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(CO)HOMOLOGY SELF-CLOSENESS NUMBERS
OF SIMPLY-CONNECTED SPACES

PENGCHENG LI

(communicated by Donald M. Davis)

Abstract
The (co)homology self-closeness number of a simply-connected

based CW-complex X is the minimal number k such that any
self-map f of X inducing an automorphism of the (co)homology
groups for dimensions 6 k is a self-homotopy equivalence. These
two numbers are homotopy invariants and have a close relation
with the group of self-homotopy equivalences. In this paper, we
compare the (co)homology self-closeness numbers of spaces in
certain cofibrations, define the mod p (co)homology self-closeness
number of simply-connected p-local spaces with finitely gen-
erated homologies and study some properties of the (mod p)
(co)homology self-closeness numbers.

1. Introduction

The group of self-homotopy equivalences of a space, and its subgroups, have been
extensively studied by many mathematicians in history, such as Arkowitz [2, 4],
Rutter [16, 14], Maruyama [9]. The groups of self-homotopy equivalences are usually
difficult to compute. In 2015 Choi and Lee [6] introduced the self-closeness number
NE(X) of a space X to investigate the group E(X) of self-homotopy equivalences
of X. The self-closeness number NE(X), which is denoted by N♯E(X) in this paper,
is defined by

N♯E(X) := min{k | Ak
♯ (X) = E(X)},

whereAk
♯ (X) := {f ∈ [X,X] | f♯ : πi(X)

∼=
−→ πi(X) for i 6 k}. Oda and Yamaguchi [11]

continued the study of the self-closeness number and proved inequalities among the
self-closeness numbers of spaces of a cofibration of the type:

Sm+1 γ
B

i
X

p
Sm+2

and gave dual results of the comparison of self-closeness numbers of spaces in a
fibration of the type, [12]:

K(G,m+ 1)
q

X
i

Y
γ

K(G,m+ 2).
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Recently they published a paper involving the homology and cohomology self-closeness
numbers of a space, see Section 6 of [13]. I avoid repeating the overlaps of some results
and directly quote their results in this paper. The following notation is needed to make
sense of the introduction.

We agree once and for all that all spaces are simply-connected based CW-complexes
and maps are thought of as the homotopy classes with the given representative.
In notation, let CWsc be the homotopy category of simply-connected based CW-
complexes. LetX,Y ∈ CWsc, [X,Y ] denote the set of homotopy classes of based maps
from X to Y ; identify a map f with its homotopy classes (f = [f ]) and understand
f = g as meaning f ≃ g. Let Hi(X;G) be the i-th reduced homology group of X with
coefficient group G and let Hi(X) = Hi(X;Z). For a map f : X → Y , denote by f∗ or
Hi(f ;G) : Hi(X;G) → Hi(Y ;G) the corresponding induced homomorphism. Similar
notation is used for cohomology.

For simply-connected spaces, the Whitehead theorem and the universal coefficient
theorem for cohomology indicate that a map f : X → Y is a homotopy equivalence if

and only if 1. f is a homology equivalence: f∗ : Hi(X)
∼=
−→ Hi(X) for all i; or 2. f is a

cohomology equivalence: f∗ : Hi(X)
∼=
−→ Hi(X) for all i. This motivates us to define

the homology and cohomology self-closeness numbers.
Let X be a based CW-complex and consider the following subsets of [X,X]:

Ak
∗(X) := {f ∈ [X,X] | f∗ : Hi(X)

∼=
−→ Hi(X) for i 6 k}, A∞

∗ (X) := lim
k→+∞

Ak
∗(X);

A∗
k(X) := {f ∈ [X,X] | f∗ : Hi(X)

∼=
−→ Hi(X) for i 6 k}, A∗

∞(X) := lim
k→+∞

A∗
k(X).

If n 6 k, by the Whitehead theorem there is a chain of monoids by inclusion:

E(X) ⊆ A∞
∗ (X) ⊆ A∗

k(X) ⊆ A∗
n(X) ⊆ [X,X].

There is a similar chain in the cohomology case. The homology self-closeness number
N∗E(X) and the cohomology self-closeness number N∗E(X) of X are defined by:

N∗E(X) := min{k | Ak
∗(X) = E(X)} and N∗E(X) := min{k | A∗

k(X;Z) = E(X)}.

They are both well-defined homotopy invariants (Proposition 37 of [13]).

Remark 1.1. 1. If X ∈ CWsc, N∗E(X), N∗E(X) take values in the range Z>0 ∪
{+∞}. E∗(X) = 0 if and only if X is contractible, which is denoted by X = {∗}.
N∗E(

∨
n>2 S

n) = N∗E(
∨

n>2 S
n) = N♯E(

∨
n>2 S

n) = +∞ (Example 39 of [13]).

2. IfX is not simple or simply-connected, it may happen that a self-map f is a hom-
ology equivalence but not a homotopy equivalence, see Example 4.35 of [8]; in
this case Ak

∗(X) 6= E(X) for any integer k > 0 and we denote by N∗E(X) = −∞.

