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Abstract. In this paper we discuss the existence of PC-mild solutions for
Cauchy problems and nonlocal problems for impulsive fractional evolution
equations involving Caputo fractional derivative. By utilizing the theory of
operators semigroup, probability density functions via impulsive conditions,
a new concept on a PC-mild solution for our problem is introduced. Our
main techniques based on fractional calculus and fixed point theorems. Some
concrete applications to partial differential equations are considered.
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1. Introduction

The theory of impulsive differential equations has recently years been an object
of increasing interest because of its wide applicability in biology, in medicine and
in more and more fields. The reason for this applicability arises from the fact
that impulsive differential problems are an appropriate model for describing process
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which at certain moments change their state rapidly and which cannot be described
using the classical differential problems. For a wide bibliography and exposition
on this object see for instance the monographs of [1, 2, 3, 4] and the papers
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

On the other hand, the first definition of the fractional derivative was intro-
duced at the end of the nineteenth century by Liouville and Riemann, but the
concept of non-integer derivative and integral, as a generalization of the traditional
integer order differential and integral calculus was mentioned already in 1695 by
Leibniz and L’Hospital. However, only in the late 1960s engineers started to be
interested in this idea when the fact that descriptions of some systems are more
accurate in “fractional language” appeared. Since that time fractional calculus is
increasingly used to model behaviors of real systems in various fields of science
and engineering. Recently, fractional differential equations have been proved to be
valuable tools in the modeling of many phenomena in various fields of engineering,
physics and economics. It draws a great application in nonlinear oscillations of
earthquakes, many physical phenomena such as seepage flow in porous media and
in fluid dynamic traffic model. Actually, fractional differential equations are con-
sidered as an alternative model to integer differential equations. For more details,
one can see the monographs of [20, 21, 22, 23, 24, 25] and the survey [26, 27].

A pioneering work on some probability densities and fundamental solutions
of Caputo fractional evolution equations has been reported by El-Borai [28, 29].
Particular, Wang et al. [30, 31, 32, 33, 34, 35] and Zhou et al. [36, 37] also
introduced two characteristic solutions operators and give a suitable concept on
a mild solution by applying Laplace transform and probability density functions
and discussed the optimal control problems for some classes of fractional controlled
systems.

In this paper we continue to combine these two areas and our works [16, 17, 33,

36] to extend the study to the Cauchy problems for impulsive fractional evolution
equations:

(1.1)







CDα
t x(t) = Ax(t) + f (t, x(t)) , α ∈ (0, 1], t ∈ J = [0, b], t 6= tk,

x(0) = x0,

x(t+k ) = x(t−k ) + yk, k = 1, 2, · · · , δ,

where CDα
t is the Caputo fractional derivative of order α, A: D(A) ⊆ X → X is

the generator of a C0-semigroup {T (t), t ≥ 0} on a Banach space X , f : J×X → X

is continuous, x0, yk are the element of X , 0 = t0 < t1 < t2 < · · · < tδ < tδ+1 = b,
x(t+k ) = limh→0+ = x(tk + h) and x(t−k ) = x(tk) represent respectively the right
and left limits of x(t) at t = tk.

To study fractional evolution equations with nonlinear impulsive conditions,
Mophou firstly introduced a concept on a mild solution (Definition 3.2, [14]) which
was inspired by Jaradat et al. [38]. However, it does not incorporate the memory
effects involved in fractional calculus and impulsive conditions. Thus, this kind of
definition is not suitable enough for these settings although it has been utilized by
several authors.

One of the main novelty of this paper is the concept on a PC-mild solution
(Section 3, Definition 3.1) for system (1.1). Then, utilizing some fixed point theo-
rems such as Banach contraction mapping principle, Schauder’s fixed point theorem,
Schaefer’s fixed point theorem and Krasnoselskii’s fixed point theorem, we derive
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many existence and uniqueness results concerning the PC-mild solution for system
(1.1) under the different assumptions on the nonlinear terms.

Naturally, we extend to study the nonlocal Cauchy problems for impulsive
fractional evolution equations:

(1.2)







CDα
t x(t) = Ax(t) + f (t, x(t)) , t ∈ J, t 6= tk,

x(0) = x0 + g(x),
x(t+k ) = x(t−k ) + yk, k = 1, 2, · · · , δ,

where A, f , yk are defined as above, g is a given function and constitutes a nonlocal
Cauchy problem. We adopt the ideas given in [11, 17, 39] and obtained some new
existence and uniqueness results for system (1.2) under the different assumptions
on the nonlocal terms.

The rest of this paper is organized as follows. In Section 2, some notations and
preparation results are given. In section 3, a suitable concept on a PC-mild solution
for our problems is introduced. In Section 4, the existence results of PC-mild solu-
tions for impulsive Cauchy problems are obtained. In Section 5, the existence results
of PC-mild solutions for impulsive nonlocal Cauchy problems are also showed. At
last, some interesting examples are presented to illustrate the theory.

