divisible groups over R. There are canonical homomorph-
isms, functorial in all arguments:

Mult
(
G1 × · · · ×Gr, G0

)
→ MultQp

(
G̃1 × · · · × G̃r, G̃0

)
(3.45)

Alt
(
G×r, G0

)
→ AltQp

(
G̃×r, G̃0

)
(3.46)

Sym
(
G×r, G0

)
→ SymQp

(
G̃×r, G̃0

)
(3.47)

Proof. This follows from Lemma 3.34, and the isomorphism of part (3) of
Proposition 2.26 (see also (2.32)).
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Lemma 3.48. Let R be a ring on which p is topologically nilpotent. Let
G,G0, . . . , Gr be p-divisible groups over R. The following diagrams are com-
mutative:

Mult
(
G1 × · · · ×Gr, G0

)
MultZp

(
Tp(G1)× · · · × Tp(Gr), Tp(G0)

)

MultQp

(
G̃1 × · · · × G̃r, G̃0

)
Alt

(
G×r, G0

)
AltZp

(
Tp(G)×r, Tp(G0)

)

AltQp

(
G̃×r, G̃0

)
Sym

(
G×r, G0

)
SymZp

(
Tp(G)×r, Tp(G0)

)

SymQp

(
G̃×r, G̃0

)
where the vertical morphisms are induced by the isomorphism of part (3) of
Proposition 2.26.

Proof. This follows from the construction of the oblique morphisms.

Lemma 3.49. Let F1, . . . ,Fr,F and G be (Zariski, fppf, étale etc.) pre-
sheaves of Abelian groups on a site, and let us denote by ( )
 the sheafification
functor. We have canonical homomorphisms, functorial in all arguments:

Mult(F1 × · · · × Fr,G) → Mult(F 

1 × · · · × F 


r ,G
)(3.50)

Alt(F×r,G) → Alt(F 
,×r,G
)(3.51)

Sym(F×r,G) → Sym(F 
,×r,G
)(3.52)

Furthermore, if G is already a sheaf, then the above homomorphisms are
bijective.

Proof. We will only prove the first statement, as the other two are proven
similarly. We will proceed by induction on r. If r = 1, then both state-
ments are true by the construction (universal property) of the sheafification
functor. So, assume that we know both statements for r ≥ 1.

Let us denote by Hompre(Fr+1,G) the pre-sheaf hom group, that is the
pre-sheaf that sends U to the group HomU (Fr+1|U ,G|U ). Then, again by the
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universal property of ( )
, we have a canonical homomorphism

Hompre(Fr+1,G)
 → Hom(F 

r+1,G
)(3.53)

which is an isomorphism if G is already a sheaf (in fact if G is a sheaf, then
Hompre(Fr+1,G) is a sheaf).

So, we have homomorphisms

Mult
(
F1 ×. . .×Fr+1,G

) ∼=−−→ Mult
(
F1 × · · · × Fr,Hompre(Fr+1,G)

)
ind.hyp.−−−−−−→

Mult
(
F 

1 × · · · × F 


r ,Hompre(Fr+1,G)

) (3.53)−−−−→

Mult
(
F 

1 × · · · × F 


r ,Hom(F 

r+1,G
)

) ∼=−−→ Mult(F 

1 × · · · × F 


r ,G
)

The composition yields the desired homomorphism. By induction hypothe-
sis, and what we said above, if G is already a sheaf, then the above homo-
morphisms are all isomorphisms.