The connectivity degree of X is denoted by conn(X), which means that πi(X) = 0
if i 6 conn(X). Let

H∗- dim(X) := max{i > 0 | Hi(X) 6= 0}, H∗- dim(X) := max{i > 0 | Hi(X) 6= 0}

be the homology dimension and cohomology dimension of X, respectively. It is easy
to prove that if {∗} 6= X ∈ CWsc,

conn(X) + 1 6 N∗E(X) 6 H∗- dim(X), conn(X) + 1 6 N∗E(X) 6 H∗- dim(X).

We can compare these three types of self-closeness numbers of a simply-connected
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space and prove some inequalities among them, refer to Section 6 of [13]. In this
paper I choose the cohomology self-closeness number of simply-connected spaces to
be the protagonist, since there are richer structures in cohomology theory, such as
the cohomology ring and the Steenrod operations. The paper is arranged as follows.

In Section 2, motivated by Oda and Yamaguchi’s paper [12], I quote some of
Rutter’s results about extension of ladders of cofibrations [15] and give a dual dis-
cussion on the cohomology self-closeness numbers of spaces in a generic cofibration

A
γ
−→ B

i
−→ X. By Theorem 2.7, the inequality N∗E(B) 6 N∗E(X) holds if the follow-

ing conditions hold:

1. n− 1 6 conn(A), H∗- dim(B) 6 n;

2. γ : A → B induces a surjection: γ∗ : [A,A] → [A,B].

By Theorem 2.8, N∗E(X) 6 N∗E(B) holds under the following assumptions

1′. m− 1 6 conn(B) < H∗- dim(B) 6 n− 1 6 conn(A) < dim(A) 6 n+m− 2.

2′. If there exist maps h ∈ [A,A] and g ∈ E(B) such that gγ = γh, then h ∈ E(A).

Moreover, if 2′ is substituted by the assumption that the induced map γ∗ : [A,A] →
[A,B] is bijective, then N∗E(X) = N∗E(B), see Theorem 2.10. It follows that if B
is atomic (N∗E(B) = conn(B) + 1), then so is X (Corollary 2.13). Consider the case
m = 2, A = Sn and m = 3, A = Pn+1(q) = Sn ∪q e

n+1 respectively, we get Corol-
lary 2.14 2.15; particularly, Corollary 2.14 is a cohomology version of Theorem 6
of [13]. The special case where [A,A] is a cyclic group Z or Z/q (q > 2) (Theo-
rem 2.17) can be viewed as a generalization Theorem 5 (A = Sn) of [13].

In Section 3, we define the mod p homology self-closeness number N∗E(X; p) and
the mod p cohomology self-closeness number N∗E(X; p) of a simply-connected p-
local space X with finitely generated homology. They are also well-defined homotopy
invariants. For such a space X, we have N∗E(X; p) = N∗E(X; p) (Proposition 3.4)
and N∗E(X) = N∗E(X; p) (Proposition 3.7).

In Section 4 we prove some properties of (mod p) homology and cohomology self-
closeness numbers. Let p be a prime or p = 0, let X be a simply-connected space
with finitely generated homology if p = 0 and further let X be p-local if p is a prime.
Denote by N∗E(X; 0) = N∗E(X). By Propositions 4.1, 4.3, we have the following
inequalities:

N∗E(ΣX; p) > N∗E(X; p) + 1;

N∗E(X × Y ; p), N∗E(X ∧ Y ; p), N∗E(X ∨ Y ; p) > max{N∗E(X; p), N∗E(Y ; p)};

N∗E(Σ(X × Y ); p) > N∗E(Σ(X ∧ Y ); p).

The above inequalities are also true for (mod p) homology self-closeness numbers. If
the cohomology ringH∗(X;Z/p) (Z/0 = Z) is generated by classes xi ∈H |xi|(X;Z/p),
1, . . . ,m, then by Proposition 4.6 we have

N∗E(X; p) 6 max{|x1|, . . . , |xm|}.

Finally, I exhibit a result of Haibao Duan, Theorem 4.9, which states that for a
simply-connected compact Kähler manifold M with torsion-free cohomology and
H2(M) ∼= Z, we have N∗E(M) = 2.



4 PENGCHENG LI

Acknowledgments

The author would like to thank Professor Jianzhong Pan, and the editors Donald
M. Davis and Martin Crossley, for revising some mistakes.

2. Cohomology self-closeness number and cofibrations

In this section we consider a generic cofibration A
γ
−→ B

i
−→ X

p
−→ ΣA and discuss

conditions for N∗E(B) 6 N∗E(X) and N∗E(X) 6 N∗E(B).

2.1. Some lemmas

Lemma 2.1. Let f : X → Y be a map between simply-connected spaces, let Ff be
the homotopy fiber of f , and Cf the homotopy cofiber of f . Then the following are
equivalent:

1. f is n-connected.