2. Preliminaries

Let Lb(X) be the Banach space of all linear and bounded operators on X . For
a C0-semigroup {T (t), t ≥ 0} on X , we set M = supt∈J ‖T (t)‖Lb(X). Let C(J, X)
be the Banach space of all X-valued continuous functions from J = [0, b] into
X endowed with the norm ‖x‖C = supt∈J ‖x(t)‖. We also introduce the set of
functions PC(J, X) =

{

x : J → X | x is continuous at t ∈ J\{t1, t2, · · · , tδ
}

, and x

is continuous from left and has right hand limits at t ∈ {t1, t2, · · · , tδ}
}

. Endowed
with the norm

‖x‖PC = max

{

sup
t∈J

‖x(t + 0)‖, sup
t∈J

‖x(t − 0)‖

}

,

it is easy to see (PC(J, X), ‖ · ‖PC) is a Banach space.
Let us recall the following known definitions. For more details, see [21].

Definition 2.1. The fractional integral of order γ with the lower limit zero for
a function f is defined as

Iγf(t) =
1

Γ(γ)

∫ t

0

f(s)

(t − s)1−γ
ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order γ with the lower
limit zero for a function f : [0,∞) → R can be written as

LDγf(t) =
1

Γ(n − γ)

dn

dtn

∫ t

0

f(s)

(t − s)γ+1−n
ds, t > 0, n − 1 < γ < n.

Definition 2.3. The Caputo derivative of order γ for a function f : [0,∞) →
R can be written as

CDγf(t) = LDγ

(

f(t) −
n−1
∑

k=0

tk

k!
f (k)(0)

)

, t > 0, n − 1 < γ < n.
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Remark 2.4. (i) If f(t) ∈ Cn[0,∞), then

CDγf(t) =
1

Γ(n − γ)

∫ t

0

f (n)(s)

(t − s)γ+1−n
ds = In−γf (n)(t), t > 0, n − 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X, then integrals which appear

in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Let’s recall the following definition of mild solutions for fractional evolution
equations.

Definition 2.5. (Lemma 3.1 and Definition 3.1, [37]) By the mild solution of
the following system

(2.1)

{

CDα
t x(t) = Ax(t) + h(t), t ∈ J,

x(0) = x0,

we mean that the function x ∈ C(J, X) which satisfies the following integral equation

x(t) = T (t)x0 +

∫ t

0

(t − s)α−1
S (t − s)h(s)ds, t ∈ J,

where

T (t) =

∫ ∞

0

ξα(θ)T (tαθ)dθ, S (t) = α

∫ ∞

0

θξα(θ)T (tαθ)dθ,

ξα(θ) =
1

α
θ−1− 1

α ̟α(θ−
1
α ) ≥ 0,

̟α(θ) =
1

π

∞
∑

n=1

(−1)n−1θ−nα−1 Γ(nα + 1)

n!
sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is

ξα(θ) ≥ 0, θ ∈ (0,∞) and

∫ ∞

0

ξα(θ)dθ = 1.

Remark 2.6. Since T (·) and S (·) are associated with the α, there are no
analogue of the semigroup property, i.e., T (t + s) 6= T (t)T (s), S (t + s) 6=
S (t)S (s) for t, s > 0.

The following results will be used throughout this paper.

Lemma 2.7. A measurable function f : J → X is Bochner integrable if ‖f‖ is
Lebesuge integrable.

Lemma 2.8. For σ ∈ (0, 1] and 0 < a ≤ b, we have |aσ − bσ| ≤ (b − a)σ.

Lemma 2.9. (Lemma 3.2−3.4, [37]) The operators T and S have the following
properties:

(i) For any fixed t ≥ 0, T (t) and S (t) are linear and bounded operators, i.e.,
for any x ∈ X,

‖T (t)x‖ ≤ M‖x‖ and ‖S (t)x‖ ≤
αM

Γ(1 + α)
‖x‖.

(ii) {T (t), t ≥ 0} and {S (t), t ≥ 0} are strongly continuous.
(iii) For every t > 0, T (t) and S (t) are also compact operators if T (t) is

compact.



ON THE NEW CONCEPT OF SOLUTIONS 349

3. New concept of solutions

In this section, we will introduce a new concept of solutions for our problems.
We first consider an nonhomogeneous impulsive linear fractional equation of the
form

(3.1)







CDα
t x(t) = Ax(t) + h(t), α ∈ (0, 1), t ∈ J = [0, b], t 6= tk,

x(0) = x0,

x(t+k ) = x(t−k ) + yk, k = 1, 2, · · · , δ,

where h ∈ PC(J, X). We observe that x(·) can be decomposed to v(·)+w(·) where
v is the continuous mild solution for

(3.2)

{

CDα
t v(t) = Av(t) + h(t), t ∈ J,

v(0) = x0,

on J , and w is the PC-mild solution for

(3.3)







CDα
t w(t) = Aw(t), t ∈ J, t 6= tk,

w(0) = 0,

w(t+k ) = w(t−k ) + yk, k = 1, 2, · · · , δ.

Indeed, by adding together (3.2) with (3.3), it follows (3.1). Note v is continuous,
so v(t+k ) = v(t−k ), k = 1, 2, · · · , δ. On the other hand, any solution of (3.1) can be
decomposed to (3.2) and (3.3).

By Definition 2.5, a mild solution of (3.2) is given by

v(t) = T (t)x0 +

∫ t

0

(t − s)α−1
S (t − s)h(s)ds, t ∈ J.

