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L-HOMOLOGY ON BALL COMPLEXES AND PRODUCTS

SPIROS ADAMS-FLOROU and TIBOR MACKO

(communicated by John R. Klein)

Abstract
We construct homology theories with coefficients in L-spectra

on the category of ball complexes and we define products in this
setting. We also obtain signatures of geometric situations in these
homology groups and prove product formulae which we hope will
clarify products used in the theory of the total surgery obstruction.

1. Introduction

Let X be an n-dimensional geometric Poincaré complex, that means a finite CW -
complex satisfying Poincaré duality. A fundamental question in topology of manifolds
is to decide whether X is homotopy equivalent to an n-dimensional topological mani-
fold. Ranicki developed a systematic general theory for answering this question result-
ing in the definition of the total surgery obstruction s(X) ∈ Sn(X) = Ln−1(Λ

c
∗(X))

which if n � 5 is zero if and only if the answer is yes, see [Ran79, Ran92, KMM13].
Here Sn(X) = Ln−1(Λ

c
∗(X)) is the L-group of the algebraic bordism category of

quadratic chain complexes over X which are locally Poincaré and globally con-
tractible and satisfy certain connectivity assumptions which we suppress. The theory
can also be used in the relative setting when it answers the question of whether

two manifold structures f0 :M0
�−→ X and f1 :M1

�−→ X are homeomorphic over X,
that means whether they define the same element in the topological structure set
STOP(X) in the sense of surgery theory. In fact, the theory results in a bijection
s :STOP(X)→ Sn+1(X) = Ln(Λ

c
∗(X)), see again [Ran79, Ran92, KMM13].

In the process of developing the theory the whole setup of geometric surgery and
algebraic surgery is used. In particular, the set of normal invariants (alias degree one
normal maps), denoted here NTOP(X), is used and a bijection is obtained

qsignX :NTOP(X)→ Hn(X;L•〈1〉) ∼= Ln(Λ∗(X)). (1.1)

Here Hn(X;L•〈1〉) ∼= Ln(Λ∗(X)) is the homology of X with respect to the 1-connec-
tive cover of the quadratic L-theory spectrum L• [Ran92, Chapter 15] and as the
isomorphism suggests it can be obtained as the L-group of the algebraic bordism
category of quadratic chain complexes over X which are locally Poincaré and again
satisfy certain connectivity conditions which we suppress. The map (1.1) is called the
quadratic signature over X, it is obtained by refining the quadratic construction of
[Ran80b].
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In fact, the quadratic signature over X provides us in the case that X is an n-
dimensional manifold such that π = π1(X) and n � 5 with an identification of the
geometric and algebraic surgery exact sequences:

· · · �� Ln+1(Zπ) ��

=

��

STOP(X) ��

qsignX

��

NTOP(X)
qsignπ ��

qsignX

��

Ln(Zπ)

=

��
· · · �� Ln+1(Zπ) �� Sn+1(X) �� Hn(X;L•〈1〉)

asmb
�� Ln(Zπ) �� Sn(X).

Here qsignπ is the surgery obstruction map obtained via the above mentioned quadrat-
ic construction of [Ran80b] and asmb is the assembly map, see [Ran92, KMM13]
for more details.

However, there are some deficiencies in the setup of [Ran79, Ran92, KMM13]
when we are interested in its behavior with respect to products. Firstly recall that
there is a well developed theory for products in L-groups of rings in [Ran80a, Sec-
tion 8] and [Ran80b, Section 8] which includes product formulae for geometric sit-
uations. However, when considering the terms in the sequences above, we observe
that the setup relies on choosing a simplicial complex model for X and working
with categories of modules and chain complexes over it. In [Ran92, Appendix B] it
is described how to use a variant of a simplicial diagonal approximation to obtain
certain products. However, from our point of view that description is not sufficient
since we could not obtain product formulae for the map (1.1). More similar products
appear in [Ran92, Chapter 21] and in the Appendix to [LR92] again referring to
the simplicial diagonal approximation.

Recently Laures and McClure [LM14] used ball complexes instead of simplicial
complexes and the technology of their ad-theories to construct L-theory spectra with
good multiplicative properties. As a byproduct they constructed a cohomology theory
on the category of ball complexes

X �→ Hn(X;L•) ∼= Ln(Λ
∗(X)),

where Λ∗(X) is a certain algebraic bordism category (different from Λ∗(X)), see
Theorem 16.1 and Remark 16.2 in [LM14]. Moreover, in the preprint [BLM14]
Banagl, Laures and McClure use the ad-theories to construct a homology theory

Z �→ Hn(Z;L•)

on the category of topological spaces with the coefficients in the symmetric L-theory
spectrum L• and prove a product formula for symmetric signatures of IP-spaces. How-
ever, they do not construct a homology theory with the coefficients in the quadratic
spectrum L• and they also do not consider the quadratic signature over X map (1.1).
Our first aim in this paper is to construct such a homology theory and to construct
products:

—⊗—:Hk(L;L
•)⊗Hn(K;L•)→ Hn+k(L×K;L•),

—⊗—:Hk(L;L
•)⊗Hn(K;L•)→ Hn+k(L×K;L•).

(1.2)

Moreover, generalising [Ran92] and [KMM13], given a k-manifold F with a map
rF : F → L to a ball complex L we construct its symmetric signature over L as
ssignL(F ) ∈ Hk(L;L

•) and given a degree one normal map (f, b) :M → X between



L-HOMOLOGY ON BALL COMPLEXES AND PRODUCTS 13

n-manifolds with a map rX :X → K to a ball complex we construct its quadratic
signature over K as qsignK(f, b) ∈ Hn(K;L•) and we prove the product formulae:

Theorem 1.1. Let rF : F → L be a map from a k-dimensional manifold to a ball
complex L, let rF ′ :F ′ → K be a map from an n-dimensional manifold to a ball com-
plex K and let (f, b) :M → X be a degree one normal map between n-dimensional
manifolds with a map rX :X → K. The products (1.2) satisfy

ssignL×K(F × F ′) = ssignL(F )⊗ ssignK(F ′),

qsignL×K(idF × f, idνF
× b) = ssignL(F )⊗ qsignK(f, b).

The first formula is also proved in [BLM14, Theorem 11.1] for IP-spaces. A special
case of the second formula gives that for a closed k-dimensional manifold F and a
closed n-dimensional manifold X we have a commutative diagram

N (X)

qsignX

��

idF×— �� N (F ×X)

qsignF×X

��
Hn(X;L•〈1〉)

ssignF (F )⊗—
�� Hn+k(F ×X;L•〈1〉)).

There exist also relative versions of these signatures when F or X have a boundary.
Applying the above diagram in the case (F, ∂F ) = (Dk, Sk−1) yields the suspension
isomorphism in the bottom row and hence we obtain a geometric description of such
a suspension. If needed, see [Ran92, Chapter 15] for the connective spectra L•〈1〉.

As noted above, the formulae we obtain are related to products mentioned in
[LR92, Appendix], [Ran92, Chapter 21]. In particular, Proposition 21.1 in [Ran92,
Chapter 21] states multiplicativity for the visible symmetric signature of a Poincaré
complex. The visible symmetric signature is important since it is used to define the
total surgery obstruction. Hence it would shed some light on the multiplicative prop-
erties of the total surgery obstruction itself. In principle it should be possible to give
an easy proof of the formula from Proposition 21.1 in [Ran92, Chapter 21] in our
setup, but for such a proof we would also need to formulate the whole algebraic
surgery exact sequence for X a ball complex and prove its main properties, which
we hope to work out in a future work. Nevertheless, we hope that already the for-
mulae obtained here will have a direct application in a future work along the lines of
[KMM13, Section 15] where we aim at simplifying the proof of the main theorem
about the total surgery obstruction from [Ran79, KMM13], since the proof uses
products on homology and cohomology.

The present paper differs from [LM14, BLM14] in that although we work with
ball complexes we do not use the ad-theories. We work instead in the setup of additive
categories with chain duality from [Ran92] and [Wei92]. One benefit is that our
definitions are generalisations of those from [Ran92] and [Wei92] and so the reader
does not have to be familiar with the technology of ad-theories.

The present work is structured as follows. In Section 2 we review facts about
ball complexes, mainly using [McC75]. In Sections 3, 4, and 5 we define additive
categories A∗(X) and A

∗(X) for a ball complex and we show that they possess chain
duality in the sense of [Ran92, Chapter 1]. We find both the proof in [Ran92,
Chapter 5] and in [Wei92] of this fact in the case X is a simplicial complex or a
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finite Δ-set very dense and hence we give all the details and put the chain duality
in a more general context. Besides the product formulae this is meant to be another
contribution of our paper. Once the chain duality is set up, we observe in Section 6
that the proof from [Wei92] that the assignmentX �→ Ln(Λ∗(X)) defines a homology
theory essentially works for ball complexes as well. Finally, in Sections 7 and 8 we
prove the desired product formulae for L-homology.
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2. Ball complexes and related concepts

We start with a definition and collect some properties of ball complexes and related
concepts. The main sources are [McC75, BRS76, LM14].

Definition 2.1. [BRS76, LM14] Let n be a natural number, let K be a finite
collection of PL balls in Rn and write |K| for the union

⋃
σ∈K σ. We say that K is a

ball complex if the interiors of the balls of K are disjoint and the boundary of each
ball of K is a union of balls of K.

A ball complex is a regular cell complex in the sense of [Whi78, Section II.6].
To distinguish these from cell complexes in the next definition we will refer to them
as regular CW -complexes. In order to have good dual cell decompositions we need
a refinement. Recall that a polyhedron X is a topological space with a maximal
family of triangulations [McC75]. For example, the geometric realisation |K| of a
simplicial complex K gives such a polyhedron, so that K is one of the triangulations
in the family. A cone on a topological space X is cone(X) := X × [0, 1]/ ∼ where
(x, 1) ∼ (y, 1) for all x, y ∈ X with c := [(x, 1)] the cone point.

Definition 2.2. [McC75] A cone complex C on a polyhedron X is a locally finite
covering of X by compact subpolyhedra, together with a subpolyhedron ∂α for each
α ∈ C, such that

1. for each α ∈ C we have that ∂α is a union of elements in C
2. for α 	= β the interiors α̊ = (α� ∂α) and β̊ = (β � ∂β) satisfy α̊ ∩ β̊ = ∅
3. for each α ∈ C there is a PL-homeomorphism α ∼= cone(∂α) rel ∂α.