Proposition 3.54. Let k be a perfect field of characteristic p. Let (R,R+)
be a complete affinoid

(
W (k)[1/p],W (k)

)
-algebra and assume that R+ is

bounded. Let F1, . . . ,Fr,F and G be sheaves on NilpopR+. Then we have canon-
ical homomorphisms, functorial in all arguments

Mult(F1 × · · · × Fr,G) → Mult(Fad
1,η × · · · × Fad

r,η,Gad
η )(3.55)

Alt(F×r,G) → Alt(Fad,×r
η ,Gad

η )(3.56)

Sym(F×r,G) → Sym(Fad,×r
η ,Gad

η )(3.57)

Proof. As usual, we will only prove the first statement. Using the above
proposition, and by construction of the adic generic fiber functor (Defini-
tion 2.24), we only have to show that there is a canonical and functorial
homomorphism

Mult(F1 × · · · × Fr,G) → Mult(F �
1 × · · · × F �

r ,G�)

where here (and only here!) we denote by G� (and similarly for other terms)
the pre-sheaf on CAffop

(R,R+) that sends (S, S
+) to

lim−→
S0⊂S+

lim←−
n

G(S0/p
n)

where the direct limit runs over all open and bounded sub-R+-algebras S0

of S+. So, let ϕ : F1×· · ·×Fr → G be a multilinear morphism. Fix an open
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and bounded subrings S0 of S+. For any n ≥ 1, we have a commutative

diagram

F1(S0/p
n+1)× · · · × Fr(S0/p

n+1)
ϕ G(S0/p

n+1)

F1(S0/p
n)× · · · × Fr(S0/p

n) ϕ G(S0/p
n)

and so, we have a multilinear morphism

lim←−
n

F1(S0/p
n)× · · · × lim←−

n

Fr(S0/p
n) → lim←−

n

G(S0/p
n)

Now, if S′
0 ⊂ S+ is another open bounded sub-R+-algebra containing S0,

then we have a commutative diagram

lim←−n
F1(S

′
0/p

n)× · · · × lim←−n
Fr(S

′
0/p

n)
ϕ

lim←−n
G(S′

0/p
n)

lim←−n
F1(S0/p

n)× · · · × lim←−n
Fr(S0/p

n) ϕ lim←−n
G(S0/p

n)

Therefore, we have a multilinear morphism

lim
−→

S0⊂S+

(
lim
←−
n

F1(S0/p
n)× · · · × lim

←−
n

Fr(S0/p
n)
)
→ lim

−→
S0⊂S+

lim
←−

G(S0/p
n)(3.58)

Since by [9, Proposition 2.2.2 (i)] the open bounded sub-R+-algebras of S+

are filtered, we can distribute the direct limit into the product, i.e., we have

a canonical isomorphism

lim
−→

S0⊂S+

(
lim
←−
n

F1(S0/p
n)× · · · × lim

←−
n

Fr(S0/p
n)
) ∼=

lim
−→

S0⊂S+

lim
←−
n

F1(S0/p
n)× · · · × lim

−→
R0⊂R+

lim
←−
n

Fr(S0/p
n)

Composing this isomorphism with (3.58), we obtain the desired multilinear

morphism

F �
1(S, S

+)× · · · × F �
r(S, S

+) → G�(S, S+)



724 S. Mohammad Hadi Hedayatzadeh

Corollary 3.59. Let k be a perfect field of characteristic p, and (R,R+) a
complete affinoid

(
W (k)[1/p],W (k)

)
-algebra. Let G,G0, . . . , Gr be p-divis-

ible groups over some open and bounded subring of R+. There are canonical
homomorphisms, functorial in all arguments:

Mult
(
G1 × · · · ×Gr, G0

)
→ MultQp

(
Tp(G1)

ad
η × · · · × Tp(Gr)

ad
η , Tp(G0)

ad
η

)(3.60)

Alt
(
G×r, G0

)
→ AltQp

(
Tp(G)ad,×r

η , Tp(G0)
ad
η

)
(3.61)

Sym
(
G×r, G0

)
→ SymQp

(
Tp(G)ad,×r

η , Tp(G0)
ad
η

)
(3.62)

Proof. Composing homomorphisms (3.35) and (3.55) gives the first homor-
mophism. The other two are given similarly.