Now we rewrite system (3.3) in the equivalent integral equation

(3.4) w(t) =



































1
Γ(α)

∫ t

0
(t − s)α−1Aw(s)ds, for t ∈ [0, t1],

y1 + 1
Γ(α)

∫ t

0
(t − s)α−1Aw(s)ds, for t ∈ (t1, t2],

y1 + y2 + 1
Γ(α)

∫ t

0 (t − s)α−1Aw(s)ds, for t ∈ (t2, t3],
...
∑δ

i=1 yi + 1
Γ(α)

∫ t

0 (t − s)α−1Aw(s)ds, for t ∈ (tδ, b].

The the above equation (3.4) can be expressed as

(3.5) w(t) =

δ
∑

i=1

χi(t)yi +
1

Γ(q)

∫ t

0

(t − s)q−1Aw(s)ds, for t ∈ J ,

where

χi(t) =

{

0, for t ∈ [0, ti),
1, for t ∈ [ti, b].

We adopt the idea used in our previous work [36] and apply the Laplace transfor-
mation for (3.5) to get

u(λ) =
δ

∑

i=1

e−tiλ

λ
yi +

1

λα
Au(λ),

which implies

u(λ) =

δ
∑

i=1

e−tiλλα−1 (λαI − A)
−1

yi.
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Note the Laplace transform of T (t)yi is λα−1 (λαI − A)
−1

yi. Thus we can derive
the mild solution of (3.3) as

w(t) =

δ
∑

i=1

χi(t)T (t − ti)yi.

Summarizing, the mild solution of (3.1) is given by

x(t) = T (t)x0 +

δ
∑

i=1

χi(t)T (t − ti)yi +

∫ t

0

(t − s)α−1
S (t − s)h(s)ds,

i.e.,

x(t) =























T (t)x0 +
∫ t

0 (t − s)α−1S (t − s)h(s)ds, for t ∈ [0, t1],

T (t)x0 + T (t − t1)y1 +
∫ t

0 (t − s)α−1S (t − s)h(s)ds, for t ∈ (t1, t2],
...

T (t)x0 +
∑δ

i=1 T (t − ti)yi +
∫ t

0
(t − s)α−1S (t − s)h(s)ds, for t ∈ (tδ, b].

By using the above results, we can introduce the following definition of the
mild solution for system (1.1).

Definition 3.1. By a PC-mild solution of the system (1.1) we mean that a
function x ∈ PC(J, X) which satisfies the following integral equation

x(t) =























































T (t)x0 +
∫ t

0
(t − s)α−1S (t − s)f (s, x(s)) ds, for t ∈ [0, t1],

T (t)x0 + T (t − t1)y1 +
∫ t

0 (t − s)α−1S (t − s)f (s, x(s)) ds,

for t ∈ (t1, t2],

...

T (t)x0 +
∑δ

i=1 T (t − ti)yi +
∫ t

0 (t − s)α−1S (t − s)f (s, x(s)) ds,

for t ∈ (tδ, b].

4. Existence results for impulsive Cauchy problems

In this section, we will derive some existence and uniqueness results concerning
the PC-mild solution for system (1.1) under the different assumptions on f .

Case 1. f is Lipschitz

Let us list the following hypotheses:
[HA]: A is the infinitesimal generator of a compact semigroup {T (t), t ≥ 0} in

X .
[HF1]: f : J ×X → X is continuous and there exists a constant q1 ∈ (0, α) and

a real-valued function Lf (t) ∈ L
1

q1 (J, R+) such that

‖f(t, x) − f(t, y)‖ ≤ Lf (t)‖x − y‖, t ∈ J, x, y ∈ X.

For brevity, let us take

T ∗ =

[(

1 − q1

α − q1

)

b
α−q1
1−q1

]1−q1

‖Lf‖
L

1
q1 (J,R+)

.
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Theorem 4.1. Let [HA] and [HF1] be satisfied. Then for every x0 ∈ X, the
system (1.1) has a unique PC-mild solution on J provided that

(4.1) 0 <
αMT ∗

Γ(1 + α)
< 1.

Proof. Let x0 ∈ X be fixed. Define an operator Q on PC(J, X) by

(Qx)(t) =























































T (t)x0 +
∫ t

0 (t − s)α−1S (t − s)
f (s, x(s)) ds, for t ∈ [0, t1],

T (t)x0 + T (t − t1)y1 +
∫ t

0 (t − s)α−1

S (t − s)f (s, x(s)) ds, for t ∈ (t1, t2],
...

T (t)x0 +
∑δ

i=1 T (t − ti)yi +
∫ t

0
(t − s)α−1

S (t − s)f (s, x(s)) ds,

for t ∈ (tδ, b].