2. Ff is (n− 1)-connected.

3. Cf is n-connected.

Proof. By Lemma 6.4.11 and Proposition 6.4.14 of [3].

By the long exact sequence of (co)homology groups, the five-lemma and the White-
head theorem, it is clear that

Lemma 2.2. In the following homotopy commutative diagram with fibering rows of
simply-connected spaces:

A
h

γ
B

g

i
X

f

A
γ

B
i

X

if any two of the vertical maps f, g, h are self-homotopy equivalences, so is the third
one.

Lemma 2.3. Let r > 1, n > 2, A
γ
−→ B

i
−→ X

p
−→ ΣA be a cofibration with conn(A) >

n− 1, conn(X) > r and dim(A) 6 r + n− 1. Given self-maps g : B → B, f : X → X
such that fi = ig, there exists a map h ∈ such that γh = gγ.

Proof. A direct result of Proposition 4.4 of [15].

Corollary 2.4. Let r > n > 2. If n 6 conn(A) + 1 6 dim(A) 6 r 6 conn(X), then
given a self-map g : B → B, there exist maps f : X → X, h : A → A such that the
following diagram is homotopy commutative:

A
γ

h

B
i

g

X
f

A
γ

B
i

X
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Proof. The condition dim(A) 6 conn(X) implies that the map

i∗ : [X,X] → [B,X]

is surjective, there exists a map f : X → X such that fi = i∗(f) = ig. Then apply
Lemma 2.3.

Lemma 2.5. Let m,n> 2 and let A
γ
−→ B

i
−→X

p
−→ ΣA be a cofibration with conn(A)>

n− 1, conn(B) > m− 1 and dim(A) 6 m+ n− 2. Suppose there is a commutative
diagram:

A
γ

B
i

g

X
p

f

ΣA
Σh

A
γ

B
i

X
p

ΣA

Then gγ = γh.

Proof. A direct result of Theorem 4.6 of [15].

Corollary 2.6. Let n > m > 2. If m 6 conn(B) + 1 6 dim(B) 6 n 6 conn(A) + 1 6

dim(A) 6 n+m− 2, then given a map f : X → X, there exists maps h : A → A,
g : B → B such that the following diagram is homotopy commutative, in which rows
are cofibrations:

A
h

γ
B

i

g

X
p

f

ΣA
Σh

A
γ

B
i

X
p

ΣA

Proof. The condition dim(A) 6 n+m− 2 6 2n− 2 6 2 · conn(A) implies that the
suspension map

Σ: [A,A] → [ΣA,ΣA]

is bijective, by Theorem 1.21 of [7]. Then the result follows from Corollary 2.4 and
Lemma 2.5.

Let A
γ
−→ B

i
−→ X be a cofibration of simply-connected spaces. In the remainder

of this section we shall investigate conditions for the comparison of N∗E(B) and
N∗E(X).

2.2. Conditions for N∗E(B) 6 N∗E(X)

Theorem 2.7. Let n > 2, A
γ
−→ B

i
−→ X be a cofibration in CWsc. If the following

conditions hold:

1. n− 1 6 conn(A), H∗- dim(B) 6 n− 1.

2. γ : A → B induces a surjection: γ∗ : [A,A] → [A,B].

Then N∗E(B) 6 N∗E(X).

Proof. Since N∗E(B) 6 H∗- dim(B) 6 n− 1, we may suppose that N∗E(X) = k 6

n− 1 and g ∈ A∗
k(B).

By the long exact sequence of cohomology groups and conn(A) > n− 1, the
induced homomorphism i∗ : Hd(X) → Hd(B) is an isomorphism for d 6 n− 1.
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The surjectivity of γ∗ : [A,A] → [A,B] implies that there exists a map h ∈ [A,A]
such that gγ = γh and hence there is a map f ∈ [X,X] such that fi = ig.

Consider the following commutative diagram for d 6 k 6 n− 1:

Hd(X)
i∗

∼=
f∗

Hd(B)

g∗
∼=

Hd(X) ∼=

i∗
Hd(B)

Then g ∈ A∗
k(B) implies that f ∈ A∗

k(X) = E(X).

Since H∗- dim(B) 6 n− 1, the induced homomorphism

∂ : Hd−1(A) → Hd(X) is an isomorphism for d > n+ 1.

Then the commutative diagram for d > n+ 1:

Hd−1(A)
∂
∼=

h∗

Hd(X)

f∗∼=

Hd−1(A)
∂
∼=

Hd(X)

implies that h∗ : Hd(A) → Hd(A) is an isomorphism for d > n and hence for all d > 0,
since conn(A) > n− 1. By the Whitehead theorem, h ∈ E(A). Hence g ∈ E(B) by
Lemma 2.2 and therefore N∗E(B) 6 k = N∗E(X).

2.3. Conditions for N∗E(X) 6 N∗E(B)

Note that for a simply-connected CW-complex B and n > 2, the condition
H∗- dim(B) 6 n− 1 implies H∗- dim(B) 6 n− 1, by the universal coefficient theo-
rem for cohomology. Then, by Proposition 4C.1 of [8], B admits a cell structure of
dimension at most n.