Corollary 3.63. Let k be a perfect field of characteristic p, and (R,R+) a
complete affinoid

(
W (k)[1/p],W (k)

)
-algebra. Let G,G0, . . . , Gr be p-divis-

ible groups over some open and bounded subring of R+. There are canonical
homomorphisms, functorial in all arguments:

Mult
(
G1 × · · · ×Gr, G0

)
→ MultQp

(
G̃ad

1,η × · · · × G̃ad
r,η, G̃

ad
0,η

)
(3.64)

Alt
(
G×r, G0

)
→ AltQp

(
G̃ad,×r

η , G̃ad
0,η

)
(3.65)

Sym
(
G×r, G0

)
→ SymQp

(
G̃ad,×r

η , G̃ad
0,η

)
(3.66)

Proof. Composing homomorphisms (3.45) and (3.55) gives the first homo-
morphism. The other two are given similarly.

Proposition 3.67. Let k be a perfect field of characteristic p, and (R,R+)
a complete affinoid

(
W (k)[1/p],W (k)

)
-algebra. Let G a p-divisible group

of height h and dimension at most 1 over some open and bounded subring
of R+. There are canonical homomorphisms

T r
G,(R,R+) : ∧r

Zp

(
Tp(G)adη (R,R+)

)
→ Tp(∧rG)adη (R,R+)(3.68)

and

L r
G,(R,R+) : ∧r

Qp

(
G̃ad

η (R,R+)
)
→ ∧̃rG

ad

η (R,R+)(3.69)

Furthermore, the following diagram, given by the canonical embedding of the
Tate module into the universal cover, is commutative

∧r
(
Tp(G)adη (R,R+)

)
T r

G,(R,R+)

∧r
(
G̃ad

η (R,R+)
)

L r
G,(R,R+)

Tp(∧rG)adη (R,R+) ∧̃rG
ad

η (R,R+)

(3.70)
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Proof. By Theorem 3.38, the exterior power ∧rG exists. If in (3.61) we
replace G0 with ∧rG, the image of the universal alternating morphism λG :
G×r → ∧rG (3.40) yields an alternating morphism(

Tp(G)adη
)×r → Tp(∧rG)adη(3.71)

which on evaluating at (R,R+) gives the desired homomorphism T r
G,(R,R+).

Homomorphism L r
G,(R,R+) is given similarly, using (3.65).

Commutativity of the square follows from Lemma 3.48 and the functo-
riality of the homomorphisms in Proposition 3.54.

Remark 3.72. For a complete affinoid field (K,K+) over (W (k)[1/p],W (k)),

T r
G,(K,K+) : ∧r

Zp

(
Tp(G)adη (K,K+)

)
→ Tp(∧rG)adη (K,K+)

is an isomorphism. ♦

3.4. The wedge morphism on the Lubin-Tate tower

In this subsection, we use exterior powers of p-divisible groups and the results
from last subsection to construct a morphism from the Lubin-Tate space at
infinity to certain Rapoport-Zink spaces at infinity. Fix a perfect field k of
characteristic p and a connected p-divisible group H over k of dimension 1
and height h.

Recall the following definition:

Definition 3.73. Let X be a p-divisible group over k. Define a functor

DefX : NilpW (k) → Ens

by sending R to the set of deformations of X to R, i.e., the set of isomorphism
classes of pairs (G, ρ), where G is a p-divisible group over R and

ρ : X×k R/p → G×R R/p

is a quasi-isogeny. �
Then we have the following theorem of Rapoport and Zink ([8, Theo-

rem 3.25]):

Theorem 3.74. The functor DefX is representable by a formal scheme MX

over Spf W (k), which locally admits a finitely generated ideal of definition.

Now, recall the definition of the Rapoport-Zink spaces at infinity:
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Definition 3.75. Let X be a p-divisible group over k, of height h. Consider
the functor M∞

X on complete affinoid (W (k)[1/p],W (k))-algebras, sending
(R,R+) to the set of isomorphism classes of triples (G, ρ, α), where (G, ρ) ∈
Mad

X,η(R,R+) and

α : Zh
p → Tp(G)adη (R,R+)

is a morphism of Zp-modules such that for all points x = Spa(K,K+) ∈
Spa(R,R+), the induced morphism

α(x) : Zh
p → Tp(G)adη (K,K+)

is an isomorphism. When X has dimension 1, M∞
X is called the Lubin-Tate

space at infinity. �
We have the following theorem:

Theorem 3.76 ([9], Theorem 6.3.4.). The functor M∞
X is representable by

an adic space over Spa(W (k)[1/p],W (k)), and moreover, it is preperfectoid.