(4.2)

By our assumptions and Lemma 2.7, Q is well defined on PC(J, X).
Step 1. We prove that Qx ∈ PC(J, X) for x ∈ PC(J, X).
For 0 ≤ τ < t ≤ t1, taking into account the imposed assumptions and applying

Lemma 2.8 and Lemma 2.9(i), we obtain

‖(Qx)(t) − (Qx)(τ)‖

≤ ‖T (t)x0 − T (τ)x0‖ +

∫ t

τ

(t − s)α−1 ‖S (t − s)f (s, x(s))‖ ds

+

∫ τ

0

(t − s)α−1 ‖S (t − s)f (s, x(s)) − S (τ − s)f (s, x(s))‖ ds

+

∫ τ

0

|(t − s)α−1 − (τ − s)α−1| ‖S (τ − s)f (s, x(s))‖ ds

≤ ‖T (t) − T (τ)‖‖x0‖ +
αM

Γ(1 + α)

∫ t

τ

(t − s)α−1‖f (s, x(s)) ‖ds

+ sup
s∈[0,τ ]

‖S (t − s) − S (τ − s)‖

∫ τ

0

(t − s)α−1‖f (s, x(s)) ‖ds

+
αM‖f‖C([0,t1],X)

Γ(1 + α)

∣

∣

∣

∣

∫ τ

0

(τ − s)α−1ds −

∫ τ

0

(t − s)α−1ds

∣

∣

∣

∣

≤ ‖T (t) − T (τ)‖‖x0‖

+
tα1 ‖f‖PC

α
sup

s∈[0,τ ]

‖S (t − s) − S (τ − s)‖

+
3M‖f‖PC(t − τ)α

Γ(1 + α)
,

where we use the inequality tα − τα ≤ (t− τ)α. Keeping in mind of Lemma 2.9(iii),
the first and second terms tend to zero as t → τ . Moreover, it is obvious that the
last terms tends to zero too as t → τ . Thus, we can deduce that Qx ∈ C([0, t1], X).
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For t1 ≤ τ < t < t2, keeping in mind our assumptions and applying Lemma 2.8
and Lemma 2.9(i) again, we have

‖(Qx)(t) − (Qx)(τ)‖

≤ ‖T (t) − T (τ)‖‖x0‖ + ‖T (t − t1) − T (τ − t1)‖‖y1‖

+
tα2 ‖f‖PC

α
sup

s∈[0,τ ]

‖S (t − s) − S (τ − s)‖

+
3M‖f‖PC(t − τ)α

Γ(1 + α)
.

As t → τ , the right hand side of the above inequality tends to zero. Thus, we can
deduce that Qx ∈ C((t1, t2], X).

Similarly, we can also obtain that Qx ∈ C((t2, t3], X), · · · , Qx ∈ C((tδ, b], X).
That is, Qx ∈ PC(J, X).

Step 2. We show that Q is contraction on PC(J, X).
For each t ∈ [0, t1], it comes from our assumptions and Lemma 2.9 that

‖(Qx)(t) − (Qy)(t)‖

≤
αM

Γ(1 + α)

∫ t

0

(t − s)α−1Lf (s)‖x(s) − y(s)‖ds

≤
αM‖x − y‖PC

Γ(1 + α)

∫ t

0

(t − s)α−1Lf (s)ds

≤
αM‖x − y‖PC

Γ(1 + α)

(
∫ t

0

(t − s)
α−1

1−q1 ds

)1−q1

‖Lf‖
L

1
q1 ([0,t1],R+)

≤
αM‖x − y‖PC

Γ(1 + α)

[(

1 − q1

α − q1

)

t
α−q1
1−q1

1

]1−q1

‖Lf‖
L

1
q1 ([0,t1],R+)

.

In general, for each t ∈ (tk, tk+1], using our assumptions and Lemma 2.9 again,

‖(Qx)(t) − (Qy)(t)‖

≤
αM‖x − y‖PC

Γ(1 + α)

[(

1 − q1

α − q1

)

t
α−q1
1−q1

k+1

]1−q1

‖Lf‖
L

1
q1 ([tk,tk+1],R+)

.

Thus,

‖Qx − Qy‖PC ≤
αMT ∗

Γ(1 + α)
‖x − y‖PC .

Hence, the condition (4.1) allows us to conclude in view of the Banach contraction
mapping principle, that Q has a unique fixed point x ∈ PC(J, X) which is just the
unique PC-mild solution of system (1.1). 2

Case 2. f is not Lipschitz

We make the following assumptions.
[C1]: f : J ×X → X is continuous and maps a bounded set into a bounded set.
[C2]: For each x0 ∈ X , there exists a constant r > 0 such that

M

[

‖x0‖ +
δ

∑

k=1

‖yk‖ +
bα

Γ(1 + α)
sup

s∈J,φ∈YΓ

‖f (s, φ(s))‖

]

≤ r,

where

YΓ = {φ ∈ PC(J, X) | ‖φ‖ ≤ r for t ∈ J} .
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Theorem 4.2. Suppose that [HA], [C1] and [C2] are satisfied. Then for every
x0 ∈ X, the system (1.1) has at least a PC-mild solution on J .