A cell complex is a cone complex such that each cone α ∈ C is a ball with ∂α its
boundary sphere. A structure for a cone α ∈ C is a choice of a homeomorphism
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fα :α→ cone(∂α). The cone point of α in this structure is the point f−1
α (c). A struc-

tured cone complex is a cone complex with a choice of structure for each cone. A struc-
tured cell complex is a cell complex which is structured as a cone complex.

Dual cell decompositions for ball complexes are described in [McC75, p. 274].
They are defined by essentially the same procedure as for simplicial complexes. Our
principal motivation for working with structured cell (or ball) complexes rather than
simplicial complexes is that structured cell (or ball) complexes behave better with
respect to products.

LetX be a ball complex. For each ball σ ∈ X choose a point in its interior. Alterna-
tively assume thatX is a structured cell complex, then a choice of such a point is given
by taking the cone point for each ball. We obtain the canonical derived subdivision
X ′ which is a simplicial complex with l-simplices given by sequences σ0 < · · · < σl

where σi ∈ X, see [McC75, Proposition 2.1]. The dual cell D(σ,X) is a subcomplex
of X ′ which consists of the simplices in X ′ such that σ � σ0. The above construc-
tion depends on choices of points if X is just a ball complex, or if X is a structured
cell complex there are no choices involved, which is from our point of view the main
advantage of structured cell complexes. We also note that the space of these choices
is contractible which means that from the homotopy theory point of view there is
very little difference between the respective categories.

Let X and F be structured cell complexes and let σ ∈ X be an n-ball and let τ ∈ F
be a k-ball. Then we have an (n+ k)-ball σ × τ ∈ X × F and this gives a structured
cell complex structure on X × F . In addition we see from the definitions for dual cells
that (see also [McC75, Proposition 2.3])

D(σ × τ,X × F ) = D(σ,X)×D(τ, F ).

We denote the category of structured cell complexes and inclusions respecting the
structurings by ST RCELL, the category of ball complexes and inclusions respecting
the ball structures by BALL, the category of regular CW -complexes and inclusions
respecting the cell structures by REGCW (these are called regular cell complexes in
[Whi78, Section II.6]) so that we have forgetful functors

ST RCELL → BALL → REGCW.

We finish with a definition and a proposition which we will need later.

Definition 2.3. Let X be a ball complex.

1. Let st(σ) denote the open star of a ball σ, defined as

st(σ) =
⋃
σ�τ

τ̊ .

2. For all inclusions of balls ρ � σ, let [ρ : σ] denote the union of interiors of all
balls containing ρ and contained in σ:

[ρ : σ] =
⋃

ρ�τ�σ

τ̊ = st(ρ) ∩ σ.

Proposition 2.4. For all strict inclusions of balls ρ < σ in X the cellular chain
complex C∗([ρ : σ];Z) and cochain complex C−∗([ρ : σ];Z) are chain contractible.
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Proof. By definition [ρ : σ] = st(ρ) ∩ σ. When ρ < σ in a regular cell complex we have
that ∂σ \ st(ρ) is a closed (|σ| − 1)-ball. Hence

C∗([ρ : σ];Z) = C∗(σ, ∂σ \ st(ρ);Z) ∼= C∗(D
|σ|, D|σ|−1;Z) � 0.

Similarly for C−∗([ρ : σ];Z).

3. Chain duality

In defining L-theory of a ring R an involution is required. The involution allows one
to convert right R-modules into left R-modules and hence tensor together two right
R-modules. The L-theory of R depends on the choice of involution. When generalising
to L-theory of an additive category A one could also use an involution but instead
a weaker structure, that of a chain duality on A, is used instead. A chain duality
on A determines an involution on the derived category of chain complexes in A and
chain homotopy classes of chain maps, allowing for the definition of an n-dimensional
algebraic Poincaré complex in A as a finite chain complex which is chain equivalent
to its n-dual. This weakening is crucial for local duality in later sections.

In this section we follow [Ran92, §1] adding some details and explanations.
Throughout the paper A denotes an additive category and B(A) denotes the additive
category of bounded chain complexes in A together with chain maps. Let ιA : A→
B(A) denote inclusion into degree 0 and let SC : C × C → C × C denote the func-
tor that switches the two factors for any category C. Let Sn : B(A)→ B(A) and
Σn : B(A)→ B(A) be respectively the unsigned and signed suspension functors as
in [Ran92, pp. 25–26].

The total complex of a double chain complex can be used to extend an additive
contravariant (resp. covariant) functor TA : A→ B(A) to an additive contravariant
(resp. covariant) functor TB : B(A)→ B(A) such that TA = TB ◦ ιA. The contravariant
case is explained in detail in [Ran92, p. 26] and the covariant case is obtained by
replacing C−p with Cp in all the formulae for the contravariant case.

Proposition 3.1. A natural transformation eA : FA ⇒ GA : A→ B(A) of additive
contravariant (resp. covariant) functors extends to a natural transformation of their
extensions eB : FB ⇒ GB : B(A)→ B(A).

Proof. For additive contravariant functors setting

eB(C)n =
∑

p+q=n

eA(C−p)q :
∑

p+q=n

FA(C−p)q →
∑

p+q=n

GA(C−p)q

defines the required natural transformation and for additive covariant functors replace
all instances of C−p with Cp in the above.

Definition 3.2. A chain duality on an additive category A is a pair (TA, eA) where

• TA is a contravariant additive functor TA : A→ B(A),

• eA is a natural transformation eA : TB ◦ TA ⇒ ιA such that, for all M ∈ A:

– eB(TA(M)) ◦ TB(eA(M)) = idTA(M) : TA(M)→ T 2
B
(TA(M))→ TA(M),

– eA(M) : TB(TA(M))→M is a chain equivalence.
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The dual TA(M) of an object M is a chain complex in A and the extension TB

defines the dual of a chain complex C ∈ B(A) as TB(C). A chain duality is used to
define a tensor product of two objects M,N ∈ A over A as

M ⊗A N = HomA(TA(M), N), (3.1)

which is a priori just a chain complex in the category Ab of Abelian groups. This
generalises to chain complexes C,D ∈ B(A) by setting

C ⊗A D = HomA(TB(C), D).

See [Ran92, p. 26] for the definition of HomA(C,D) as the total complex of a double
complex.

The tensor product f ⊗A f ′ : C ⊗A C ′ → D ⊗A D′ of a pair of morphisms f : C →
D, f ′ : C ′ → D′ in B(A) sends φ ∈ HomA(TB(C), C ′) to

(f ⊗A f ′)(φ) := TB(f)
∗(f ′)∗(φ) = f ′ ◦ φ ◦ TB(f) ∈ HomA(TB(C

′), D′).

Tensor product over A thus defines a functor

−⊗A − : B(A)× B(A)→ B(Ab).

Example 3.3. For a ring R let A(R) denote the additive category of f.g. free left R-
modules. Let T = HomR(−, R) : A(R)→ A(R). Then there is a natural isomorphism
e : T 2 ⇒ idA(R) with e(M) = ev(M)−1 where

ev(M) : M
∼=−→ T 2(M) = HomR(HomR(M,R), R),

m �→ (f �→ f(m)).

One can easily check that e(T (M)) ◦ T (e(M)) = idT (M) for all M ∈ A(R) and thus
that (T, e) is a chain duality on A(R).

There is also a tensor product of f.g. free left R-modules such that

M ⊗R M ′ ∼= HomR(T (M),M ′),

with switch isomorphisms TM,M ′ : M ⊗R M ′ ∼=−→M ′ ⊗R M corresponding to isomor-
phisms

HomR(T (M),M ′)
∼=−→ HomR(T (M

′),M),
φ �→ e(M) ◦ T (φ). (3.2)

The previous example is a special case of a chain duality, in the sense that duals
are only modules rather than chain complexes. It does, however, motivate how a chain
duality (TA, eA) on an additive category A is used to define a tensor product by (3.1)
together with switch isomorphisms

TC,D : C ⊗A D
∼=−→ D ⊗A C,

such that TD,C = T−1
C,D, for all C,D ∈ B(A). The idea is to use TA and eA as in (3.2).

This is explained in the following propositions.

Proposition 3.4. Let TA : A→ B(A) be a contravariant additive functor with exten-
sion TB. Then, for all C,D ∈ B(A), the extension TB induces a chain map

TB : HomA(C,D)→ HomA(TB(D), TB(C)).
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Proof. The chain map is defined by specifying the components TB(φ)
r,s
p,q : TA(Dp)q →

TA(Cr)s as

(TB)n(φ)
r,s
p,q =

{
(−1)nq(−1) 1

2n(n−1)TA(φ
p
p−n)q, s = q, r = p− n,

0, otherwise.
(3.3)

Remark 3.5. Let φ : C → D be a morphism of B(A), i.e. a 0-cycle φ ∈ HomA(C,D)0.
Then (TB)0(φ) ∈ HomA(TB(D), TB(C))0 is precisely the image TB(φ) of φ under the
extended functor TB : B(A)→ B(A).

Proposition 3.6. Let φ ∈ HomA(C,D)0 be a chain equivalence. Then (TB)0(φ) ∈
HomA(TB(D), TB(C))0 is also a chain equivalence.

Proof. Applying (TB)0 to the chain map φ and its inverse and applying (TB)1 to the
chain homotopies gives the chain map (TB)0(φ), its inverse and the corresponding
chain homotopies.

Proposition 3.7. A contravariant additive functor TA : A→ B(A) with extension TB

induces a natural transformation also denoted TB:

TB : −⊗A− ⇒ (−⊗A −) ◦ (idB(A) × T 2
B
) ◦ SB(A) : B(A)× B(A)→ B(Ab)

by

TB(C,D) = TB : C ⊗A D → D ⊗ T 2
B
(C),

where TB is the chain map of Proposition 3.4 with TB(C) in place of C.

Proof. This is a straightforward verification using the formulae for f ′ ⊗A T 2
B
(f) and

f ⊗A f ′ together with (3.3).

Proposition 3.8. For all C,D ∈ B(A), let TC,D : C ⊗A D → D ⊗A C be defined as
the composition

TC,D = (idD ⊗A eB(C)) ◦ TB : C ⊗A D → D ⊗A T 2
B
(C)→ D ⊗A C,

where TB : C ⊗A D → D ⊗A T 2
B
(C) is the chain map of Proposition 3.4 with TB(C) in

place of C. Then TC,D is a chain isomorphism with inverse TD,C .