Remark 3.77. Note that here we are using the definition of adic spaces
that is used in [9]. ♦

As we said at the beginning, H is a fixed p-divisible group over k of
dimension 1 and height h.

Construction 3.78. Applying homomorphism (3.65) to the universal al-
ternating morphism λH : H×r → ∧rH given by Theorem 3.38 (5), we obtain
an alternating morphism

λad
H,η : (H̃ad

η )×r →
(
∧̃rH

)ad
η

Using Notations 3.1, we then obtain a morphism

Λrλ
ad
H,η :

(
H̃ad

η

)×h →
((

∧̃rH
)ad
η

)×(hr)

If s1, . . . , sh are sections of H̃ad
η (R,R+) and s := (s1, . . . , sh), we write

Λrλ
ad
H,η(s) =: (∧r

cs)c∈{h

r}, where we use the following notation:

We let
{
h
r

}
denote the set consisting of subsets of {1, . . . , h} of size r. If

c = {c1 < · · · < cr} is an element of
{
h
r

}
, then ∧r

cs is the section

λad
H,η(sc1 , . . . , scr) ∈ (∧̃rH)adη (R,R+) �
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Remark 3.79. Let (R,R+) be a perfectoid affinoid
(
W (k)[1/p],W (k)

)
-

algebra. Using identification (2.30) and Theorem 3.38 (8), homomorphism

L r
H,(R,R+) : ∧r

Qp

(
H̃ad

η (R,R+)
)
→ ∧̃rH

ad

η (R,R+)

is identified with the homomorphism (3.21):

∧r
((

D(H)⊗W (k) B
+
cris(R

+/p)
)F=p

)
→

(
∧r

(
D(H)⊗W (k) B

+
cris(R

+/p)
))F=p

and we have a commutative diagram

(
H̃ad

η (R,R+)
)×h

Λrλ
ad
H,η(R,R+)

∼=

((
∧̃rH

)ad
η
(R,R+)

)×(hr)

∼=

((
D(H)⊗W (k) B

+
cris(R

+/p)
)F=p

)×h

ΛrλD(H)

(3.24) ((
∧r

(
D(H)⊗W (k) B

+
cris(R

+/p)
))F=p)×(hr)

(3.80)

♦

Lemma 3.81. The following diagram is commutative

(
H̃ad

η (R,R+)
)×h

qlog×h

Λrλad
H,η

((
∧̃rH

)ad
η
(R,R+)

)×(hr)

qlog×(hr)(
D(H)⊗W (k) R

)×h

ΛrλD(H)

(
∧rD(H)⊗W (k) R

)×(hr)
where λD(H) : D(H)×r → D(H) is the universal alternating morphism

(x1, . . . , xr) �→ x1 ∧ · · · ∧ xr

Proof. Using commutative diagram (3.80) and Lemma 2.37, it is enough to
show that the following diagram is commutative:

(
D(H)⊗W (k) B

+
cris(R

+/p)
)×h

ΛrλD(H)

Θ

(
∧r

(
D(H)⊗W (k) B

+
cris(R

+/p)
))×(hr)

Θ

(
D(H)⊗W (k) R

)×h

ΛrλD(H)

(
∧r

(
D(H)⊗W (k) R

))×(hr)
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The commutativity of this diagram follows from the construction of the
horizontal morphisms and the following observation: if θ : A → B is a ring
homomorphism and M is a free A-module of rank h, then the following
diagram is commutative

M×h Λr
(∧r

AM)×(
h

r)

(M ⊗A B)×h
Λr

(
∧r
B(M ⊗A B)

)×(hr)
where as usual, we are using Notations 3.1 for the horizontal maps (applied
to the universal alternating morphisms (x1, . . . , xr) �→ x1 ∧ · · · ∧ xr).