Proof. Let x0 ∈ X be fixed. We introduce that map

Q : PC(J, X) → PC(J, X)

by
(Qv)(t) = (Q1v)(t) + (Q2v)(t)

where

(Q1v)(t) = T (t)x0 +

∫ t

0

(t − s)α−1
S (t − s)f (s, v(s)) ds, t ∈ J \ {t1, t2, · · · , tδ},(4.3)

and

(Q2v)(t) =

{

0, t ∈ [0, t1],
∑k

i=1 T (t − ti)yi, t ∈ (tk, tk+1], k = 1, · · · , δ.
(4.4)

For each t ∈ [0, t1], v ∈ YΓ,

‖(Qv)(t)‖ ≤ ‖(Q1v)(t)‖ + ‖(Q2v)(t)‖

≤ M‖x0‖ +
bαM

Γ(1 + α)
sup

s∈J,φ∈YΓ

‖f (s, φ(s))‖ .

For each t ∈ (tk, tk+1], v ∈ YΓ,

‖(Qv)(t)‖ ≤ ‖(Q1v)(t)‖ + ‖(Q2v)(t)‖

≤ M‖x0‖ + M

δ
∑

k=1

‖yk‖ +
bαM

Γ(1 + α)
sup

s∈J,φ∈YΓ

‖f (s, φ(s))‖ .

Noting that the condition [C2], we see that Q : YΓ → YΓ.
Step 1. We prove that Q is a continuous mapping from YΓ to YΓ.
In order to derive the continuity of Q, we only check that Q1 and Q2 are all

continuous.
For this purpose, we assume that vn → v in YΓ. It comes from the continuity

of f that (· − s)α−1f (s, vn(s)) → (· − s)α−1f (s, v(s)) , as n → ∞. Noting that

(t − s)α−1‖f (s, vn(s)) − f (s, v(s)) ‖

≤ (t − s)α−1 sup
s∈J,φ∈YΓ

‖f (s, φ(s))‖ , for s ∈ [0, t], t ∈ J,

by means of Lebesgue dominated convergence theorem, we obtain that
∫ t

0

(t − s)α−1‖f (s, vn(s)) − f (s, v(s)) ‖ds → 0, as n → ∞.

It is easy to see that for each t ∈ J ,

‖(Q1vn)(t) − (Q1v)(t)‖ ≤
αM

Γ(1 + α)

∫ t

0

(t − s)α−1‖f (s, vn(s)) − f (s, v(s)) ‖ds

→ 0, as n → ∞.

Thus, Q1 is continuous. On the other hand, it is obvious that Q2 is continuous.
Since Q1 and Q2 are continuous, Q is continuous.
Step 2. We show that Q is a compact operator, or Q1 and Q2 are compact

operators.
The compactness of Q2 is clear since it is a constant map (see (4.4)).
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Now we prove the compactness of Q1. For each t ∈ J , the set {T (t)x0} is
precompact in X since T (t), t > 0 is compact.

Also, for each t ∈ J , arbitrary b > h > 0, ε > 0, the set

{

T (hαε)

∫ t−h

0

(t − s)q−1

(

α

∫ ∞

ε

θξα(θ)T ((t − s)αθ − hαε)dθ

)

f (s, v(s)) ds | v ∈ YΓ

}

=

{

α

∫ t−h

0

∫ ∞

ε

θ(t − s)α−1ξα(θ)T ((t − s)αθ)f (s, v(s)) dθds | v ∈ YΓ

}

is precompact in X since T (hαε) is compact.
Proceeding as in the proof of Theorem 3.1 in our previous work [37], one can

obtain

α

∫ t−h

0

∫ ∞

ε

θ(t − s)α−1ξα(θ)T ((t − s)αθ)f (s, v(s)) dθds

→ α

∫ t

0

∫ ∞

0

θ(t − s)α−1ξα(θ)T ((t − s)αθ)f (s, v(s)) dθds,

as h → 0, ε → 0.

Thus, we can conclude that

{
∫ t

0

(t − s)α−1
S (t − s)f (s, v(s)) ds | v ∈ YΓ

}

=

{

α

∫ t

0

∫ ∞

0

θ(t − s)α−1ξα(θ)T ((t − s)αθ)f (s, v(s)) dθds | v ∈ YΓ

}

is precompact in X .
Therefore, the set

{

T (t)x0 +

k
∑

i=1

T (t − ti)yi +

∫ t

0

(t − s)α−1
S (t − s)f (s, v(s)) ds | v ∈ YΓ

}

is precompact in X .
Thus, for each t ∈ J , {(Q1v)(t) | v ∈ YΓ} is precompact in X .
Next, we show the equicontinuity of M = {(Q1v)(·) | v ∈ YΓ}.
The equicontinuity of {T (t)x0 | t ∈ J \ {t1, t2, · · · , tδ}}, can be shown using

the fact of T (·) is continuous.
Now, we only need to check the equicontinuity of the second term in M.
For t ∈ J , let 0 ≤ t′ < t′′ ≤ t1, set

I1 =

∥

∥

∥

∥

∫ t′′

t′
(t′′ − s)α−1

S (t′′ − s)f(s, v(s))ds

∥

∥

∥

∥

,

I2 =

∥

∥

∥

∥

∫ t′

0

[(t′′ − s)α−1 − (t′ − s)α−1]S (t′′ − s)f(s, v(s))ds

∥

∥

∥

∥

,

I3 =

∥

∥

∥

∥

∫ t′

0

(t′ − s)α−1[S (t′′ − s) − S (t′ − s)]f(s, v(s))ds

∥

∥

∥

∥

.
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After some computation, we have
∥

∥

∥

∥

∫ t′′

0

(t′′ − s)α−1
S (t′′ − s)f(s, v(s))ds

−

∫ t′

0

(t′ − s)α−1
S (t′ − s)f(s, v(s))ds

∥

∥

∥

∥

≤ I1 + I2 + I3.