Proof. TC,D is the composition of two chain maps and hence a chain map. The
fact that TD,C ◦ TC,D = idC⊗AD follows from the properties of (TA, eA) being a chain
duality on A. This uses naturality of eA and that for all p ∈ Z we have

eB(TA(Cp)) ◦ TB(eA(Cp)) = idTA(Cp) : TA(Cp)→ T 2
B
(TA(Cp))→ TA(Cp).

Remark 3.9. By Remark 3.5 the identity chain map idTB(C) is sent by

TB : HomA(TB(C), TB(C))→ HomA(T
2
B
(C), T 2

B
(C))

to TB(idTB(C)) = idT 2
B
(C). Consequently, by definition of TC,TB(C) we have

TC,TB(C)(idTB(C)) = eB(C) ◦ TB(idTB(C)) = eB(C).

Thus eB(C) can be recovered from the switch isomorphisms.
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Proposition 3.10. A chain duality on A defines a natural isomorphism

T−,− : −⊗A− ⇒ (−⊗A −) ◦ SB(A) : B(A)× B(A)→ B(Ab),

such that

(T−,− ◦ idSB(A)
) ◦ T−,− : −⊗A− ⇒ (−⊗A −) ◦ S2

B(A) = (−⊗A −)
is the identity natural isomorphism of the functor −⊗A −.
Proof. For all C,D ∈ B(A), define T−,−(C,D) = TC,D as in Proposition 3.8. The fact
that T−,− is a natural transformation follows directly from the fact that eB and the
TB of Proposition 3.7 are natural transformations. The second part follows from the
fact that TD,C ◦ TC,D = idC⊗AD.

We have just seen that a chain duality (TA, eA) is precisely the additional structure
on an additive category A required so that if we define a tensor product over A by
−⊗A − = HomA(TB(−),−) there is a natural switch isomorphism T−,− : −⊗A− ⇒
(−⊗A −) ◦ SB(A) with the property that TD,C = T−1

C,D for all C,D ∈ B(A).
Conversely, suppose one starts with a contravariant functor TA : A→ B(A) and

a natural switch isomorphism T−,− : −⊗A− ⇒ (−⊗A −) ◦ SB(A) with the property

that TD,C = T−1
C,D for all C,D ∈ B(A). Then TA and the switch isomorphism can be

used to define a natural transformation eA : TB ◦ TA → ιA such that (TA, eA) satisfies
all the properties of being a chain duality, except possibly that eA(M) : TB(TA(M))→
M is a chain equivalence for all M .

Proposition 3.11. Let TA : A→ B(A) be a contravariant additive functor and let

−⊗A − = HomA(TB(−),−) : B(A)× B(A)→ B(Ab).

Suppose there exists a natural isomorphism

T−,− : −⊗A− ⇒ (−⊗A −) ◦ SB(A),
such that TD,C ◦ TC,D = idC⊗AD for all C,D ∈ B(A). Let

eB(C) = TC,TB(C)(idTB(C)),

for all C ∈ B(A). Then

1. this defines a natural transformation eB : T
2
B
⇒ idB(A),

2. TC,D(φ) = eB(C) ◦ TB(φ), for all chain maps φ : TB(C)→ D,

3. eB(TB(C)) ◦ TB(eB(C)) = idTB(C), for all C ∈ B(A).

Proof. 1. By naturality of T−,− we have that

(idTB(C) ⊗A f) ◦ TC,TB(C) = TD,TB(C) ◦ (f ⊗A idTB(C)),

(TB(f)⊗A idD) ◦ TD,TB(D) = TD,TB(C) ◦ (idD ⊗A TB(f)),

both hold for all chain maps f : C → D. Applying these equations respectively
to idTB(C) ∈ C ⊗A TB(C) and idTB(D) ∈ D ⊗A TB(D) proves naturality of eB.

2. By naturality of T−,− we have that

(φ⊗A idC) ◦ TC,TB(C) = TC,D ◦ (idC ⊗A φ),

for all chain maps φ : TB(C)→ D. The Applying this equation to idTB(C) ∈
C ⊗A TB(C) gives the result.
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3. As TC,D : C ⊗A D → D ⊗A C is a chain map for all C,D ∈ B(A) it follows that
(TC,D)0 sends chain maps to chain maps. Hence eB(C) = TC,TB(C)(idC⊗ATB(C))
is a chain map. The result then follows from the equality

TTB(C),C(TC,TB(C)(idC⊗ATB(C))) = idC⊗ATB(C)

and part (2) applied to φ = eB(C).

The previous proposition indicates a strategy for defining a chain duality on an
additive category A:

1. Define an additive contravariant functor TA : A→ B(A) which yields the exten-
sion TB : B(A)→ B(A).

2. Define the tensor product over A using TB by −⊗A − = HomA(TB(−),−).
3. Exhibit a natural isomorphism T−,− : −⊗A− ⇒ (−⊗A −) ◦ SB(A) with the

property that TD,C = T−1
C,D for all C,D ∈ B(A).

4. Define eB : T
2
B
→ idB(A) by eB(C) = TC,TB(C)(idC⊗ATB(C)).

5. Prove that eB(C) : T 2
B
(C)→ C is a chain equivalence, for all C ∈ B(A).

6. Using Proposition 3.11 the pair (TB, eB) is a chain duality on B(A) and restricting
to A ⊂ B(A) this gives a chain duality (TA, eA) on A.

This strategy is employed in Section 5 to define a chain duality on additive categories
over ball complexes.

4. Categories over ball complexes

In this section we introduce the categories A
∗[X], A∗[X], A∗(X) and A∗(X) and

develop some of the tools necessary to define a chain duality on A∗(X) or A∗(X).
Much of the content can be found in [Ran92]; any differences are clearly indicated.

Let X be a ball complex and A an additive category.

Definition 4.1. A ball complex X is regarded as a category with objects the set of
balls σ ∈ X and morphisms τ → σ for all inclusions τ � σ.

Definition 4.2. [Ran92, Definition 4.3] Let A∗[X] and A∗[X] denote the addi-
tive categories whose objects are respectively covariant and contravariant functors
M : X → A and whose morphisms are natural transformations of such functors.

Definition 4.3. Let F : A→ A′ and G : A→ A′ be covariant and contravariant func-
tors respectively. Then post-composition with F or G defines the following push-
forward functors

F∗ : A∗[X]→ (A′)∗[X], F∗ : A∗[X]→ (A′)∗[X],

G∗ : A∗[X]→ (A′)∗[X], G∗ : A∗[X]→ (A′)∗[X].

Remark 4.4. A bounded chain complex in A∗[X] is just an object in B(A)∗[X] and
similarly for chain maps, so that B(A∗[X]) = B(A)∗[X]. Similarly we have B(A∗[X]) =
B(A)∗[X].
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Definition 4.5.

1. An object M ∈ A is X-based if it is expressed as a direct sum

M =
∑
σ∈X

M(σ)

of objects M(σ) ∈ A. A morphism f : M → N of X-based objects is a collection
of morphisms in A

f = {fτ,σ : M(σ)→ N(τ) : σ, τ ∈ X}.
2. Let the X-graded category GX(A) be the additive category of X-based objects

of A and morphisms f : M → N of X-based objects of A.
The composition of morphisms f : L→M , g : M → N in GX(A) is the mor-
phism g ◦ f : L→ N defined by

(g ◦ f)ρ,σ =
∑
τ∈X

gρ,τfτ,σ : L(σ)→ N(ρ).

3. Let

{
A∗(X)
A∗(X)

denote the additive category of X-based objects M in A with

morphisms f : M → N such that fτ,σ : M(σ)→ N(τ) is zero unless

{
τ � σ
τ � σ.

Notation 4.6. Let A(X) denote either A∗(X) or A∗(X) and A[X] either A∗[X] or
A∗[X] when it doesn’t matter which category is used. When this shorthand is used
multiple times in a statement it is assumed that the same choice of upper or lower
star is consistently made.

Definition 4.7. Let X be a ball complex and let Z ⊆ Y ⊆ X so that (Y, Z) is a ball
complex pair. Define the restriction to (Y, Z)

−|(Y,Z) : A(X)→ A(Y ) ⊂ A(X)

by

M |(Y,Z)(σ) = M(σ), ∀σ ∈ Y, σ /∈ Z,

M |(Y,Z)(f)τ,σ = fτ,σ, ∀τ, σ ∈ Y, τ, σ /∈ Z.

Denote the restriction to (Y, ∂Y ) by −|Y̊ and the restriction to (Y, ∅) by −|Y .
Definition 4.8. Define the total assembly functor Ass : GX(A)→ A by

Ass(M) =
∑
σ∈X

M(σ),

Ass(f : M → N) = {fτ,σ}τ,σ∈X :
∑
σ∈X

M(σ)→
∑
τ∈X

N(τ).

Note that total assembly is an equivalence of additive categories. Also denote by
Ass the total assembly restricted to A∗(X) and A∗(X).

Remark 4.9. Let M(Z) denote the additive category of left Z-modules. Following
[Ran92] we write{

Z
∗(X) = M(Z)∗(X),

Z∗(X) = M(Z)∗(X),

{
Z
∗[X] = M(Z)∗[X],

Z∗[X] = M(Z)∗[X].
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Example 4.10. Let X be a ball complex and let A(Z) be as defined in Example 3.3
for the ring of integers Z.

The cellular chain complex C∗(X;Z) of X is naturally a finite chain complex in
A(Z)∗(X) with C∗(X;Z)(σ) = S|σ|Z, for all σ ∈ X.

The cellular cochain complex C−∗(X;Z) of X is naturally a finite chain complex
in A(Z)∗(X) with C−∗(X;Z)(σ) = S−|σ|Z, for all σ ∈ X.

Example 4.11. Let X ′ denote the canonical derived subdivision of a structured ball
complex X. Then the cellular chain and cochain complexes of X ′ can be viewed as
chain complexes in B(A(Z)∗(X)) and B(A(Z)∗(X)) respectively as follows.

Let D ∈ B(A(Z)∗(X)) be the chain complex with

D(σ) = C∗(D(σ,X), ∂D(σ,X);Z)

and differential (dD)τ,σ obtained by assembling dC∗(X′) appropriately. Then Ass(D) =
C∗(X ′).