Theorem 3.82. Let k be a perfect field k of characteristic p and H a p-
divisible group over k of dimension 1. Taking exterior powers induces a
morphism of adic spaces over Spa

(
W (k)[1/p],W (k)

)
Λr : M∞

H → M∞
∧rH

Proof. Let (R,R+) be a complete affinoid
(
W (k)[1/p],W (k)

)
-algebra and

(G, ρ, α) an element of M∞
H (R,R+). Since G is a deformation of H, it

also has dimension at most 1 and so, by Theorem 3.38, ∧rG exists. Set
Λr(G, ρ, α) := (∧rG,∧rρ,∧rα), where

∧rρ : ∧r(H)×k R/p ∼= ∧r(H ×k R/p) → ∧r(G×R R/p) ∼= ∧r(G)×R R/p

is the exterior power of the quasi-isogeny ρ : H ×k R/p → G×R R/p, which
exists thanks to the functoriality of exterior powers, and their base change
property. The level structure ∧rα is also given by Theorem 3.38 (7) or as
the composition (see (3.68))

∧r(Zh
p)

∧rα−−−→ ∧r
(
Tp(G)adη (R,R+)

) T r
G,(R,R+)−−−−−−−→ Tp(∧rG)adη (R,R+)

Over a point x = Spa(K,K+) ∈ Spa(R,R+) this composition is an iso-
morphism, since α and T r

G,(K,K+) are both isomorphisms (cf. Remark 3.72).

These constructions are functorial and therefore, we obtain the desired
morphism

Λr : M∞
H → M∞

∧rH
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Notations 3.83. Let k be a perfect field of characteristic p and G a p-
divisible group over k of height h and dimension d. We denote by F �G
the flag variety parametrizing d-dimensional quotients of the h-dimensional
W (k)[1/p]-vector space D(G)[1/p]. We consider F �G as an adic space over
Spa

(
W (k)[1/p],W (k)

)
. �

Construction 3.84. As before, assume that the dimension of H is 1, so
that ∧rH exists. We want to construct a morphism

Lr : F �H → F �∧rH

Let (R,R+) be a complete affinoid
(
W (k)[1/p],W (k)

)
-algebra. We let ξ ∈

F �H(R,R+) represent the following short exact sequence of R-modules

(ξ) 0 → K → D(H)⊗W (k) R → W → 0

where W is a finitely generated projective R-module of rank 1. Since W is
projective, (ξ) splits:

D(H)⊗R ∼= K ⊕W

and since it has rank 1, we have

∧rD(H)⊗R ∼= ∧rK ⊕ ∧r−1K ⊗W

Therefore, we have the following short exact sequence:

0 → ∧rK → ∧rD(H)⊗W (k) R → ∧r−1K ⊗R W → 0

We define Lr(ξ) to be this short exact sequence. �

4. Main theorem

In this section, we fix an algebraically closed field k of characteristic p and
a p-divisible group H over k of height h and dimension 1.

Proposition 4.1 ([9], Lemma 6.3.6). Let G be a p-divisible group over k of
dimension d and height h. The Rapoport-Zink tower M∞

G canonically repre-
sents the functor on complete affinoid

(
W (k)[1/p],W (k)

)
-algebras, sending

(R,R+) to the set of h-tuples

(s1, . . . , sh) ∈
(
G̃ad

η (R,R+)
)×h

satisfying the following conditions:
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(i) The matrix(
qlog(s1), . . . , qlog(sh)

)
∈
(
D(G)⊗W (k) R

)×h ∼= Mh(R)

is of rank h− d. Let D(G)⊗R � W be the induced finitely generated
projective quotient of rank d (see Lemma 2.8).

(ii) For all geometric points x = Spa(C,OC) → Spa(R,R+), the sequence

0 → Qh
p

(s1,...,sh)−−−−−−→ G̃ad
η (C,OC)

qlog−−−→ W ⊗R C → 0

is exact.

