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ON MONADS OF EXACT REFLECTIVE LOCALIZATIONS
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Abstract
In this paper we define Gabriel monads as the idempotent

monads associated to exact reflective localizations in Abelian
categories and characterize them by a simple set of properties.
The coimage of a Gabriel monad is a Serre quotient category.
The Gabriel monad induces an equivalence between its coimage
and its image, the localizing subcategory of local objects.

1. Introduction

Abelian categories were introduced in Grothendieck’s Tôhoku paper [Gro57] and
since then became a central notion in homological algebra. In our attempt to establish
a constructive setup for homological algebra, we introduced in [BLH11, Chap. 2]
the notion of a computable Abelian category, i.e., an Abelian category in which all
existential quantifiers occurring in the defining axioms can be turned into algorithms.
Along these lines we treated in loc. cit. the Abelian categories of finitely presented
modules over so-called computable rings and their localization at certain maximal
ideals.

Our next goal is to treat the Abelian category CohX of coherent sheaves on a
projective scheme X along the same lines. This category is, by Serre’s seminal paper
[Ser55], equivalent to a Serre quotient A/C of an Abelian category A of graded
modules over the graded ring S = k[x0, . . . , xn]/I, where I = I(X) is the homoge-
neous ideal defining X and C is the thick subcategory of graded modules with zero
sheafification. In the context of this paper we require the thick subcategory C ⊂ A
to be localizing. Indeed, there are several ways to model CohX as a Serre quotient
A/C where A is some Abelian category of graded S-modules, but not in all models
is the thick subcategory C ⊂ A localizing. Serre defined in loc. cit. A as the cate-
gory of quasi finitely generated graded S-modules, i.e., of graded modules M such
that the truncated submodule M>d is finitely generated for some d ∈ Z large enough.
Here C ⊂ A is localizing but this model is not constructive. Redefining A, C to be
the respective full subcategories of finitely generated graded S-modules indeed yields
a constructive model A/C ' CohX, but now C ⊂ A is no longer localizing. Luckily,
for each d0 ∈ Z the respective full subcategories A, C of graded S-modules truncated
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at d0 yield a constructive model A/C ' CohX in which C ⊂ A is again localizing
(for more details cf. [BLH13, §4.1]). In all models, a coherent sheaf F is given by a
class of graded modules isomorphic in high degrees. In the last model, the truncated
(and hence finitely generated) module of twisted global sections

⊕
d>d0

H0(F(d)) is
in the following sense a distinguished representative within this class; it is a so-called
saturated object with respect to C.

The appropriate categorical setup for a Serre quotient A/C of an Abelian cate-
gory A modulo a thick subcategory C ⊂ A was introduced by Grothendieck [Gro57,
Chap. 1.11] and then more elaborately in Gabriel’s thesis [Gab62]. Later Gabriel and
Zisman developed in [GZ67] a localization theory of categories in which a Serre quo-
tient A/C is an outcome of a special localization A → A[Σ−1] ' A/C. Their theory is
also general enough to enclose Verdier’s localization of triangulated categories, which
he used in his 1967 thesis (cf. [Ver96]) to define derived categories. Thanks to Simp-
son’s work [Sim06], the Gabriel-Zisman localization is now completely formalized in
the proof assistant Coq [Coq04]. In many applications, as assumed in [GZ67], the
localization A[Σ−1] is equivalent to a full subcategory of A, the subcategory of all
Σ-local objects of A. This favorable situation (which in our context means that C
is a localizing subcategory of A) is characterized by the existence of an idempotent
monad associated to the localization. For a further overview on localizations we refer
to the arXiv version of [Tho11].

In our application to CohX we are in the setup of Serre quotient categories A/C,
which are the outcome of an exact localization having an associated idempotent
monad. We call this monad the Gabriel monad (cf. Definition 2.3). Gabriel monads
satisfy a set of properties that we use as a simple set of axioms to define what we call
a C-saturating monad.