Similarly the chain complex D∗ ∈ B(A(Z)∗(X)) with

D∗(σ) = C−∗(D(σ,X), ∂D(σ,X);Z)

and differential (dD∗)τ,σ obtained by assembling dC−∗(X′) appropriately is such that
Ass(D∗) = C−∗(X ′).

Example 4.11 will be generalised in Section 7 to a manifold F equipped with a
reference map rF : F → L to a ball complex. The preimages of dual cells in L are
used to dissect F .

Definition 4.12. Let C(X) denote either the Z-coefficient cellular chain complex
C∗(X;Z) ∈ B(A(Z)∗(X)) or cochain complex C−∗(X;Z) ∈ B(A(Z)∗(X)).

The following proposition illustrates a very important property of the categories
A
∗(X) and A∗(X). It can be thought of as being analogous to the statement in linear

algebra that a triangular matrix is invertible if and only if all its diagonal entries are.

Proposition 4.13.

1. A chain map f : C → D in A(X) is a chain isomorphism if and only if
fσ,σ : C(σ)→ D(σ) is a chain isomorphism in A for all σ ∈ X.

2. A chain complex C in A(X) is chain contractible if and only if C(σ) is chain
contractible in A for all σ ∈ X.

3. A chain map f : C → D of chain complexes in A(X) is a chain equivalence if
and only if fσ,σ : C(σ)→ D(σ) is a chain equivalence in A for all σ ∈ X.

Proof. These results are well-known for X a simplicial complex (see for example
Proposition 4.7 of [Ran92] for parts (2) and (3)); Proposition 7.26 of [AF12] contains
parts (2) and (3), the proof contains the correct formulae but falsely asserts in the last
line of page 68 that away from the diagonal dP = Pd = 0, the correct statement is that
dP + Pd = 0. The simplicial complex proof generalises verbatim to ball complexes.



L-HOMOLOGY ON BALL COMPLEXES AND PRODUCTS 23

Definition 4.14. Define covariant functors IX,A : A(X)→ A[X] by sending an ob-
ject M ∈ A(X) to the functor IX,A(M) : X → A which sends σ ∈ X to

IX,A(M)(σ) =

{∑
ρ�σ M(ρ), A(X) = A∗(X),∑
σ�ρ M(ρ), A(X) = A∗(X)

and a morphism τ → σ in X to the inclusion map

IX,A(M)(τ → σ) :

{
IX,A(M)(τ) ↪→ IX,A(M)(σ), A(X) = A

∗(X),
IX,A(M)(σ) ↪→ IX,A(M)(τ), A(X) = A∗(X).

A morphism f : M → N in A(X) is sent to the natural transformation

IX,A(f) : IX,A(M)⇒ IX,A(N) : X → A,

where

IX,A(f)(σ) =

{ {fτ,ρ}ρ�τ�σ :
∑

ρ�σ M(ρ)→∑
τ�σ N(τ), A(X) = A∗(X),

{fτ,ρ}σ�τ�ρ :
∑

σ�ρ M(ρ)→∑
σ�τ N(τ), A(X) = A∗(X).

Remark 4.15. There are a few notational differences worth highlighting:

• For a functor C : X → A in A[X] we use the notation C(σ) where Ranicki would
write C[σ].

• In [Ran92] the functor IX,A and its extension (IX,A)B are both denoted by
square brackets, i.e. IX,A(M) = [M ], (IX,A)B(C) = [C]. We prefer to distinguish
IX,A from (IX,A)B.

• Combining the above, IX,A(M)(σ) corresponds to [M ][σ] in [Ran92].

Example 4.16. The functors IX,A can be expressed using restriction and assembly
functors as follows.

IX,A(M)(σ) =

{
Ass(M |σ),
Ass(M |st(σ)),

IX,A(M)(τ → σ) =

{
incl. : Ass(M |τ ) ↪→ Ass(M |σ),
incl. : Ass(M |st(σ)) ↪→ Ass(M |st(τ)),

IX,A(f)(σ) =

{
Ass(f |σ),
Ass(f |st(σ)),

in the case where

A(X) =

{
A
∗(X),

A∗(X),

where the open star st(σ) denotes the simplicial pair (St(σ), ∂St(σ)) consisting of the
closed star of σ and its boundary.

Example 4.17. Let D ∈ B(A(Z)∗(X)) be as in Example 4.11. It follows that⋃
τ�σ

D(τ,X) \ ∂D(τ,X) = D(σ,X).

Then (IX,A)B(D) is the functor in B(A(Z)∗[X]) = B(A(Z))∗[X] given by
(IX,A)B(D)(σ) = C∗(D(σ,X);Z), for all σ ∈ X and such that

(IX,A)B(D)(τ → σ) : C∗(D(σ,X);Z)→ C∗(D(τ,X);Z)

is an inclusion map, for all τ � σ.
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The tensor product −⊗A − = HomA(TB(−),−) and its switch natural isomor-
phism (see Proposition 3.10) together define a tensor product, also denoted −⊗A −,
on the functor categories B(A[X]) as follows.

Definition 4.18. Let (TA, eA) be a chain duality on an additive category A with
extensions (TB, eB) as in Proposition 3.1. Following [Ran92, p.74], define tensor prod-
uct functors

−⊗A − : B(A∗[X])× B(A∗[X])→ B(Z)∗[X],

−⊗A − : B(A∗[X])× B(A∗[X])→ B(Z)∗[X]

by sending an object (C,D) of B(A[X])× B(A[X]) to the object C ⊗A D of B(Z)[X]
given by

(C ⊗A D)(σ) = C(σ)⊗A D(σ) = HomA(TB(C(σ)), D(σ)),

(C ⊗A D)(τ → σ) = C(τ → σ)⊗A D(τ → σ) = TB(C(τ → σ))∗(D(τ → σ))∗

and sending a morphism (f : C → D, f ′ : C ′ → D′) of B(A[X])× B(A[X]) to the mor-
phism f ⊗A f ′ of B(Z)[X] given by

(f ⊗A f ′)(σ) = TB(f(σ))
∗f ′(σ)∗ : C(σ)⊗A C ′(σ)→ D(σ)⊗A D′(σ).

Proposition 4.19. For the tensor product −⊗A − of Definition 4.18, there are nat-
ural isomorphisms

T−,− : −⊗A− ⇒ (−⊗A −) ◦ SB(A[X]),

with TC,D : C ⊗A D
∼=−→ D ⊗A C the chain isomorphism defined by

TC,D(σ) = TC(σ),D(σ) : C(σ)⊗A D(σ)→ D(σ)⊗A C(σ),

where TC(σ),D(σ) = (idD(σ) ⊗A eB(C(σ))) ◦ TB as in Proposition 3.8.

Proof. This follows directly from Definition 4.18, naturality of TB (Proposition 3.7)
and naturality of eB.

A chain duality can also be applied componentwise to switch between upper and
lower star categories as follows.

Proposition 4.20. A chain duality (TA, eA) on A and its extension (TB, eB) to B(A)
induce functors

TA : A∗(X)→ B(A∗(X)),

TA : A∗(X)→ B(A∗(X)),

with extensions TB and equivalences of functors

εA : TB ◦ TA ⇒ ιA(X) : A(X)→ B(A(X)),

εB : TB ◦ TB ⇒ idB(A(X)) : B(A(X))→ B(A(X)).

Proof. The functors TA are defined by applying TA componentwise to objects and
morphisms. Similarly, εA is eA applied componentwise. Extensions work by Proposi-
tion 3.1.
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Definition 4.21. Define tensor product functors

−⊗Z − : A(Z)× A→ A,

−⊗Z − : A× A(Z)→ A

as follows. For all Zn ∈ A(Z), M ∈ A let

Z
n ⊗Z M = M ⊗Z Z

n = Mn = M ⊕ · · · ⊕M︸ ︷︷ ︸
n copies

.

For all morphisms f : M → N in A and g : Zm → Zn in A(Z) let

g ⊗Z f = f ⊗Z g : Mm → Nn

be the morphism with (i, j)th component

(g ⊗Z f)ij = (f ⊗Z g)ij = f + · · ·+ f︸ ︷︷ ︸
gij times

: M → N.

These extend to bounded chain complexes in the usual way.

The following Proposition defines a new tensor product between round and square
bracket categories. This tensor product gives rise to a simple interpretation of Ran-
icki’s functor TA(X) (cf. [Ran92, Proposition 5.1]) for X a finite simplicial complex.
Extending this to a ball complexX, this tensor product is also instrumental in proving
that (TA(X), eA(X)) is a chain duality.

Proposition 4.22. Let A be an additive category and X a ball complex. Let C be
either A or A(Z) and D the other of the two. Then there are tensor product functors

−⊗− : B(C∗(X))× B(D)∗[X]→ B(A∗(X)),

−⊗− : B(C∗(X))× B(D)∗[X]→ B(A∗(X))

defined as follows.

For a pair of objects (C,D) ∈
{
B(C∗(X))× B(D)∗[X],
B(C∗(X))× B(D)∗[X],

let C ⊗D be the object

in

{
B(A∗(X)),
B(A∗(X)),

with n-chains given by

(C ⊗D)n(σ) =
∑

p+q=n

Cp(σ)⊗Z D(σ)q,

for −⊗Z − the tensor product of Definition 4.21 and differential

((dC⊗D)n)τ,σ : (C ⊗D)n(σ)→ (C ⊗D)n−1(τ)

given by{∑
p+q=n

(
((dC)p)τ,σ ⊗Z D(τ → σ)q + (−1)p(idCp)τ,σ ⊗Z (dD(σ))q

)
,∑

p+q=n

(
((dC)p)τ,σ ⊗Z D(σ → τ)q + (−1)p(idCp)τ,σ ⊗Z (dD(σ))q

)
.

(4.1)

For a pair (f : C → D, f ′ : C ′ ⇒ D′) of morphisms of{
B(C∗(X))× B(D)∗[X],
B(C∗(X))× B(D)∗[X]
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the morphism f ⊗ f ′ : C ⊗ C ′ → D ⊗D′ of

{
B(A∗(X)),
B(A∗(X))

is defined by

((f ⊗ f ′)n)τ,σ = δτσ
∑

p+q=n

(fp)σ,σ ⊗Z f ′(σ)q : (C ⊗ C ′)n(σ)→ (D ⊗D′)n(τ),

where δτσ is a Kronecker delta function.