Moreover, forgetting conditions (i) and (ii) gives a locally closed embedding

M∞
G ⊂

(
G̃ad

η

)×h
.

Proof. We are not going to repeat the proof here, and refer to [9] for de-
tails. We are only going to recall how we obtain such an h-tuple from
a point on the Rapoport-Zink tower. Let (R,R+) be a complete affinoid(
W (k)[1/p],W (k)

)
-algebra and (Γ, ρ, α) ∈ M∞

G (R,R+), where (Γ, ρ) is de-
fined over some open and bounded subring R0 ⊂ R+. The quasi-isogeny ρ
provides an identification G̃R0

∼= Γ̃, and therefore, we have a morphism

Zh
p

α−→ Tp(Γ)
ad
η (R,R+) ↪→ Γ̃ad

η (R,R+) ∼= G̃ad
η (R,R+)

This morphism provides us with h sections of G̃ad
η (R,R+) that satisfy con-

ditions (i) and (ii) above. The rank-d quotient thus obtained (condition (i))
is canonically isomorphic to Lie(G)⊗R.

Definition 4.2. Let us denote by 1M∞
G the subsheaf of

(
G̃ad

η

)×h
, whose

sections satisfy (only) condition (i) of the above proposition. So, we have
inclusions of functors

M∞
G ⊂ 1M∞

G ⊂
(
G̃ad

η

)×h
�

Lemma 4.3. Assume that 1 ≤ r ≤ h− 1. Then, the composition

1M∞
H ↪→

(
H̃ad

η

)×h Λrλad
H,η−−−−−→

((
∧̃rH

)ad
η

)×(hr)

factors through the inclusion

1M∞
∧rH ↪→

((
∧̃rH

)ad
η

)×(hr)
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Furthermore, the resulting square

1M∞
H 1M∞

∧rH

(
H̃ad

η

)×h

Λrλad
H,η

((
∧̃rH

)ad
η

)×(hr)

is Cartesian.

Proof. Let (R,R+) be an affinoid
(
W (k)[1/p],W (k)

)
-algebra. Let s1, . . . , sh

be sections of H̃ad
η (R,R+) and set s := (s1, . . . , sh). Let us denote by Q�s the

matrix (
qlog(s1), . . . , qlog(sh)

)
∈
(
D(H)⊗W (k) R

)×h ∼= Mh(R)

Similarly, let us denote by QΛ�s ∈ M(hr)
(R) the matrix obtained, by applying

qlog, from Λr(s) = (∧r
cs)c∈{h

r} (see Construction 3.78 for notations), i.e.,

QΛ�s =
(
qlog(∧r

cs)
)
. By Lemma 3.81, we have QΛ�s = ∧rQ�s (we use Notations

2.1). It follows from Lemma 2.10 that Q�s has rank h− 1 if and only if QΛ�s

has rank
(
h−1
r

)
=

(
h
r

)
−
(
h−1
r−1

)
. This achieves the proof.

The following lemma describes the morphism 1M∞
H → 1M∞

∧rH explic-

itly:

Lemma 4.4. Let (R,R+) be an affinoid
(
W (k)[1/p],W (k)

)
-algebra and let

s := (s1, . . . , sh) be an element of 1M∞
H (R,R+) defining the short exact

sequence:

0 → K → D(H)⊗W (k) R → W → 0(4.5)

in other words, W is the rank-1 finitely generated projective module, given as

the quotient of D(H)⊗R by the submodule generated by qlog(s1), . . . , qlog(sh)

and denoted by K. The short exact sequence defined by Λr(s) is

0 → ∧rK → ∧rD(H)⊗R → ∧r−1K ⊗W → 0

Proof. This follows from Lemma 3.81 and the fact that sequence (4.5) splits

(see also Construction 3.84).
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Proposition 4.6. The following diagram is Cartesian:

M∞
H

Λr

M∞
∧rH

1M∞
H Λr

1M∞
∧rH

(4.7)

Proof. Let (R,R+) be an affinoid
(
W (k)[1/p],W (k)