The goal of this paper is to characterize Gabriel monads conversely as C-saturating
monads (Theorem 3.6). Such a characterization enables us in [BLHa] to show that
several known algorithmically computable functors in the context of coherent sheaves
on a projective scheme1 are C-saturating.2 This yields a constructive, unified, and
simple proof that those functors are equivalent to the functorM 7→

⊕
d>d0

H0(M̃(d)),
and hence compute the truncated module of twisted global sections. Among those are
the functors computing the graded ideal transform and the graded module given by
the 0-th strand of the Tate resolution.

The proof there relies on checking the defining set of axioms of a C-saturating
monad, which turns out to be a relatively easy task. In particular, the proof does
not rely on the (full) BGG correspondence [BGG78] of triangulated categories, the
Serre-Grothendieck correspondence [BS98, 20.3.15], or the local duality, as used in
[EFS03].

A stronger computability notion is that of the Ext-computability. Furthermore,
in [BLHb] we use the Gabriel monad of a localizing Serre quotient A/C to show
that the so-called Ext-computability of A/C follows from that of A. In particular, the
Abelian category CohX is Ext-computable (cf. [BLHa]).

1This technique applies to other classes of varieties admitting a finitely generated Cox ring S.
2In this context the Σ-local objects are Gabriel’s C-saturated objects.
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2. Preliminaries

We refer to [Gab62, GZ67, Bor94a, Bor94b] or the active nLab wiki [nLa12]
for further details and proofs. See also the arXiv version of this paper.

A monad is an endofunctor W : A → A together with natural transformations
η : IdA → W and µ : W 2 → W called the unit andmultiplication of the monad, respec-
tively, such that the two zig-zag identites hold. A monad W is called idempotent if its
multiplication is a natural isomorphism. A full subcategory B ⊂ A is called a reflective
subcategory if the inclusion functor ι : B ↪→ A has a left adjoint, called the reflector.
A monad is idempotent if and only if its essential image is a reflective subcategory.
A localization is called reflective if it admits a fully faithful right adjoint.

Proposition 2.1. Let F a G : B → A be adjoint functors with unit η and counit
δ and let (W , η, µ) := (G ◦ F , η,F δG ) be the associated monad. The following are
equivalent:

1. G is fully faithful, i.e., B is equivalent to its (essential) image under G .

2. The counit δ : F ◦ G → IdB is a natural isomorphism.3

3. W is idempotent, i.e., the essential image of G is a reflective subcategory.

Then, W (A) ' G (B) ' B and G is conservative, i.e., reflects isomorphisms.

From now on A denotes an Abelian category. A full subcategory C 6= ∅ of A is
called thick if it is closed under passing to subobjects, factor objects, and extensions.
From now on let C denote a thick subcategory of A. The (Serre) quotient category
A/C is a category with the objects of A and Hom-groups

HomA/C(M,N) := lim−→
M ′↪→M,N ′↪→N
M/M ′, N ′∈C

HomA(M
′, N/N ′).

The canonical functor Q : A → A/C is defined to be the identity on objects and maps
a morphism ϕ ∈ HomA(M,N) to its image in the direct limit HomA/C(M,N). The
category A/C is Abelian and the canonical functor Q is exact.

Proposition 2.2. Let G : A → D be an exact functor into the Abelian category D. If
G (C) is zero then there exists a unique functor H : A/C → D such that G = H ◦ Q.

An object M ∈ A is called C-saturated if it has no subobject in C and every exten-
sion of M by an object C ∈ C is trivial. Denote by SatC(A) ⊂ A the full subcategory
of C-saturated objects. We say that A has enough C-saturated objects if for each
M ∈ A there exists a C-saturated object N and a morphism ηM : M → N such that
ker ηM ∈ C. The thick subcategory C is called localizing if the canonical functor Q
admits a right adjoint S : A/C → A, called the section functor of Q. The category
C ⊂ A is localizing if and only if A has enough C-saturated objects. The section
functor S : A/C → A is left exact and preserves direct sums.