Theorem 2.8. Let n,m > 2 and let A
γ
−→ B

i
−→ X be a cofibration. Consider the fol-

lowing assumptions:

1. m− 1 6 conn(B) < H∗- dim(B) 6 n− 1 6 conn(A) < dim(A) 6 n+m− 2.

2. If there exist maps h ∈ [A,A] and g ∈ E(B) such that gγ = γh, then h ∈ E(A).

If assumptions 1 and 2 hold, then N∗E(X) 6 N∗E(B).

Proof. Since conn(A) > n−1, i : B → X is n-connected. The induced homomorphism

i∗ : Hd(X) → Hd(B)

is an isomorphism for d 6 n− 1 and an injection for d = n.

Suppose that N∗E(B) = k and f ∈ A∗
k(X). Then

m 6 k 6 H∗- dim(B) 6 n− 1.

By Corollary 2.6, there exist self-maps h : A → A, g : B → B filling in the homotopy
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commutative diagram:

A
h

a·γ
B

i

g

X
p

f

ΣA
Σh

A
a·γ

B
i

X
p

ΣA

(1)

Consider the induced commutative diagram for d 6 k 6 n− 1:

Hd(X)
i∗

∼=

f∗ ∼=

Hd(B)

g∗

Hd(X) ∼=

i∗
Hd(B)

(2)

Then f ∈ A∗
k(X) implies that g ∈ A∗

k(B) = E(B). By assumption 2 we then have h ∈
E(A) and hence f ∈ E(X), by Lemma 2.2. Therefore, N∗E(X) 6 k = N∗E(B).

Lemma 2.9. If γ : A → B induces a bijection: γ∗ : [A,A] → [A,B], then given a map
h : A → A and g ∈ E(B) such that gγ = γh, we have h ∈ E(A).

Proof. Let ḡ ∈ E(B) be the homotopy inverse of g; that is, ḡg = 1B = gḡ. By the
surjectivity of γ∗ : [A,A] → [A,B], there exists a map h̄ ∈ [A,A] satisfying ḡγ = γh̄.
We then have

γ = ḡgγ = ḡγh = γh̄h and γ = gḡγ = gγh̄ = γhh̄.

Then, by the injectivity of γ∗ : [A,A] → [A,B], we get h̄h = 1A = hh̄ and hence h ∈
E(B).

Theorem 2.10. Let n,m > 2 and let A
γ
−→ B

i
−→ X be a cofibration satisfying the

following conditions:

1. m− 1 6 conn(B) < H∗- dim(B) 6 n− 1 6 conn(A) < dim(A) 6 n+m− 2.

2. γ : A → B induces a bijection: γ∗ : [A,A] → [A,B].

Then N∗E(X) = N∗E(B).

Proof. N∗E(X) > N∗E(B) by Theorem 2.7; N∗E(X) 6 N∗E(B) by Theorem 2.8 and
Lemma 2.9.

Definition 2.11. A CW-complex X is called atomic if N♯E(X) = conn(X) + 1.

It is immediate that

Lemma 2.12. If X ∈ CWsc, the following are equivalent:

1. X is atomic.

2. N∗E(X) = conn(X) + 1.

3. N∗E(X) = conn(X) + 1.

Corollary 2.13. Let n,m > 2 and let A
γ
−→ B

i
−→ X be a cofibration satisfying the

following conditions:

1. m− 1 6 conn(B) < H∗- dim(B) 6 n− 1 6 conn(A) < dim(A) 6 n+m− 2.
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2. γ : A → B induces a bijection: γ∗ : [A,A] → [A,B].

If B is atomic, then so is X.

Proof. Since ΣA is n-connected, i∗ : B → X is n-connected, i∗ : πi(B) → πi(X) is
an isomorphism for i 6 n− 1. Since m− 1 6 conn(B) 6 n− 1, we have conn(X) =
conn(B) and hence

N∗E(X) = N∗E(B) = conn(B) + 1 = conn(X) + 1.

Let m = 2 and A = Sn. Then we have

Corollary 2.14 (A cohomological version of Theorem 6 of [13]). Let n > 2, a 6= 0, let

B be 1-connected with H∗- dim(B) 6 n− 1 and let Sn a·γ
−−→ B

i
−→ X be a cofibration.

If πn(B) ∼= Z〈γ〉, then N∗E(X) = N∗E(B).

Let m = 3 and A = Pn+1(Z/q) = Sn ∪q e
n+1. Then we have

Corollary 2.15. Let n > 3, q > 2, (a, q) = 1, let B be 2-connected with H∗- dim(B) 6

n− 1 and let Pn+1(Z/q)
a·γ
−−→ B

i
−→ X be a cofibration. If [Pn+1(Z/q), B] ∼= Z/q〈γ〉,

then N∗E(X) = N∗E(B).