Now repeating the previous discussion in Theorem 3.1 of [37], we derive that
I1, I2, I2 tend to zero as t′′ → t′.

Accordingly, we see that the functions in M are equicontinous. Therefore, Q1

is a compact operator by the Arzela-Ascoli theorem, and hence Q is also a compact
operator. Now, Schauder’s fixed point theorem implies that Q has a fixed point,
which gives rise to a PC-mild solution. 2

To end this section, we make the following assumptions.
[D1]: f : J×X → X is continuous and there exists a function m(·) ∈ L∞(J, R+)

such that

‖f(t, x)‖ ≤ m(t), for all x ∈ X and t ∈ J.

Theorem 4.3. Suppose that [HA] and [D1] are satisfied. Then system (1.1)
has at least a PC-mild solution on J .

Proof. We defined that Q : PC(J, X) → PC(J, X) as in Theorem 4.2 by
(Qv)(t) = (Q1v)(t) + (Q2v)(t). Then we proceed in several steps.

Step 1. We prove that Q is a continuous mapping from PC(J, X) to PC(J, X).
Let {vn} be a sequence in PC(J, X) such that vn → v in PC(J, X). It comes

from [D1] that (· − s)α−1f (s, vn(s)) → (· − s)α−1f (s, v(s)) , as n → ∞, and note
that

(t − s)α−1‖f (s, vn(s)) − f (s, v(s)) ‖

≤ 2m(s)(t − s)α−1 ∈ L1(J, R+), for s ∈ [0, t], t ∈ J.

Similar to the discussion in Theorem 4.2, one can prove that Q is a continuous
mapping from PC(J, X) to PC(J, X).

Step 2. Q maps bounded sets into bounded sets in PC(J, X).
So, let us prove that for any r > 0 there exits a M∗ > 0 such that for each

v ∈ Br = {v ∈ PC(J, X) | ‖v‖PC ≤ r}, we have ‖Qv‖PC ≤ M∗.
Indeed, for any v ∈ Br,

‖(Qv)(t)‖ ≤ ‖(Q1v)(t)‖ + ‖(Q2v)(t)‖

≤ M‖x0‖ + M

δ
∑

i=1

‖yi‖ +
bαM

Γ(1 + α)
‖m‖L∞(J,R+),

which implies

‖Qv‖PC ≤ M‖x0‖ + M

δ
∑

i=1

‖yi‖ +
bαM

Γ(1 + α)
‖m‖L∞(J,R+) ≡ M∗.

Step 3. Q is a compact operator.
In order to verify that Q is a compact operator, one can repeat the same

process in Step 2 of Theorem 4.2 only need replace sups∈J,φ∈YΓ
‖f (s, φ(s))‖ by

‖m‖L∞(J,R+).
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Step 4. The set Θ = {x ∈ PC(J, X) | x = λQx, λ ∈ [0, 1]} is bounded.
Let v ∈ Θ. Then v(t) = λ(Qv)(t) for some λ ∈ [0, 1]. Thus, for t ∈ J , directly

calculation implies that ‖Qv‖PC ≤ M∗. Hence, we deduce that Θ is a bounded set.
Since we have already proven that Q is continuous and compact, thanks to the

Schaefer’s fixed point theorem, Q has a fixed point which is a PC-mild solution of
system (1.1) on J . 2

Remark 4.4. In the assumption [D1], the condition m(·) ∈ L∞(J, R+) can be

replaced by m(·) ∈ L
1

q2 (J, R+) where 1
q2

∈ [0, α). The norm of m is defined by

‖m‖
L

1
q2 (J,R+)

=



















(
∫

J

‖m(t)‖
1

q2 dt

)q2

, if 1 <
1

q2
< ∞,

inf
µ(J̄)=0

{

sup
t∈J−J̄

‖m(t)‖

}

, if 1
q2

= ∞,

where µ(J̄) is the Lebesgue measure on J̄ .

5. Existence results for impulsive nonlocal Cauchy problems

In this section, we extend the results obtained in Section 3 to nonlocal problems
for impulsive fractional evolution equations. More precisely, we will prove the
existence and uniqueness of the PC-mild solutions for system (1.2). As we all
known, the nonlocal conditions has a better effect on the solution and is more
precise for physical measurements than the classical initial condition alone. For the
nonlocal impulsive Cauchy problems, we refer the readers to [9, 10, 11, 17] and
the references therein.

Definition 5.1. By a PC-mild solution of the system (1.2) we mean that a
function x ∈ PC(J, X) which satisfies the following integral equation

x(t) =















































T (t)[x0 + g(x)] +
∫ t

0 (t − s)α−1S (t − s)
f (s, x(s)) ds, for t ∈ [0, t1],

T (t)[x0 + g(x)] + T (t − t1)y1 +
∫ t

0
(t − s)α−1

S (t − s)f (s, x(s)) ds, for t ∈ (t1, t2],
...