Proof. Straightforward.

Remark 4.23. One can of course also define tensor products as in Proposition 4.22
but with the order of categories in the domain switched. There are natural switch
isomorphisms between the switched tensor products and those of Proposition 4.22.
The chain isomorphisms C ⊗D ∼= D ⊗ C use a sign of (−1)pq for the component
sending Cp ⊗Z Dq to Dq ⊗Z Cp.

Example 4.24. As in Example 4.5 of [Ran92] let Z ∈
{
A(Z)∗[X] ⊂ B(A(Z))∗[X],
A(Z)∗[X] ⊂ B(A(Z))∗[X]

denote the functor with Z(σ) = Z for all σ ∈ X and Z(τ → σ) = idZ for all τ � σ.

Then −⊗ Z is seen to be the identity functor on

{
B(A∗(X)),
B(A∗(X))

by examining the

formulae of Proposition 4.22. As Z(σ)q is Z when q = 0 and 0 otherwise it follows
that

(C ⊗ Z)n(σ) =
∑

p+q=n

Cp(σ)⊗Z Z(σ)q = Cn(σ)⊗Z Z = Cn(σ).

As dZ(σ) = 0 for all σ ∈ X the second term in (4.1) is always zero. As D(τ → σ)q is

idZ when q = 0 and

{
τ � σ,
σ � τ

and 0 otherwise it follows that the first term agrees

with the differential of the original chain complex C.

Another important chain complex to tensor with is C(X), the Z-coefficient cellular
chain or cochain complex of X.

Definition 4.25. Define the shift functors

sh: B(A)∗[X]→ B(A∗(X)),

sh: B(A)∗[X]→ B(A∗(X))

as the functors that tensor on the left with the chain complex C(X) of Definition 4.12
using the tensor products of Proposition 4.22, i.e. sh = C(X)⊗−.
Example 4.26. We see that

sh(C)n(σ) =

{
C(σ)n+|σ|,
C(σ)n−|σ|,

with differential

((dsh(C))n)τ,σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

((dC−∗(X;Z))−|σ|)τ,σ ⊗Z C(σ → τ)n+|σ|
+ (−1)−|σ|((idC−∗(X;Z))−|σ|)τ,σ ⊗Z (dC(σ))n+|σ|,

((dC∗(X;Z))|σ|)τ,σ ⊗Z C(τ → σ)n−|σ|
+ (−1)|σ|((idC∗(X;Z))|σ|)τ,σ ⊗Z (dC(σ))n−|σ|,

for C ∈
{
B(A)∗[X],
B(A)∗[X].
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Morphisms are shifted similarly:

(sh(f)n)τ,σ =

{
((idC−∗(X;Z))−|σ|)τ,σ ⊗Z f(σ)n+|σ|, f ∈ Mor(B(A)∗[X]),
((idC∗(X;Z))|σ|)τ,σ ⊗Z f(σ)n−|σ|, f ∈ Mor(B(A)∗[X]).

Comparing these formulae to Definition 4.4 of [Ran92] we see that the shift functors
are precisely the same as Ranicki’s covariant assembly functors in the case that X is
a simplicial complex.1 Combining this with Example 4.24 recovers the statement in
[Ran92, Example 4.5] that the covariant assembly of Z is C(X)

5. Chain duality on categories over ball complexes

Let X be a ball complex, A an additive category and (TA, eA) a chain duality on A.
We follow the approach in Section 3 to define a chain duality on A∗(X) and A

∗(X)
using (TA, eA).

The following definition can be seen to agree with that of Proposition 5.1 of
[Ran92] in the case that X is a simplicial complex.

Definition 5.1. Let (TA, eA) be a chain duality on an additive category A. Define
the contravariant functor TA(X) : A(X)→ B(A(X)) to be the composition

TA(X) = sh ◦ (TA)∗ ◦ IX,A,

where (TA)∗ is the push-forward functor as defined in Definition 4.3.

Example 5.2. Let X be a ball complex with ρ ∈ X fixed. Suppose C ∈
{
B(A∗(X)),
B(A∗(X))

is such that C(τ) 	= 0 if and only if τ = ρ. Then unpacking Definition 5.1 and using
Example 4.17 it follows that

TB(A(X))(C)(σ) =

{
C∗(σ, ∂σ;Z)⊗Z TB((IX,A)B(C(σ)))
C−∗(σ, ∂σ;Z)⊗Z TB((IX,A)B(C(σ)))

=

{
Σ|σ|TB(C|σ)
Σ−|σ|TB(C|st(σ))

=

{
Σ|σ|TB(C(ρ)), if σ � ρ,
Σ−|σ|TB(C(ρ)), if σ � ρ,

and 0 otherwise.

Example 5.3. For the ring of integers R = Z let (T, e) be the chain duality on A(Z)
defined in Example 3.3. Let D ∈ B(A(Z)∗(X)) be as in Examples 4.11 and 4.17.

By Example 4.17 we have that (IX,A)B(D)(σ) = C∗(D(σ,X);Z), for all σ ∈ X.
Therefore it follows that

TB(A(Z)∗(X))(D)(σ) = Σ−|σ|T (C∗(D(σ,X);Z))

= C−|σ|−∗(D(σ,X);Z).

1Modulo possibly a different sign convention for the differential of the total complex of a double
complex.
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In (3.1) a tensor product is defined for an additive category A with chain duality
(TA, eA) where, for objects M,N ∈ A, M ⊗A N is just a chain complex of Abelian
groups. This definition only requires the contravariant functor part of the chain dual-
ity. Applying this to the categories A(X) and the contravariant functors TA(X) of
Definition 5.1 gives a tensor product over A(X). In the following it will be necessary
to use a refinement of this tensor product where the tensor product of two objects
M,N ∈ A(X) is not just a chain complex of Abelian groups but rather is fragmented
over the ball complex X in the sense of the previous section.

Definition 5.4. The contravariant functors TA(X) : A(X) → B(A(X)) and their
extensions TB(A(X)) = (TA(X))B : B(A(X))→ B(A(X)) are used to define tensor prod-
uct functors

−⊗A∗(X) − = HomA∗(X)(TB(A∗(X))(−),−) : B(A∗(X))× B(A∗(X))→ B(Z∗(X)),

−⊗A∗(X) − = HomA∗(X)(TB(A∗(X))(−),−) : B(A∗(X))× B(A∗(X))→ B(Z∗(X)),

by

(C ⊗A∗(X) D)n(σ) = HomA(TB(A∗(X))(C)(σ), (IX,A)B(D)(σ))n,

(dC⊗A∗(X)D)n,τ,σ = (−1)n−1(dTB(A∗(X))(C))
∗
σ,τ ((IX,A)B(D)(τ → σ))∗

+ (idTB(A∗(X))(C))
∗
σ,τ ((IX,A)B(dD)(σ))∗,

(f ⊗A∗(X) f
′)n,τ,σ = TB(A∗(X))(f)

∗
σ,τ ((IX,A)B(f

′)(σ))∗

and similarly for A∗(X).

Remark 5.5. The formulae of Definition 5.4 are exactly what you get by replacing A

with A(X) in (3.1) and grouping things accordingly, i.e. tensor products −⊗A(X) −
of Definition 5.4 are refinements which assemble to give the tensor products of (3.1).

The following proposition applied to objects is stated in the proof of [Ran92,
Proposition 5.1]. Due to different sign conventions this is stated as an equality in
[Ran92]. This proposition also indicates the reason for wanting to work with the
refined tensor products of Definition 5.4.

Proposition 5.6. There are natural isomorphisms of functors

−⊗A∗(X) − ⇒ sh ◦ (−⊗A −) ◦ ((IX,A)B × (IX,A)B),

−⊗A∗(X) − ⇒ sh ◦ (−⊗A −) ◦ ((IX,A)B × (IX,A)B).

Proof. It can be shown that there are isomorphisms

ΦC,D : (C ⊗A(X) D)n ∼= (sh((IX,A)B(C)⊗A (IX,A)B(D)))n,

for all C,D ∈ B(A(X)). The differentials of source and target agree up to a sign which
can be compensated for by choosing the correct signs for the components of ΦC,D.
Modulo this isomorphism we have equality

f ⊗A(X) f
′ = sh((IX,A)B(f)⊗A (IX,A)B(f

′)),

for all morphisms f, f ′ in B(A(X)). This proves naturality.
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Proposition 5.7. There is a natural isomorphism

T−,− : −⊗A(X)− ⇒ (−⊗A(X) −) ◦ SB(A(X)),

with TC,D : C ⊗A(X) D
∼=−→ D ⊗A(X) C defined as the composition

TC,D = Φ−1
D,C ◦ sh(T(IX,A)B(C),(IX,A)B(D)) ◦ ΦC,D,

where ΦC,D and Φ−1
D,C are isomorphisms as in the proof of Proposition 5.6 and

T(IX,A)B(C),(IX,A)B(D) is as defined in Proposition 4.19.

As T(IX,A)B(D),(IX,A)B(C) = T−1
(IX,A)B(C),(IX,A)B(D) for all C,D ∈ B(A(X)) it follows

that TD,C = T−1
C,D for all C,D ∈ B(A(X)).

Proof. For all C,D ∈ B(A(X)),

TC,D : C ⊗A(X) D
∼=−→ D ⊗A(X) C

is a chain isomorphism as it is defined as the composition of three chain isomor-
phisms. The fact that T−,− is a natural transformation follows from having natural
transformations in Propositions 4.19 and 5.6.

Proposition 5.8. Let eB(A(X))(C)=TC,TB(A(X))(C)(idTB(A(X))(C)), for all C ∈B(A(X)).
Then

1. this defines a natural transformation eB(A(X)) : T
2
B(A(X)) ⇒ idB(A(X)),

2. TC,D(φ) = eB(A(X))(C) ◦ TB(A(X))(φ), for all chain maps φ : TB(A(X))(C)→ D,

3. eB(A(X))(TB(A(X))(C)) ◦ TB(A(X))(eB(A(X))(C)) = idTB(A(X))(C), ∀C ∈ B(A(X)).