Remark 2.16. The above results are also true for homotopy and homology self-close-
ness after every H∗- dim(B) is substituted by H∗- dim(B), and every N∗ by N♯ and
N∗, respectively.

2.4. A special case
Let q ∈ Z. If q > 1, denote the set of prime factors of q by Pr(q):

Pr(q) := {p1, . . . , pl | q = pr11 · · · · · prll , pi are primes, ri > 1}.

Theorem 2.17. Let n,m > 2, let A = Σ2A′ and let A
a·γ
−−→ B

i
−→ X

p
−→ ΣA be a cofi-

bration with a · γ ∈ [A,B] nontrivial. If the following assumptions hold:

1. m− 1 6 conn(B) < H∗- dim(B) 6 n− 1 6 conn(A) < dim(A) 6 n+m− 2.

2. [A,A] ∼= Z/q〈1A〉 and γ ∈ [A,B] is a generator of a direct summand Z/q′, where
q, q′ satisfy the conditions:

{
q′ = q, q = 0;

q′|q, Pr(q′) = Pr(q) q 6= 0,
(3)

then N∗E(X) 6 N∗E(B). Equality holds if, additionally, [A,B] ∼= Z/q′〈γ〉.

Proof. For the inequality N∗E(X) 6 N∗E(B), it suffices to show the new assump-
tion 2 above implies the “old” 2 in Theorem 2.8.

Let ḡ be the inverse of g. By assumption 2 we may put

h = s · 1A, ḡγ = t · γ + u

for some s ∈ Z/q, t ∈ Z/q′ and u ∈ [A,B]/Z/q′. By (1) we have

a · γ = ḡg(a · γ) = ast · γ + as · u.

It follows that s = 1 if q = 0 and s ≡ 1 (mod q) if q 6= 0 by condition (3). Thus
h ∈ E(A) and therefore f ∈ E(X) by Lemma 2.2.
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If, in addition, [A,B] ∼= Z/q′〈γ〉, we show that N∗E(B) 6 N∗E(X).

Suppose that N∗E(X) = l and g ∈ A∗
l (B). Then

l = N∗E(X) 6 N∗E(B) 6 H∗- dim(B) 6 n− 1

Let h = s′ · 1A : A → A. Since [A,B] ∼= Z/q′〈γ〉, we have gγ = t′ · γ for some t′ ∈ Z/q′.
Then there exists a map f : X → X such that

fi = ig, (Σh)p = pf.

From the commutative diagram (2) in the proof of Theorem 2.8 for d 6 l, we see
that g ∈ A∗

l (B) implies f ∈ A∗
l (X) = E(X), which in turn implies g ∈ E(B) by the

commutative diagram (2) for d 6 n− 1. Therefore N∗E(B) 6 N∗E(X).

Let m = 2 and A = Sn. Then we get a cohomological version of Theorem 5 of [13].

Corollary 2.18. Let n > 2 and let Sn a·γ
−−→ B

i
−→ X be a cofibration, in which B is

1-connected and H∗- dim(B) 6 n− 1. If 0 6= a ∈ Z, and γ is a generator of a direct
summand Z ⊆ πn+1(B), then N∗E(X) 6 N∗E(B).

Let 1P be the identity of Pn(q). It is well known that if q ≡ 1 (mod 2), n > 4,

[Pn(q), Pn(q)] ∼= Z/q〈1P 〉.

Let m = 3 and A = Pn+1(q). Then we have:

Corollary 2.19. Let n > 2 and let q, q′ > 1 be odd integers such that Pr(q) = Pr(q′)

and let Pn+1(q)
a·γ
−−→ B

i
−→ X be a cofibration, in which B is 2-connected and

H∗- dim(B) 6 n− 1. If 〈γ〉 ⊆ πn+1(B;Z/q) ∼= Z/q′ is a direct summand and a · γ 6=
0, then N∗E(X) 6 N∗(B), and equality holds if πn+1(B;Z/q) ∼= Z/q′〈γ〉.

2.5. Another condition for N∗E(B) 6 N∗E(X)

Theorem 2.20 (a cohomological version of Theorem 9 of [11]). Let r > n > 2 and

A
γ
−→ B

i
−→ X be a cofibration. If one of the following conditions holds

1. n 6 conn(A) + 1 6 dim(A) 6 r 6 conn(X) and Hr(A) ∼= Hr(B),

2. n 6 conn(A) + 1 6 dim(A) < r 6 conn(X),

then N∗E(B) 6 N∗E(X).

Proof. Suppose that condition 2 holds. Since X is r-connected and Hr(A) = 0, by
the long exact sequence of cohomology groups, the induced homomorphism

γ∗ : Hd(B) → Hd(A) is an isomorphism for d 6 r. (4)

Since dim(A) < r, the induced homomorphism

i∗ : Hd(X) → Hd(B) is an isomorphism for d > r + 1. (5)

If 1 holds, we can also get the above (4), (5).