)
-algebra. Let us first

show that the diagram is commutative. Let s := (s1, . . . , sh) be an h-tuple of
sections of H̃ad

η (R,R+), belonging to M∞
H (R,R+). By Proposition 4.1, there

is a triple (Γ, ρ, α) ∈ M∞
H (R,R+), such that si are given by the morphism

Zh
p

α−→ Tp(Γ)
ad
η (R,R+) ↪→ Γ̃ad

η (R,R+) ∼= H̃ad
η (R,R+)

Let us chase the element s in this diagram. Under Λr (the top horizontal
morphism) it goes to the sections representing (∧rΓ,∧rρ,∧rα) (see Theorem
3.82). More precisely, it goes to the section given by the composition

∧r(Zh
p)

∧rα−−−→ ∧r
(
Tp(Γ)

ad
η (R,R+)

) T r
Γ,(R,R+)−−−−−−−→

Tp(∧rΓ)adη (R,R+) ↪→ (∧̃rΓ)adη (R,R+) ∼= (∧̃rH)adη (R,R+)

Under Λr (the bottom horizontal morphism), s goes to the section given by
the composition

∧r(Zp)
∧rα−−−→ ∧r

(
Tp(Γ)

ad
η (R,R+)

)
→

∧r
(
Γ̃ad
η (R,R+)

) ∼= ∧r
(
H̃ad

η (R,R+)
) L r

H,(R,R+)−−−−−−−→ (∧̃rH)adη (R,R+)

Proposition 3.67 (diagram (3.70)) states that these two compositions are
equal. It implies that the diagram is commutative.

Let us now show that the diagram is Cartesian. So, pick s = (sr, . . . , sh)
in 1M∞

H (R,R+) such that Λr(s) = (∧r
cs)c∈{h

r} is in M∞
∧rH(R,R+). Let

0 → K → D(H)⊗W (k) R → W → 0

be the short exact sequence defined by s. In order to show that s be-
longs to M∞

H , we have to show that for all geometric generic points x =
Spa(C,OC) → Spa(R,R+), the sequence

0 → Qh
p

�s−→ H̃ad
η (C,OC)

qlog−−−→ W ⊗R C → 0

is exact.
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By Lemma 4.4 the short exact sequence defined by Λr(s) is

0 → ∧rK → ∧rD(H)⊗R → ∧r−1K ⊗W → 0

Set F := Oh
X . By Lemma 2.35, sections s1, . . . , sh define a morphism

s : F → EH of vector bundles on the Fargues-Fontaine curve X (here EH
is the vector bundle associated with H, i.e., ED(H)⊗W (k)B

+
cris(OC/p)). Similarly,

sections ∧r
cs define a morphism Λrs : ∧rF → E∧rH . Note that we have a

commutative diagram

∧rF ∧r�s

Λr(�s)

∧rEH
L

E∧rH

(4.8)

By [9, Theorem 6.2.1], the sequence

0 → ∧rF → E∧rH → i∞∗(∧r−1K ⊗W ⊗C) → 0

is exact. In particular, the oblique morphism in diagram (4.8) is a mono-

morphism, which implies that ∧rs : ∧rF → ∧rEH is a monomorphism as

well. It follows that F �s−→ EH is a monomorphism. Let V be the cokernel of

F �s−→ EH .

Since ∧rF Λr(�s)−−−−→ E∧rH is an isomorphism away from ∞ ∈ X, and both

∧rEH and E∧rH have rank
(
h
r

)
, L : ∧rEH → E∧rH is an isomorphism away

from ∞. It follows that ∧rF ∧r�s−−−→ ∧rEH is an isomorphism away from ∞ as

well. By [3, Corollary 2.3], F �s−→ EH has the same property and we have a

modification of vector bundles

0 → F �s−→ EH → i∞∗U → 0

where U is a C-vector space. Counting degrees of the members of this se-

quence, we have dimU = 1. Note that by construction, the composition

F �s−→ EH → i∞∗(W ⊗C)

is zero and EH → i∞∗(W ⊗ C) is an epimorphism. Therefore, we have a



734 S. Mohammad Hadi Hedayatzadeh

commutative diagram

0 F �s EH i∞∗U 0

i∞∗(W ⊗C)