Proof. This is an immediate consequence of Proposition 3.11 applied to A = A(X)
which may be applied since TD,C = T−1

C,D, for all C,D ∈ B(A(X)). The proof of Propo-
sition 3.11 is categorical and does not depend on the codomain B(Ab) of −⊗A −.
Therefore Proposition 3.11 still holds for A = A(X) using the refined tensor products
of Definition 5.4.

The rest of the section is devoted to proving that eB(A(X))(C) : T 2
B(A(X))(C) � C,

for all C ∈ B(A(X)). By Proposition 4.13 it is sufficient to show that

eB(A(X))(C)σ,σ : T
2
B(A(X))(C)(σ)→ C(σ)

is a chain equivalence in A, for all σ ∈ X.

Proposition 5.9. Let eB(A(X)) : T
2
B(A(X))⇒ idB(A(X)) be as defined in Proposition 5.8.

Then, for all C ∈ B(A(X)) and all σ ∈ X, the map

eB(A(X))(C)σ,σ : T
2
B(A(X))(C)(σ)→ C(σ)

is the composition of a signed projection map

T 2
B(A(X))(C)(σ) � T 2

B
(C(σ))

and

eB(C(σ)) : T 2
B
(C(σ))→ C(σ).
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Proof. Applying TC,D = Φ−1
D,C ◦ sh(T(IX,A)B(C),(IX,A)B(D)) ◦ ΦC,D in the case where

D = TB(A(X))(C) to

φ = idTB(A(X))(C) ∈ (C ⊗A(X) TB(A(X))(C))0,

the components

eB(A(X))(C)(σ)rp,q : TA(X)(TB(A(X))(C)p(σ))q → (IX,A)B(C)(σ)r

of eB(A(X))(C) = TC,TB(A(X))(C)(φ) can be calculated.
Using the signs for ΦC,D, ΦD,C of Proposition 5.6 together with (3.3) and Propo-

sition 4.19 the components eB(A(X))(C)(σ)rp,q are computed to be

(−1)|σ|(q−|σ|)(−1) 1
2 |σ|(|σ|−1)eA((IX,A)B(C)(σ)r)q−|σ|,q−|σ| ◦ TA(φ(σ)

p
r,q)q−|σ|, (5.1)

for all p− q + r = 0 where φ(σ)pr,q is the inclusion map

TB(A(X))(Cr)q(σ) ↪→ (IX,A)B(TB(A(X))(C)p)(σ).

Examining (5.1) and using additivity of eA it follows that

eB(A(X))(C)σ,σ = ±eB(C(σ)) ◦ proj. : T 2
B(A(X))(C)(σ)→ T 2

B
(C(σ))→ C(σ)

as required.

Consequently, since eB(C(σ)) : T 2
B
(C(σ))→ C(σ) is a chain equivalence in A, for

all σ ∈ X, it is now sufficient to prove that the projection map

T 2
B(A(X))(C)(σ) � T 2

B
(C(σ))

of Proposition 5.9 is a chain equivalence in A. The signed projection map is a chain
equivalence if and only if the unsigned projection map is; we prove this but must first
make the following definitions.

Definition 5.10. For all σ ∈ X, define Dσ
∗ : X → B(A(Z)) in B(A(Z))∗[X] by

Dσ
∗ (τ) = C∗([τ : σ];Z),

Dσ
∗ (ρ→ τ) = restriction: C∗([ρ : σ];Z)→ C∗([τ : σ];Z).

Similarly define D−∗σ : X → B(A(Z)) in B(A(Z))∗[X] by

D−∗σ (τ) = C−∗([σ : τ ];Z),

D−∗σ (ρ→ τ) = restriction: C−∗([σ : τ ];Z)→ C−∗([σ : ρ];Z).

Definition 5.11. For any C ∈ B(A), define the functor Cσ : X → B(A) by

Cσ(τ) = δτσC(σ) and Cσ(ρ→ τ) = δρσδτσidC(σ),

where δτσ and δρσ are Kronecker δ functions. Note that Cσ is in both B(A)∗[X] and
B(A)∗[X] as it is supported on a single ball σ ∈ X.

Proposition 5.12. For all σ ∈ X, there are natural equivalences of functors

e : Dσ
∗ ⇒ (Σ|σ|Z)σ, e∗ : D−∗σ ⇒ (Σ−|σ|Z)σ,

in B(A(Z))∗[X] and B(A(Z))∗[X] respectively.
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Proof. By Proposition 2.4 there are chain contractions

Pτ : Dσ
∗ (τ) � 0, Qτ : D−∗σ (τ) � 0,

for all τ 	= σ and

Dσ
∗ (σ) = Σ|σ|Z, D−∗σ (σ) = Σ−|σ|Z.

Define the natural transformations e and e∗ by

e(τ) = δτσidΣ|σ|Z and e∗(τ) = δτσidΣ−|σ|Z.

Checking these are natural transformations is straightforward and since

e(τ) : Dσ
∗ (τ) � (Σ|σ|Z)σ(τ) and e∗(τ) : D−∗σ (τ) � (Σ−|σ|Z)σ(τ)

are chain equivalences for all τ ∈ X we see that e and e∗ are natural equivalences.

Proposition 5.13. The projection maps T 2
B(A(X))(C)(σ) � T 2

B
(C(σ)) of Proposi-

tion 5.9 are chain equivalences.

Proof. First observe that there are chain isomorphisms

TB(A∗(X))(C)|σ
∼=−→ Dσ

∗ ⊗ TB(C),

TB(A∗(X))(C)|st(σ)
∼=−→ D−∗σ ⊗ TB(C),

in GX(A) given by redistributing summands on the left to different balls and redis-
tributing morphisms to go between the new locations of the summands. For example,

(TB(A∗(X))(C)|σ)n(τ) =
∑

ρ�τ�σ

TB(C(ρ))n−|τ |,

whereas

(Dσ
∗ ⊗ TB(C))n(ρ) = (C∗(st(ρ) ∩ σ;Z)⊗Z TB(C(ρ)))n

=
∑

ρ�τ�σ

C|τ |(τ, ∂τ ;Z)⊗Z TB(C(ρ))n−|τ |

=
∑

ρ�τ�σ

TB(C(ρ))n−|τ |.

In this case the redistribution isomorphism takes the summand TB(C(ρ))n−|τ | in
(TB(A∗(X))(C)|σ)n associated to the ball τ and moves it to lie over ρ, which is where
it is in (Dσ

∗ ⊗ TB(C))n.

The natural equivalences of Proposition 5.12 induce chain equivalences

e⊗ idTB(C) : Dσ
∗ ⊗ TB(C)

�−→ (Σ|σ|Z)σ ⊗ TB(C),

e∗ ⊗ idTB(C) : D−∗σ ⊗ TB(C)
�−→ (Σ−|σ|Z)σ ⊗ TB(C),

in A(X). Further, since the chain equivalences are the identity map over σ ∈ X and
map to zero elsewhere they are projections onto the components supported on σ. The
chain homotopy inverses are correspondingly inclusions of the components supported
on σ.
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Assembling the above chain isomorphisms and chain equivalences gives chain equiv-
alences in B(A):

Ass(TB(A∗(X))(C)|σ)
∼=−→ Ass(Dσ

∗ ⊗ TB(C))
�−→ Ass((Σ|σ|Z)σ ⊗ TB(C)) = Σ|σ|TB(C(σ)),

Ass(TB(A∗(X))(C)|σ)
∼=−→ Ass(D−∗σ ⊗ TB(C))
�−→ Ass((Σ−|σ|Z)σ ⊗ TB(C)) = Σ−|σ|TB(C(σ)),

which are also projections onto the component that used to be supported on σ before
assembly. Note that the chain homotopy inverses are the inclusions

Σ|σ|TB(C(σ)) ↪→ Ass(TB(A∗(X))(C)|σ),
Σ−|σ|TB(C(σ)) ↪→ Ass(TB(A∗(X))(C)|st(σ)).

Applying Σ|σ|TB(−) and Σ−|σ|TB(−) to these inclusions give projection maps

T 2
B(A∗(X))(C)(σ) = Σ|σ|TB(TB(A∗(X))(C)|σ) �−→ Σ|σ|TB(Σ

|σ|TB(C(σ))),

T 2
B(A∗(X))(C)(σ) = Σ−|σ|TB(TB(A∗(X))(C)|st(σ)) �−→ Σ−|σ|TB(Σ

−|σ|TB(C(σ))),

which are also chain equivalences as TB sends chain equivalences to chain equivalences
by Proposition 3.6.

For a contravariant additive functor G : B(A)→ B(A) it can be easily checked that
there are isomorphisms of functors Σn ◦ G ∼= G ◦ Σ−n, for all n ∈ Z. Consequently, we
have isomorphisms

Σ|σ|TB(Σ
|σ|TB(C(σ))) ∼= Σ|σ|Σ−|σ|T 2

B
(C(σ)) = T 2

B
(C(σ)),

Σ−|σ|TB(Σ
−|σ|TB(C(σ))) ∼= Σ−|σ|Σ|σ|T 2

B
(C(σ)) = T 2

B
(C(σ)).

Composing the chain equivalences of all the previous steps shows that the projec-
tion maps T 2

B(A(X))(C)(σ)→ T 2
B
(C(σ)) are chain equivalences as required.

Example 5.14. Suppose C ∈ B
∗(A(X)) is such that C(τ) 	= 0 if and only if τ = ρ.

Then by Example 5.2

TB∗(A(X))(C)(σ) =

{
C∗(σ; ∂σ;Z)⊗Z TB(C(ρ)), σ � ρ,
0, otherwise.

The boundary maps are such that

Ass(TB∗(A(X))(C)) ∼= C∗(st(ρ);Z)⊗Z TB(C(ρ)). (5.2)

Restricting TB∗(A(X))(C) to σ, for any σ � ρ, the isomorphism (5.2) restricts to

Ass(TB∗(A(X))(C)|σ) ∼= C∗([ρ : σ];Z)⊗Z TB(C(ρ)) = Ass(Dσ
∗ ⊗ TB(C)), (5.3)

where the equality in (5.3) follows from the fact that (Dσ
∗ ⊗ TB(C))(τ) is non-zero

only for τ = ρ so that (Dσ
∗ ⊗ TB(C))(ρ) = Ass(Dσ

∗ ⊗ TB(C)).