10 PENGCHENG LI

Suppose thatN∗E(X) = k > conn(X)+1 > r+1 and g ∈A∗
k(B). By Corollary 2.4,

there exist self-maps f : X → X and h : A → A such that

fi = ig, gγ = γh.

Consider the following commutative diagram:

Hd(X)
i∗

f∗

Hd(B)

g∗ ∼=

γ∗

Hd(A)

h∗

Hd(X)
i∗

Hd(B)
γ∗

Hd(A)

Then for d 6 r < k, by the second square above and (4), g ∈ A∗
k(B) ⊆ A∗

r(B) implies
that h ∈ A∗

r(A) = E(A). For r + 1 6 d 6 k, by the first square above and (5), g ∈
A∗

k(B) implies that f∗ : Hd(X) → Hd(X) is an isomorphism. Since conn(X) > r, we
get f ∈ A∗

k(X) = E(X). Hence g ∈ E(B) and therefore N∗E(B) 6 k = N∗E(X).

3. mod p (co)homology self-closeness numbers

Let p be a prime, let Z/p be the set of integers modulo p and let Zp be the set
of integers localized at p. Let CWscpft be the category of simply connected p-local
CW-complexes with finitely generated homology groups over Zp in each dimension.

We shall use the following universal coefficient theorem for cohomology:

Lemma 3.1. For each i > 1 and a CW-complex X, there is an isomorphism:

Hi(X;Z/p)
∼=

HomZ/p(Hi(X;Z/p),Z/p).

There is an easier criterion to determine a homotopy equivalence in CWscpft:

Lemma 3.2. Let p be a prime and f : X → Y a map (morphism) in the category
CWscpft. Then the following are equivalent:

1. f is a homotopy equivalence.

2. f∗ : Hi(X;Z/p) → Hi(Y ;Z/p) is an isomorphism for all i > 0.

3. f∗ : Hi(Y ;Z/p) → Hi(X;Z/p) is an isomorphism for all i > 0.

Proof. 1⇔2 is a restatement of Lemma 1.3 of [19]; 2⇔3 by Lemma 3.1.

Hence for X ∈ CWscpft, we can detect self-homotopy equivalences of X by the
induced automorphisms of Hi(X;Z/p) or Hi(X;Z/p).

Definition 3.3. Let X ∈ CWscpft.

A∗
k(X; p) := {f ∈ [X,X] | f∗ : Hi(X;Z/p)

∼=
−→ Hi(X;Z/p) for i 6 k}.

The mod-p cohomology self-closeness number N∗E(X; p) is defined by:

N∗E(X; p) := min{k | A∗
k(X; p) = E(X)}.

The monoids Ak
∗(X; p) and the mod-p homology self-closeness number N∗E(X; p) are

defined after replacing cohomology by homology.
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It is easy to see that N∗E(X; p), N∗E(X; p) are homotopy invariants, by a parallel
proof of Proposition 37 of [13].

Proposition 3.4. Let p be a prime, X ∈ CWscpft. Then N∗E(X; p) = N∗E(X; p).

Proof. By Lemma 3.1 we have A∗
k(X; p) = Ak

∗(X; p) for each k > 0. Then the equality
in the proposition follows.

Proposition 3.5. Let X ∈ CWsc such that Hi(X) is finitely generated for each i.
Then N∗E(X) 6 N∗E(X) 6 N∗E(X) + 1; N∗E(X) = N∗E(X) if Hk+1(X) is free for
k = N∗E(X).

Proof. By Propositions 41, 43, 45 of [13].

Example 3.6. Let q 6= 0, n > 2, then N∗E(P
n(q)) = n− 1 < N∗E(Pn(q)) = n.

Proposition 3.7. Let p be a prime and X ∈ CWscpft. Then N∗E(X) = N∗E(X; p).

Proof. Suppose that f : X → X. By the naturality of the universal coefficient theorem
for homology, there is a commutative diagram for each k:

Hk(X)⊗ Z/p
f∗⊗Z/p

Hk(X;Z/p)
f∗

TorZ1 (Hk−1(X),Z/p)
Tor(f∗,Z/p)

Hk(X)⊗ Z/p Hk(X;Z/p) TorZ1 (Hk−1(X),Z/p)

It follows that Ak
∗(X) ⊆ Ak

∗(X; p) and hence N∗E(X) 6 N∗E(X; p).
Suppose that N∗E(X) = l and f ∈ Al

∗(X; p). Then by the long exact sequence of
homology groups we have Hi(Cf ;Z/p) = 0 for i 6 l and hence Hi(Cf )⊗ Z/p = 0 for
i 6 l, by the universal coefficient theorem for homology. Since X is p-local, so is Cf . It
follows that Hi(Cf ) = 0 for i 6 l and hence the homomorphism f∗ : Hi(X) → Hi(X)
is an isomorphism for i 6 l − 1 and an epimorphism for i = l. Since Hk(X) is finitely
generated, f ∈ Al

∗(X) = E(X). Therefore N∗E(X; p) 6 l = N∗E(X).