Definition 2.3. We call a canonical functor Q : A → A/C admitting a section func-
tor a Gabriel localization and the associated monad (S ◦ Q, η, µ = S δQ) the Gabriel
monad.

3In particular, G is a right inverse of F and F is essentially surjective.
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Proposition 2.4. Let C be a localizing subcategory of A with section functor S .

1. The counit of the adjunction δ : Q ◦ S
∼−→ IdA/C is a natural isomorphism.

2. An object M in A is C-saturated if and only if ηM : M → (S ◦ Q)(M) is an
isomorphism, where η is the unit of the adjunction.

3. S (A/C) ' SatC(A) are reflective subcategories of A.

4. η(S ◦ Q) = (S ◦ Q)η.

Corollary 2.5. In Proposition 2.4, the image S (A/C) of S is a subcategory of
SatC(A) and the inclusion functor S (A/C) ↪→ SatC(A) is an equivalence of cate-
gories with the restricted-corestricted Gabriel monad S ◦ Q : SatC(A) → S (A/C) as
a quasi-inverse. In other words, SatC(A) is the essential image of S and of the
Gabriel monad S ◦ Q.

Corollary 2.6. In Proposition 2.4, the restricted canonical functor Q : SatC(A) →
A/C and the corestricted section functor S : A/C → SatC(A) are quasi-inverse equiv-
alences of categories. In particular, SatC(A) ' S (A/C) ' A/C is an Abelian cate-

gory. Define the reflector Q̂ as the corestriction of the adjunction monad S ◦ Q to its
essential image SatC(A), i.e., Q̂ := co-resSatC(A)(S ◦ Q) : A → SatC(A). Under the

above equivalence, the adjunction Q̂ a ι : SatC(A) ↪→ A corresponds to the adjunc-
tion Q a S : A/C → A. They both share the same adjunction monad S ◦ Q = ι ◦
Q̂ : A → A. In particular, the reflector Q̂ is exact and ι is left exact.

3. Characterizing reflective Gabriel localizations
and Gabriel monads

The next proposition states that in fact all exact reflective localizations in the
setup of Abelian categories are (reflective) Gabriel localizations.

Proposition 3.1 ([Gab62, Proposition III.2.5], [GZ67, Chap. 1.2.5.d]). Let Q̃ a
S̃ : B → A be a pair of adjoint functors of Abelian categories. Assume, that Q̃ is

exact and the counit δ : Q̃ ◦ S̃ → IdB of the adjunction is a natural isomorphism.

Then C := ker Q̃ is a localizing subcategory of A and the adjunction Q̃ a S̃ induces
an adjoint equivalence from B to A/C.

Now, we approach the central definition of this paper which collects some properties
of Gabriel monads.

Definition 3.2. Let C ⊂ A be a localizing subcategory of the Abelian categoryA and
let ι : SatC(A) ↪→ A the full embedding. We call an endofunctor W : A → A together
with a natural transformation η̃ : IdA → W C-saturating if the following holds:

1. C ⊂ kerW ,

2. W (A) ⊂ SatC(A),

3. G := co-resSatC(A) W is exact,

4. η̃W = W η̃, and

5. η̃ι : IdA|SatC(A) → W| SatC(A) is a natural isomorphism.4

4In particular, W (A) is an essentially wide subcategory of SatC(A).
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Let H be the unique functor from Proposition 2.2 such that G = H ◦ Q. We call the

composed functor H̃ := ι ◦ H the colift of W along Q, since W = ι ◦ G = H̃ ◦ Q.

Lemma 3.3. Let Q : A → A/C be a Gabriel localization with section functor S .
Then each C-saturating endofunctor W of A is naturally isomorphic to S ◦ Q. Fur-

thermore, the colift H̃ of W along Q is also a section functor naturally isomorphic
to S .