The isomorphism (5.3) is the total assembly of the redistribution isomorphism
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which maps

C∗(τ, ∂τ ;Z)⊗Z TB(C(ρ)) = TB∗(A(X))(C)(τ),

for all ρ � τ � σ from the ball τ to the summand

C∗(τ, ∂τ ;Z)⊗Z TB(C(ρ)) = C∗(τ, ∂τ ;Z)⊗Z TB(C)(ρ)

of

C∗([ρ : σ];Z)⊗Z TB(C)(ρ) = (Dσ
∗ ⊗ TB(C))(ρ),

which is associated to the ball ρ.
Next

T 2
B∗(A(X))(C)(σ) = C∗(σ, ∂σ;Z)⊗Z TB(Ass(TB∗(A(X))(C)|σ))

∼= Σ|σ|TB(Ass(Dσ
∗ ⊗ TB(C)))

� Σ|σ|TB(Ass((Σ|σ|Z)σ ⊗ TB(C)))

=

{
Σ|σ|TB(Σ

|σ|TB(C(ρ))), σ = ρ,
0, σ 	= ρ.

The last equality is due to (Σ|σ|Z)σ being 0 except over σ and TB(C) being 0 except
over ρ. Thus (Σ|σ|Z)σ ⊗ TB(C) is 0 except over σ if σ = ρ in which case it is equal to
Σ|σ|TB(C(ρ)). Hence we have

T 2
B∗(A(X))(C)(ρ) � Σ|σ|TB(Σ

|σ|TB(C(ρ))) ∼= T 2
B
(C(ρ))

and

T 2
B∗(A(X))(C)(σ) � 0 = T 2

B
(C(σ)),

for σ 	= ρ. The C ∈ B∗(A(X)) case is similar.

6. L-homology theory

Let us recall from [Ran92] that, for an additive category with chain duality A and
n ∈ Z, we have the quadratic L-groups Ln(A) [Ran92, Definition 1.8], the quadratic
L-spaces Ln(A) [Ran92, Definition 13.2] and the L-spectra L•(A) [Ran92, Propo-
sition 13.4] defined using the notion of n-dimensional quadratic Poincaré complexes
(C,ψ) in A [Ran92, Definition 1.6]. Similarly there are symmetric versions with
superscripts rather than subscripts.

Theorem 6.1. [Wei92] The collection of functors

X �→ Ln(A∗(X)) = πn(L•(A∗(X)))

defines a homology theory on the category ST RCELL of structured cell complexes.

Proof. Note that this functor factors through the forgetful functor ST RCELL →
BALL → REGCW and so we only need to show that this assignment is a homology
theory on the category REGCW .

We closely follow [Wei92], where the same was proved with the category of finite
Δ-sets and inclusions as the source. The proofs turn out to apply in our situation basi-
cally verbatim. Note that only homotopy invariance and excision need to be proved.
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The existence of long exact sequences is automatic since the functors above factor
through spectra. The key Lemma 3.1 from [Wei92] has in our context the same proof
using the technology of localisation sequences in L-theory as in [Wei92, Theorem 2.3]
or [Ran92, Proposition 13.11]. For homotopy invariance the same spectral sequence
argument as in [Wei92, Corollary 3.2] can be used. The excision is the statement of
[Wei92, Corollary 3.2] whose proof can again be taken verbatim.

Hence we obtain that for a ball complex X

Ln(A∗(X)) ∼= Hn(X;L•(A)) and Ln(A∗(X)) ∼= Hn(X;L•(A)). (6.1)

We conclude the section by unravelling what it means to have an element in L-
homology of a ball complex X and of a pair of ball complexes (X,A). It is, in fact,
very similar to what we have when X is a simplicial complex as explained in [Ran92,
Example 12.9]. Hence an element [(C,ψ)] in Ln(A∗(X)) is represented by a compatible
collection of (n− |σ|)-dimensional quadratic Poincaré chain (m− |σ|)-ads

σ �→ (C(σ), ψ(σ)), (6.2)

that means (C(σ), ψ(σ)) ∈ L
(m−|σ|)
n−m (A) for some m ∈ Z. For a pair (X,A) we obtain

the same except we allow that (C(σ), ψ(σ)) is not necessarily Poincaré if σ ∈ A. This
uses the localisation sequences in L-theory as in [Wei92, Theorem 2.3] or [Ran92,
Proposition 13.11]. We will use notation Ln(Z∗(X,A)) in this context.

Remark 6.2. In the introduction we also used the notion of algebraic bordism cate-
gories. The precise definition is in [Ran92, Chapter 3]. Informally one considers not
all quadratic complexes (C,ψ) but only a subcategory B ⊂ B(A) and the complexes
do not have to be Poincaré, they may only be Poincaré up to a subcategory C ⊂ B

meaning the cofiber of the duality map has to be in C.
The algebraic bordism category Λ∗(X) is defined in [Ran92] and we have Λ =

(A,B,C) in mind where B = B(A) and C ⊂ B is the subcategory of contractible com-
plexes. With this notation we have Ln(A∗(X)) = Ln(Λ∗(X)). The symbol Λc

∗(X)
means the same as Λ∗(X) together with the assumption that the chain complexes are
globally contractible (meaning contractible after the assembly [Ran92, Chapter 9]).
The category Λ∗(X) is defined just like Λ∗(X) except that the underlying additive
category with chain duality is A

∗(X). We also mention the related category Λ(X)
from [Ran92] which consists of all chain complexes in A∗(X) which are only globally
Poincaré. Its L-theory is not a homology theory.

For the sake of clarity we did not introduce connective versions of the algebraic
bordism categories as in [Ran92, Chapter 15]. However, the proofs would work just
as well in those cases. Similarly everything works also in the symmetric case.

7. Signatures

In this section we review how to obtain elements of various L-groups from geomet-
ric situations. This is a straightforward generalisation from simplicial complexes to
structured cell complexes of what was done in [Ran92] and [KMM13]. The main
idea is to make maps transverse to dual cells. This can be done since for a structured
cell complex X each dual cell D(σ,X) has a trivial normal PL-bundle with the fibre
given by the ball σ itself.
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Let us first recall signatures over group rings. Let F be a k-dimensional manifold
with a reference map rF : F → L to a structured cell complex L. The symmetric
signature

ssignπ1(L)(F ) ∈ Lk(Zπ1(L))

is represented by a symmetric chain complex

(C,ϕ) such that C = C(F ) and ϕ = r%F ϕF [F ],

where ϕF is the symmetric construction of [Ran80b, Section 1] or [Ran80b, Sec-
tion 6] in the relative case. Both are natural on the chain level.

Let (f, b) :M → X be a degree one normal map from an n-dimensional manifold M
to an n-dimensional geometric Poincaré complex X with a reference map rX :X → K
to a structured cell complexK. Let U : ΣpX+ → ΣpM+ be an associated Umkehr map.
The quadratic signature

qsignπ1(K)(f, b) ∈ Ln(Zπ1(K))

is represented by the quadratic chain complex

(C,ψ) such that C = C(f !) and ψ = (rX)%ψU [X],

where f ! denotes the algebraic Umkehr map associated to U and ψU is the quadratic
construction of [Ran80a, Section 1] or [Ran80b, Section 6].

Remark 7.1. We note that while the quadratic construction ψU in [Ran80a, Sec-
tions 1, 6] is described on the chain level, it is not known to be natural on the
chain level (only in homology), see [Ran81, Chapter I, p. 30]. On the other hand
we observe that a substitute property exists which is often sufficient. As noted in
the above sources, the only problem preventing us from the naturality property
is that there is no natural inverse to the suspension chain homotopy equivalence
C(X)→ Σ−pC(Σp(X)). Suppose that X is “dissected over” K as in [Ran92, Exam-
ple 9.12]. The suspension map respects the dissection and for each simplex σ it
restricts to the suspension map for X[σ] and hence they individually have chain
homotopy inverses. But now the argument from [Ran92, Proposition 4.7] tells us
that there exists an inverse for X which respects the dissection.

Let F be a k-dimensional manifold with a reference map rF : F → L which is
a homotopy equivalence to a structured cell complex L. Such rF always exists for
example using the fact that F is an ENR. Make rF transverse to dual cells so that each
F (σ) = r−1

F (D(σ, L)) is a (k − |σ|)-dimensional manifold with boundary. A choice of
the fundamental class [F ] ∈ Ck(F ) projects to a choice of the fundamental class for
each Ck−|σ|(F (σ), ∂F (σ)). By naturality of the symmetric construction on the chain
level we obtain relative symmetric signatures for all σ ∈ L which fit together to yield
the symmetric signature over L

ssignL(F ) ∈ Lk(Z∗(L))

represented by a symmetric chain complex over L

(C,ϕ) such that C(σ) = C(F (σ), ∂F (σ)) for σ ∈ L,

where ϕ(σ) is the relative symmetric structure for (F (σ), ∂F (σ)) obtained as
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in [Ran80b, Section 6]. See [Ran92, Example 9.12], [KMM13, Definition 8.11]
for details.

Let (F, ∂F ) be a k-dimensional manifold with boundary and with a reference map
r(F,∂F ) : (F, ∂F )→ (L, ∂L) which is a homotopy equivalence of pairs to a pair of
structured cell complexes (L, ∂L). We obtain

ssign(L,∂L)(F, ∂F ) ∈ Lk(Z∗(L, ∂L))

again represented by a symmetric chain complex over L

(C,ϕ) such that C(σ) = C(D(σ), ∂D(σ)) for σ ∈ L,

where ϕ(σ) is the relative symmetric structure for (F (σ), ∂F (σ)) obtained as in
[Ran80b, Section 6]. We note, however, that the chain complex (C,ϕ) here is in
general only Poincaré over balls outside ∂L.

Let (f, b) :M → X be a degree one normal map between two n-dimensional mani-
folds with a reference map rX :X → K which is a homotopy equivalence to a struc-
tured cell complex K and such that both rX and rX ◦ f are transverse to the dual
cells of K, so that we have a compatible collection of degree one normal maps
(f(σ), b(σ)) : (M(σ), ∂M(σ))→ (X(σ), ∂X(σ)). Let U : ΣpX+ → ΣpM+ be an asso-
ciated Umkehr map. It projects to Umkehr maps for all σ ∈ K. Using Remark 7.1 we
obtain the relative quadratic signatures for each σ ∈ K which fit together to yield a
quadratic signature over K

qsignK(f, b) ∈ Ln(Z∗(K))

represented by the quadratic chain complex over K

(C,ψ) such that C(σ) = C(f !(σ), ∂f !(σ)) for σ ∈ K.