T (t)[x0 + g(x)] +
∑δ

i=1 T (t − ti)yi +
∫ t

0 (t − s)α−1

S (t − s)f (s, x(s)) ds, for t ∈ (tδ, b].

(5.1)

Case 1. g is Lipschitz

[Hg1]: g: PC(J, X) → X and there exists a constant Lg > 0 such that

‖g(x) − g(y)‖ ≤ Lg‖x − y‖PC , x, y ∈ PC(J, X).

Theorem 5.2. Let [HA], [HF1] and [Hg1] be satisfied. Then for every x0 ∈ X,
the system (1.2) has a unique PC-mild solution on J provided that

(5.2) 0 < µ′ := MLg +
αMT ∗

Γ(1 + α)
< 1.
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Proof. Define an operator F : PC(J, X) → PC(J, X) by

(Fx)(t) =















































T (t)[x0 + g(x)] +
∫ t

0 (t − s)α−1S (t − s)
f (s, x(s)) ds, for t ∈ [0, t1),

T (t)[x0 + g(x)] + T (t − t1)y1 +
∫ t

0
(t − s)α−1

S (t − s)f (s, x(s)) ds, for t ∈ (t1, t2),
...

T (t)[x0 + g(x)] +
∑δ

i=1 T (t − ti)yi +
∫ t

0 (t − s)α−1

S (t − s)f (s, x(s)) ds, for t ∈ (tδ, b].

It is obvious that F is well defined on PC(J, X).
Step 1. We prove that Fx ∈ PC(J, X) for x ∈ PC(J, X).
For 0 ≤ τ < t ≤ t1, by our assumptions and Lemma 2.9,

‖T (t)g(x) − T (τ)g(x)‖ ≤ ‖T (t) − T (τ)‖(Lg‖x‖PC + ‖g(0)‖).

As t → τ , the right hand side of the above inequality tend to zero due to Lemma
2.9(iii) again. Recall the Step 1 in Theorem 4.1, we know that Fx ∈ PC(J, X).

Step 2. F is contraction.
We only take t ∈ (tk, tk+1], then we have

‖(Fx)(t) − (Fy)(t)‖ ≤

[

MLg +
αMT ∗

Γ(1 + α)

]

‖x − y‖PC .

So we get

‖Fx −Fy‖PC ≤ µ′‖x − y‖PC .

where

µ′ = MLg +
αMT ∗

Γ(1 + α)
.

Hence, the condition (5.2) allows us to conclude, in view of the Banach contraction
mapping principle again, that F has a unique fixed point x ∈ PC(J, X) which is
the PC-mild solution of system (1.2). 2

Theorem 5.3. Suppose that [HA], [D1] and [Hg1] are satisfied. If MLg < 1
2

then system (1.2) has at least a PC-mild solution on J .

Proof. Choose

σ ≥ 2M

[

(‖x0‖ + ‖g(0)‖) +

δ
∑

k=1

‖yk‖ +
bα

Γ(1 + α)
‖m‖L∞(J,R+)

]

.

Consider Bσ = {x ∈ PC(J, X) | ‖x‖PC ≤ σ}. Define the operators N on Bσ by

(Nx)(t) = (N1x)(t) + (N2x)(t) + (N3x)(t)

where

(N1x)(t) = T (t)[x0 + g(x)], t ∈ J,

(N2x)(t) =

∫ t

0

(t − s)α−1
S (t − s)f (s, x(s)) ds, t ∈ J,(5.3)

and N3 is the same as the operator Q2 defined in Theorem 4.2.
It suffices to proceed exactly steps of the proof in Theorem 4.2 while replacing

Br by Bσ to obtain that N2 + N3 are continuous and compact. We want to use
the Krasnoselkii’s fixed point theorem. Thus, to complete the rest proof of this
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theorem, it suffices to show that N1 is a contraction mapping and that if x, y ∈ Bσ

then N1x + (N2 + N3)y ∈ Bσ. Indeed, for any x ∈ Bσ, we have

‖N1x‖PC + ‖N2y‖PC + ‖N3y‖PC

≤ M(‖x0‖ + ‖g(0)‖ + Lgσ) + M

δ
∑

k=1

‖yk‖ +
bαM

Γ(1 + α)
‖m‖L∞(J,R+).

Since MLg < 1
2 , we can deduce that

‖N1x + (N2 + N3)y‖PC ≤ σ.

Next, for any t ∈ (tk, tk+1], x, y ∈ C((tk, tk+1], X),

‖N1x −N1y‖C((tk,tk+1],X) ≤ MLg‖x − y‖C((tk,tk+1],X).

Therefore, we can deduce that N1 is contraction from MLg < 1. Moreover, N2+N3

is compact and continuous. Hence, by the well known Krasnoselskii’s fixed point
theorem, we can conclude that system (1.2) has at least one PC-mild solution on
J . 2

Case 2. g is not Lipschitz

[Hg2]: g: PC(J, X) → X and maps bounded sets into bounded sets.
[C2′]: For each x0 ∈ X , there exists a constant r′ > 0 such that

M

[

‖x0‖ + sup
φ∈Y ′

Γ

‖g(φ)‖

]

+

δ
∑

k=1

‖yk‖ +
bαM

Γ(1 + α)
sup

s∈J,φ∈Y ′

Γ

‖f (s, φ(s))‖ ≤ r′,

where

Y ′
Γ =

{

φ ∈ PC(J, X) | ‖φ‖ ≤ r′ for t ∈ J

}

.