As U and W ⊗C have both dimension 1, i∞∗U → i∞∗(W ⊗C) is in fact an

isomorphism and so, the following sequence is exact:

0 → F �s−→ EH → i∞∗(W ⊗C) → 0

Taking global sections, we obtain the short exact sequence:

0 → Qh
p

�s−→ H̃ad
η (C,OC)

qlog−−−→ W ⊗R C → 0

as desired.

Proposition 4.9. The morphism L : ∧rEH → E∧rH is an isomorphism.

Proof. We saw in the proof that away from∞ this morphism is an isomorph-

ism. Note that we proved this via the “auxiliary” vector bundle F (diagram

(4.8)), which can be constructed by taking any Spa(C,OC)-point of M∞
H .

So, we only need to show that it is as isomorphism at ∞ as well. Since ∧rEH
and E∧rH are vectors bundles of the same rank, it is enough to show that

L∞ is an epimorphism. By Nakayama’s lemma, it is then enough to show

that

i∗∞L : i∗∞∧rEH → i∗∞E∧rH

in an epimorphism. We have

i∗∞∧rEH ∼= ∧r(i∗∞EH) ∼= ∧r(D(H)⊗W (k) C)

and

i∗∞E∧rH
∼= D(∧rH)⊗W (k) C

and the morphism i∗∞L is nothing but the isomorphism (3.43) of Theorem

3.38 tensored with C.
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Theorem 4.10. The following diagram is Cartesian

M∞
H

Λr

M∞
∧rH

(
H̃ad

η

)×h

Λrλad
H,η

((
∧̃rH

)ad
η

)×(hr)

Proof. If r = h, then this is [9, Theorem 6.4.1]. Assume r < h. The statement

follows immediately from Lemma 4.3 and Proposition 4.6.

Lemma 4.11. Let k be a perfect field of characteristic p and G a p-divisible

group over k. The period morphism πG : M∞
G → F �G extends to a morphism

1M∞
G → F �G still denoted by πG.

Proof. Recall that the period morphism πG is defined, using Grothendieck-

Messing deformation theory, by sending a deformation (G′, ρ, α) (up to

quasi-isogeny) over R to the quotient

D(G)⊗W (k) R[1/p] � Lie(G′)[1/p]

It follows from what we said in the proof of Proposition 4.1 (regarding M∞
G

as a subsheaf of
(
G̃ad

η

)×h
) that the peroid morphism πG extends to 1M∞

G .

Therefore, if s ∈ 1M∞
G (R,R+) define the short exact sequence

0 → K → D(G)⊗W (k) R → W → 0

then the image s under πG is the quotient D(G)⊗W (k) R → W → 0.

Lemma 4.12. The following diagram is commutative

1M∞
H

πH

Λr

1M∞
∧rH

π∧rH

F �H
Lr

F �∧rH

Proof. This follows from Lemma 4.4, the proof of Lemma 4.11 and the con-

struction of Lr (Construction 3.84).
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Proposition 4.13. The following diagram is commutative

M∞
H

πH

Λr

M∞
∧rH

π∧rH

F �H
Lr

F �∧rH

Proof. This follows from Lemma 4.11, Lemma 4.12 and Proposition 4.6.
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théorie de Hodge p-adique. Preprint. MR3917141

[2] Fossum, R., and Foxby, H.-B. The category of graded modules.
Math. Scand. 35 (1974), 288–300. MR0379473

[3] Hedayatzadeh, M. H. On certain embeddings of Grassmannians and
flag varieties. Preprint.

[4] Hedayatzadeh, M. H. Exterior powers of π-divisible modules over
fields. J. Number Theory 138 (2014), 119–174. MR3168925

[5] Hedayatzadeh, M. H. Exterior powers of Lubin-Tate groups. J.
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