Here f(σ) = f |(rX◦f)−1(D(σ,L)), the notation f !(σ) denotes the algebraic Umkehr
map obtained from the suitable projection of U and ψ(σ) is the resulting relative
quadratic structure associated to the degree one normal map (f(σ), b(σ)) obtained
as in [Ran80b, Section 6]. For details see [Ran92, Example 9.13], [KMM13, Defi-
nition 8.14].

Let (f, b) : (M,∂M)→ (X, ∂X) be a degree one normal map between n-dimensional
manifolds with boundary with a reference map r(X,∂X) : (X, ∂X)→ (K, ∂K) which is
a homotopy equivalence of pairs to a pair of structured cell complexes and such that
both r(X,∂X) and r(X,∂X) ◦ f are transverse to the dual cells of K. We obtain the
relative quadratic signatures for each σ ∈ K which fit together to yield a quadratic
signature over (K, ∂K)

qsign(K,∂K)(f, b) ∈ Ln(Z∗(K, ∂K))

represented by the quadratic chain complex over K

(C,ψ) such that C(σ) = C(f !(σ), ∂f !(σ)) for σ ∈ K.

Again here f(σ)= f |(rX◦f)−1(D(σ,L)), the notation f !(σ) denotes the algebraic Umkehr
map obtained from the suitable projection of U and ψ(σ) is the resulting relative
quadratic structure associated to the degree one normal map (f(σ), b(σ)) obtained
as in [Ran80b, Section 6]. We note, however, that the chain complex (C,ψ) here is
in general only Poincaré over balls outside ∂K.
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Remark 7.2. Without much effort the signatures we presented here can also be gen-
eralised to the case when X is a geometric Poincaré complex. The main difference is
that when considering signatures over such X one obtains elements of the L-theory of
the category Λ(X), see Remark 6.2, that means quadratic chain complexes dissected
over X, which might only be Poincaré globally. See [KMM13, Section 14] for more
details about signatures in these situations.

8. Products

Recall from [Ran80a, Section 8] that for rings R and S with involution we have
natural products

—⊗—:Lk(R)⊗ Ln(S)→ Ln+k(R⊗ S),

—⊗—:Lk(R)⊗ Ln(S)→ Ln+k(R⊗ S),
(8.1)

such that in both cases the underlying chain complex of the product is the usual
tensor product of the underlying chain complexes

(C,ϕC)⊗ (D,ϕD) = (C ⊗D,ϕC ⊗ ϕD),

(C,ϕC)⊗ (D,ψD) = (C ⊗D,ϕC ⊗ ψD)
(8.2)

and where ϕC ⊗ ϕD and ϕC ⊗ ψD are defined via a diagonal approximation of W as
in [Ran80a, p. 174]. Note that these definitions are again on the chain level.

Recall from [Ran80b, Section 8] that for maps rF :F → Bπ, rF ′ :F ′ → Bπ′ and
(f, b) :M → X with rX :X → Bπ′ these products satisfy product formulae

ssignZ[π×π′](F × F ′) = ssignZ[π](F )⊗ ssignZ[π′](F
′),

qsignZ[π×π′](idF × f, idνF
× b) = ssignZ[π](F )⊗ qsignZ[π′](f, b).

In the symmetric case the proof uses that the acyclic models method induces a nat-
ural chain homotopy equivalence C(F × F ′)→ C(F )⊗ C(F ′) inverse to the cross
product. The cross product produces a fundamental class cycle of F × F ′ from the
fundamental class cycles of F and F ′ and the same argument as the one which shows
the Cartan formula for Steenrod squares identifies the two symmetric structures. In
the quadratic case the proof uses in addition that if a stable map U : ΣpX+ → ΣpM+

is a geometric Umkehr map for (f, b) then id ∧ U : Σp(F ×X)+ → Σp(F ×M)+ is a
geometric Umkehr map for (id× f, id× b) and that the symmetric construction com-
mutes naturally with suspensions. As before note that these arguments work in the
relative case and on the chain level in the symmetric case and in the quadratic case
we can use Remark 7.1.

The relative versions are straightforward. We emphasise that the above discussion
says that the products are constructed naturally on the chain level in the symmetric
case. In the quadratic case almost the same is true, use the substitute for naturality
discussed in the previous section which allows us to say that we get the multiplicativity
already on the chain level. The fact that the formulae in [Ran80b] are stated in terms
of L-groups is caused by the observation that the fundamental classes are only well-
defined up to homology on the chain level.

Our aim in this section is to prove Theorem 1.1. We start with the construction
of the products (1.2).
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Construction 8.1. We construct the products

—⊗—:Lk(Z∗(L))⊗ Ln(Z∗(K))→ Ln+k(Z∗(L×K)),

—⊗—:Lk(Z∗(L))⊗ Ln(Z∗(K))→ Ln+k(Z∗(L×K))
(8.3)

as a refinement of the products (8.1) defined via (8.2). Recall that an element in
Lk(Z∗(L)) is represented by a k-dimensional symmetric chain complex (C,ϕC) in
Z∗(L). This means that it is an assignment σ �→ (C(σ), ϕ(σ)) where the value is
an appropriate (k − |σ|)-dimensional symmetric Poincaré ad. Let similarly (D,ϕD)
represent an element in Ln(Z∗(K)) and (D,ψD) represent an element in Ln(Z∗(K)).
Define the products (8.3) by the formulae

((C,ϕC), (D,ϕD)) �→ (σ × τ �→ (C(σ)⊗D(τ), ϕC(σ)⊗ ϕD(τ))),

((C,ϕC), (D,ψD)) �→ (σ × τ �→ (C(σ)⊗D(τ), ϕC(σ)⊗ ψD(τ))),
(8.4)

where the products ⊗ on the right hand sides are the chain level products in (8.2).
The products here are well defined, since products of Poincaré ads are Poincaré ads
of correct dimensions, see (6.2). The products (1.2) are obtained from (8.3) via the
isomorphisms (6.1).

Proof of Theorem 1.1. With all the work done so far, the proofs are quite straightfor-
ward due to the fact that the ball complex structure on a product of ball complexes
is given by products of balls and that the dual cells are products of dual cells and
that the products (8.4) actually come from products on the chain level.

Let rF :F → L and rF ′ :F ′ → K be transverse to dual cells and consider ssignL(F )
and ssignK(F ′). These are represented by symmetric chain complexes over L and K
respectively with underlying chain complexes such that for σ ∈ L we have that C(σ) =
C(D(σ, L), ∂D(σ, L)) and for τ ∈ K we have that D(τ) = C(D(τ,K), ∂D(τ,K)).

Now consider rF × rF ′ : F × F ′ → L×K. This map is already transverse to the
dual cells D(σ × τ, L×K) = D(σ, L)×D(τ,K). Moreover, we have that rF × rF ′

restricted to (rF × rF ′)−1(D(σ × τ, L×K)) equals

rF | × rF ′ | :F (σ)× F ′(τ)→ D(σ, L)×D(τ,K).

Hence from the multiplicativity of the relative products on the chain level we obtain
the first desired formula. For the quadratic case let (f, b) :M → X with rX :X → K
and rF :F → L be transverse to the dual cells. Then both rF × rX and (rF × rX) ◦ f
are already transverse to the dual cells D(σ × τ, L×K) = D(σ, L)×D(τ,K) and the
restriction maps are the product maps

(idF (σ) × f(τ), idνF (σ)
× b(τ)) :F (σ)×M(τ)→ F (σ)×X(τ).

Hence from the multiplicativity of the relative products on the chain level we obtain
the second desired formula.

There are many relative versions of the products and product formulae above.
They are obtained exactly as the absolute versions, except that the symmetric and
quadratic complexes are only required to be Poincaré outside the boundaries. For
simplicity we only discuss one of them which is also of interest for applications.
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Let (F, ∂F ) be a k-dimensional manifold with boundary and with a reference map
r(F,∂F ) : (F, ∂F )→ (L, ∂L) which is a homotopy equivalence of pairs to a pair of
structured cell complexes (L, ∂L). In the previous section we constructed

ssignL,∂L(F, ∂F ) ∈ Lk(Z∗(L, ∂L)).

We have the relative product

—⊗—:Lk(Z∗(L, ∂L))⊗ Ln(Z∗(K))→ Ln+k(Z∗(L×K, ∂L×K))

and again from the multiplicativity of the relative products on the chain level we
obtain the product formula

qsign(L×K,∂L×K)(idF × f, idνF
× b) = ssign(L,∂L)(F, ∂F )⊗ qsignK(f, b).

Let us now consider the special case when (F, ∂F ) = (Dk, Sk−1) and we take rDk

to be the identity and think of Dk = [0, 1]k as a ball complex. Also recall that the
L-groups over complexes are isomorphic to the homology groups with coefficients in
the spectra L• = L•(Z) and L• = L•(Z). We observe that the product with

ssign(Dk,Sk−1)(D
k, Sk−1) ∈ Lk(Z∗(D

k, Sk−1)) ∼= Hk(D
k, Sk−1;L•)

commutes with the suspension isomorphism

Hn(K;L•)→ Hn+k(D
k ×K,Sk−1 ×K;L•)

as follows.
We observe from the definitions that the Poincaré duality isomorphism in sym-

metric L-theory sends

Lk(Z∗(D
k, Sk−1)) ∼= Hk(D

k, Sk−1;L•) ∼= H0(Dk;L•) ∼= π0L
•,

ssign(Dk,Sk−1)(D
k, Sk−1) �→ 1

and hence the symmetric signature ssign(Dk,Sk−1)(D
k, Sk−1) is, in fact, the funda-

mental class of (Dk, Sk−1) in the homology groups with coefficients in the symmetric
L-theory spectrum L•. Now the general theory of products in ring spectra and module
spectra over ring spectra as in [Ada74] tells us that the product with the fundamen-
tal class of (Dk, Sk−1) gives the suspension isomorphism. There are also versions with
appropriate connective L-spectra, see [Ran92, Chapter 15] if needed.

Remark 8.2. Without much effort the products and the product formulae we obtained
here can be extended to a situation when K and L are geometric Poincaré complexes.
The main difference is that, as noted above in Remark 7.2, the signature lands in the
L-theories of algebraic bordism categories of chain complexes which are only globally
Poincaré. We leave the details for the reader.
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