Example 3.8. Let n > 3, t, r > 1, let Cn+2,t
r = Pn+1(2r) ∪iηq CPn+1(2t) be the four-

cell Chang complex, where η ∈ πs
1 is the suspension of the Hopf map and i : Sn →

Pn+1(2t) and q : Pn+1(2r) → Sn+1 are the canonical inclusion and quotient maps.
We have

N∗E(C
n+2,t
r ) = N∗E(C

n+2,t
r ; 2) = n.

Proof. The proof is parallel to that of Lemma 3.1 of [20].

4. More properties of self-closeness numbers

Let CWsc0ft be the category of simply connected CW-complexes with finitely
generated homology group in each dimension. Z/0 = Z. We temporarily adopt the
following notation:

A∗
k(X; 0) := A∗

k(X), N∗E(X; 0) := N∗E(X);

Ak
∗(X; 0) := Ak

∗(X), N∗E(X; 0) := N∗E(X).

Proposition 4.1. Let p be a prime or p = 0 and {∗} 6= X ∈ CWscpft. Then
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1. N∗E(ΣX; p) > N∗E(X; p) + 1; equality holds if dim(X) 6 2 · conn(X) + 1.

2. N∗E(ΣX; p) > N∗E(X; p) + 1; equality holds if dim(X) 6 2 · conn(X) + 1.

Proof. 1. Suppose that N∗E(ΣX; p) = k + 1 for some k > 0 and f ∈ Ak
∗(X; p). By the

natural isomorphism Hi(X;Z/p) −→ Hi+1(ΣX;Z/p), Σf ∈ Ak+1
∗ (ΣX; p) = E(ΣX).

By naturality again, we get

f∗ : Hi(X;Z/p)
∼=

−−→ Hi(X;Z/p), ∀i > 0.

Thus f ∈ E(X) by Lemma 3.2 and therefore N∗E(X; p) 6 k = N∗E(ΣX; p)− 1.
If dim(X) 6 2 · conn(X) + 1, by Theorem 1.21 of [7], the suspension map

Σ: [X,X] −→ [ΣX,ΣX]

is a surjection. Suppose that N∗E(X; p) = l and F ∈ A∗
l+1(ΣX; p) such that F =

Σf for some f ∈ [X,X]. Then we have f ∈ A∗
l (X; p) = E(X) and hence F = Σf ∈

E(ΣX). Thus N∗E(ΣX; p) 6 l + 1 = N∗E(X; p) + 1.
2. The proof of 2 is completed after replacing “cohomology” with “homology” in 1

above.

It is easy to get N♯E(CP
n) = N∗E(CP

n) = N∗E(CPn) = 2.

Example 4.2. N♯E(ΣCP
2) = N∗E(ΣCP

2) = N∗E(ΣCP2) = 5.

Proof. Write C5
η = ΣCP2 = S3 ∪η e

5. By Theorems 41, 45 of [13], we have

N♯E(C
5
η) = N∗E(C5

η) = N∗E(C
5
η).

By Section 8 of [1], [C5
η , C

5
η ]

∼= Z〈1η〉 ⊕ Z〈i3ζ̄〉, where 1η is the identity of C5
η ,

i3 : S
3 → C5

η is the canonical inclusion map and ζ̄ ∈ [C5
η , S

3] and ζ̃ ∈ [S5, C5
η ] satisfy

the relations (relations (8.3) and (8.4) of [1]):

ζ̄i3 = 2 · 13, q5ζ̃ = 2 · 15, i3ζ̄ + ζ̃q5 = 2 · 1η, (6)

where 1n is the identity of Sn and q5 : C
5
η → S5 is the canonical quotient map.

Let σn1 be the image of 1 ∈ H0(S
0) under the suspension: H0(S

0)
Σn

−−→
∼=

Hn(S
n).

We have

Hk(C
5
η)

∼=





Z 〈aη〉, k = 3;
Z 〈bη〉, k = 5;

0, otherwise,

where aη = (i3)∗(σ31), bη = (q5)
−1
∗ (σ51). It follows that N∗E(C

5
η) = 3 or 5.

By the relations (6), it is easy to get that

(ζ)∗(aη) = 2 · σ31, (i3ζ)∗(bη) = 0, (ζ̃)∗(σ51) = 2 · bη.

We compute that f = x · 1η + y · inζ ∈ A3
∗(C

5
η) with x, y ∈ Z if and only if x+ 2y =

±1. Note that f = 3 · 1η − i3ζ /∈ E(C5
η): f∗(bη) = 3 · bη, so we get

E(C5
η) = A5

∗(C
5
η) $ A3

∗(C
5
η), N∗E(C

5
η) = 5.

Proposition 4.3. Let p be a prime or p = 0 and X,Y ∈ CWscpft. Then

1. N∗E(X ∨ Y ; p) > max{N∗E(X; p), N∗E(Y ; p)}.
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2. N∗E(X ∧ Y ; p), N∗E(X × Y ; p) > max{N∗E(X; p), N∗E(Y ; p)}.