Theorem 5.4. Suppose that [HA], [C1], [C2′] and [Hg2] are satisfied. Then
for every x0 ∈ X, the system (1.2) has at least a PC-mild solution on J .

Proof. Define an operator F on PC(J, X) by

(Fv)(t) = (F1v)(t) + (F2v)(t)

where

(F1v)(t) = T (t)[x0 + g(x)] +

∫ t

0

(t − s)α−1
S (t − s)f (s, v(s)) ds, t ∈ J.

and F2 is the same as Q2 defined in Theorem 4.2. Thus, we need to check that F1 is
compact. Observing the expression of the F1, we only check that, for each t ∈ J , the
set {T (t)[x0 + g(v)] | v ∈ Y ′

Γ} is precompact in X since T (t), t > 0 is compact and

[Hg2]. On the other hand, the equicontinuity of

{

T (t)[x0 + g(v)] | t ∈ J, v ∈ Y ′
Γ

}

can be shown using the same idea.
Therefore, F is also a compact operator. By Schauder’s fixed point theorem

again, F has a fixed point, which gives rise to a PC-mild solution. 2
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6. Applications

In this section, some interesting examples are presented to illustrate the theory.
Consider the following impulsive fractional differential equations with nonlocal

conditions
(6.1)














CDα
t x(t, y) = ∂2

∂y2 x(t, y) + f(t, x(t, y)), α ∈ (0, 1), y ∈ (0, π), t ∈ [0, t1) ∪ (t1, 1],

x(t, 0) = x(t, π) = 0,

∆x(t+1 ) = x(t−1 ) + z, t1 = 1
2 , y ∈ (0, π),

x(0, y) = x0(y) + g(x(t, y)), t ∈ [0, 1], y ∈ (0, π).

Let X = L2(0, π). Define

(E1) Ax = − ∂2

∂y2 x for x ∈ D(A) where D(A) = {x ∈ X | ∂x
∂y

, ∂2x
∂y2 ∈ X and x(0) =

x(π) = 0}. Then, A is the infinitesimal generator of a strongly continuous semi-
group {T (t), t ≥ 0} in L2(0, π). Moreover, T (·) is also compact and ‖T (t)‖ ≤ e−t ≤
1 = M1, t ≥ 0.

Case 1. Define
(E2) f(t, x(t))(y) = e−t|x(t,y)|

(ρ+et)(1+|x(t,y)|) , t ∈ [0, t1) ∪ (t1, 1], ρ > −1, x ∈ X ,

y ∈ (0, π).

(E3) g(x(t))(y) =
∑2

j=1 λj |x(sj , y)|, 0 < λ1, λ2, 0 < s1 < s2 < 1, s1, s2 6= t1,

x ∈ PC([0, 1], X), y ∈ (0, π).
Clearly, f : [0, 1] × X → X is continuous functions,

‖f(t, x) − f(t, y)‖ ≤ Lf‖x − y‖, with Lf =
1

ρ + 1
∈ L

1
q1 ([0, 1], R+), q1 ∈ (0, α).

It is obvious that g: PC ([0, 1], X) → X satisfies ‖g(x)−g(y)‖ ≤ Lg‖x−y‖PC with Lg =
∑2

j=1 λj .

• (E1)+(E2)+(E3) makes the assumptions in Theorem 5.2 satisfied. Therefore,
the equations (6.1) has a unique PC-mild solution on [0, 1] provided that

2
∑

j=1

λj +
α

Γ(1 + α)

[(

1 − q1

α − q1

)]1−q1 1

ρ + 1
< 1.

Case 2. Define
(E4) f(t, x(t))(y) = e−t sin(x(t,y))

(1+t)(et+e−t) + e−t, t ∈ [0, t1) ∪ (t1, 1], x ∈ X , y ∈ (0, π).

Clearly,

‖f(t, x)‖ ≤
e−t

et + e−t
+ e−t = m(t), with m(t) ∈ L∞([0, 1], R+).

• (E1)+(E3)+(E4) makes the assumptions in Theorem 5.3 satisfied. There-
fore, the equations (6.1) has at least one PC-mild solution on [0, 1] provided that
∑2

j=1 λj < 1
2 .

Case 3. Define
(E5) f(t, x(t))(y) = c1| sin(x(t, y))|, c1 > 0, t ∈ [0, t1) ∪ (t1, 1], x ∈ X ,

y ∈ (0, π).

(E6) g(x(t))(y) =
∫ 1

0 l(s) ln(1+|x(s, y)|
1
2 )ds, l ∈ L1([0, 1], R), x ∈ PC([0, 1], X),

y ∈ (0, π).
Clearly, f and g are continuous and map a bounded set into a bounded set.
• (E1)+(E5)+(E6) makes the assumptions in Theorem 5.4 satisfied for large

r′ > 0. Therefore, the equations (6.1) has at least one PC-mild solution.
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