Proof. For G := co-resSatC(A) W , let H be the unique functor from Proposition 2.2
(using Definition 3.2.(1)) such that G = H ◦ Q. Then

G = H ◦ Q

' H ◦ Q ◦ S ◦ Q (IdA/C ' Q ◦ S by Proposition 2.4.(1))

= G ◦ S ◦ Q

' IdSatC(A) ◦S ◦ Q (using S (Q(A)) ⊂ SatC(A) and 3.2.(5))

= co-resSatC(A)(S ◦ Q)

and, using the notation of Definition 3.2,

W = H̃ ◦ Q = ι ◦ G ' S ◦ Q.

This also proves the equivalence H̃ ' S , as Q is surjective.

Proposition 3.4. Let Q : A → A/C be a Gabriel localization and (W , η̃) be a C-sa-
turating endofunctor of A with colift H̃ along Q. Then there exists a natural trans-

formation δ̃ : Q ◦ H̃ → IdA/C such that Q and H̃ form an adjoint pair Q a H̃ with

unit η̃ and counit δ̃.

Definition 3.5. Hence, each C-saturating endofunctor (W , η̃) is the monad (W , η̃,

H̃ δ̃Q) associated to the adjunction Q a H̃ . We call it a C-saturating monad.

Proof of Proposition 3.4. We define a natural transformation δ̃ : Q ◦ H̃ → IdA/C and
show the two zig-zag identities, i.e., that the compositions of natural transformations

Q
Qη̃−−→ Q ◦ H̃ ◦ Q

δ̃Q−−→ Q and H̃
η̃H̃−−→ H̃ ◦ Q ◦ H̃

H̃ δ̃−−→ H̃

are the identity of functors. By 3.2.(5) we know that (H̃ ◦ Q)η̃ = W η̃
3.2.(4)
= η̃W =

(η̃ι)G is an isomorphism. Hence, also Qη̃ is a natural isomorphism, because the

functor H̃ is equivalent to S by Lemma 3.3 and, thus, reflects isomorphisms. This
allows us to define δ̃ in such a way to satisfy the first zig-zag identity, i.e., set δ̃Q :=
(Qη̃)−1. This defines δ̃ as Q is surjective (on objects). The second zig-zag identity is
equivalent, again due to the surjectivity of Q, to the second zig-zag identity applied

to Q, i.e., (H̃ δ̃Q) ◦ η̃(H̃ ◦ Q) being the identity transformation of the functor H̃ ◦
Q = W . Now

(H̃ δ̃Q) ◦ η̃(H̃ ◦ Q) = (H̃ (Qη̃)−1) ◦ η̃(H̃ ◦ Q) (by the definition δ̃Q := (Qη̃)−1)

= ((H̃ ◦ Q)η̃)−1 ◦ η̃(H̃ ◦ Q)

= (η̃(H̃ ◦ Q))−1 ◦ η̃(H̃ ◦ Q) (by η̃(H̃ ◦ Q)
3.2.(4)
= (H̃ ◦ Q)η̃)

= Id
H̃ ◦Q

.



150 MOHAMED BARAKAT and MARKUS LANGE-HEGERMANN

We now approach our main result.

Theorem 3.6 (Characterization of Gabriel monads). Each Gabriel monad is a C-
saturating monad. Conversely, each C-saturating monad is equivalent to a Gabriel
monad.

Proof. The conditions in Definition 3.2 clearly apply to a Gabriel monad S ◦ Q by
definition of the canonical functor Q, Corollary 2.5, Corollary 2.6, Proposition 2.4(4),
and Proposition 2.4(2), respectively.

The converse follows directly from Lemma 3.3 and Proposition 3.4 which prove that

the two adjunctions Q a H̃ and Q a S are equivalent and so are their associated
monads.
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Math. J. (2) 9 (1957), 119–221. MR 0102537 (21 #1328)

[GZ67] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-
Verlag New York, Inc., New York, 1967. MR 0210125 (35 #1019)

[nLa12] nLab authors, The nlab, 2012, http://ncatlab.org/nlab/ [Online;
accessed 10-February-2012].
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