3. N∗E(Σ(X × Y ); p) > N∗E(Σ(X ∧ Y ); p).

Similar results hold for mod p homology self-closeness numbers.

Proof. 1. Assume that N∗E(X ∨ Y ) = k < max{N∗E(X), N∗E(Y )} = N∗E(X). Sup-
pose f ∈ A∗

k(X; p), g ∈ A∗
k(Y ; p). By the natural isomorphism: Hd(X ∨ Y ;Z/p) ∼=

Hd(X;Z/p)⊕Hd(Y ;Z/p), we have f ∨ g ∈ A∗
k(X ∨ Y ; p) = E(X ∨ Y ). It follows that

f ∈ E(X), g ∈ E(Y ) and hence A∗
k(X) = E(X). Therefore N∗E(X) 6 k = N∗E(X ∨

Y ), which contradicts the assumption.

2.The proof is similar to that of Proposition 46 (2) of [13], using the general
Künneth formula for cohomology with coefficients Z/p.

3. By Proposition 4I.1 of [8], there is a homotopy equivalence:

Σ(X × Y ) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

The inequality then follows from 1 and 2.

Replacing N∗ by N∗ and “cohomology” by the dual “homology”, we get the proof
of the corresponding results for (mod p) homology self-closeness numbers.

Example 4.4. Let n > m > 2. We have

N∗E(Σ(Sm × Sn)) = m+ n+ 1 > N∗E(Sm × Sn) = N∗E(Sm ∨ Sn) = n.

Proof. By Proposition 4.3 we have

m+ n+ 1 > N∗E(Σ(Sm × Sn)) > N∗E(Σ(Sm ∧ Sn)) = m+ n+ 1.

N∗E(Sm × Sn) = N∗E(Sm ∨ Sn) = n follows from Theorem 41, Theorem 45 of [13]
and Proposition 5 of [11]. One can also prove this by applying Theorem 2.10 to the
cofibration:

Sm+n−1
[i1,i2]

Sm ∨ Sn i
Sm × Sn,

where i1 : S
m →֒ Sm ∨ Sn, i2 : S

n →֒ Sm × Sn are the canonical inclusion maps and
[i1, i2] ∈ πm+n−1(S

m ∨ Sn) is their Whitehead product, a generator of a direct sum-
mand Z.

Proposition 4.5. Let p be a prime or p = 0, X ∈ CWsc and let lp : X → Xp be the
localization at p. Then

1. N∗E(X) 6 max
{
N∗E(Xp) | p ∈ {primes, 0}

}
6 H∗- dim(X).

2. N♯E(X) 6 max
{
N♯E(Xp) | p ∈ {primes, 0}

}
6 H∗- dim(X) + 1.

If, in addition, Hn(X) is finitely generated for n = H∗- dim(X), then

max
{
N♯E(Xp) | p ∈ {primes, 0}

}
6 H∗- dim(X).

3. If X is a torsion space (X0 = {∗} or πi(X)⊗Q = 0), then

N�E(X) = max
{
N�E(Xp) | p ∈ {primes}

}
,� = ∗, ♯.

Proof. 1. Suppose that max
{
N∗E(Xp) | p ∈ {primes, 0}

}
= k and f ∈ Ak

∗(X). For
each p ∈ {primes, 0}, by the universal property of localization, there is a unique (up
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to homotopy) map fp : Xp → Xp such that lpf = fplp. Consider the following com-
mutative diagram:

Hi(X)

−⊗Zp

lp∗

f∗

Hi(Xp)
∼=

fp∗

Hi(X)⊗ Zp

f∗⊗Zp

Hi(X)

−⊗Zp

lp∗
Hi(Xp)

∼=
Hi(X)⊗ Zp

Since −⊗ Zp is an exact functor, f ∈ Ak
∗(X) implies that f∗ ⊗ Zp is an isomorphism

for i 6 k and hence fp ∈ Ak
∗(Xp) = E(Xp) for all p. Thus f ∈ A∞

∗ (X) = E(X) and
N∗E(X) 6 k = max

{
N∗E(Xp) | p ∈ {primes, 0}

}
.

For the second “6”, since Hi(Xp) ∼= Hi(X)⊗ Zp for each prime p or p = 0, we
have

N∗E(Xp) 6 H∗- dim(Xp) 6 H∗- dim(X).

2. The proof of the first “6” is similar and the second “6” follows from Theorem 3
of [13].

3. If X is a torsion space, by (5) of [18, page 41], there is a product decomposition:

X = Xp ×
∏

q 6=p

Xq.

Thus N�E(X) > max
{
N�E(Xp) | p ∈ {primes}

}
, by Proposition 4.3 if � = ∗ and by

Theorem 3 of [6] if � = ♯.

Proposition 4.6. Let p be a prime or p = 0 and let X ∈ CWscpft. If the cohomology
ring H∗(X;Z/p) is generated by cohomology classes xi ∈ Hki(X;Z/p) (i = 1, . . . ,m)
with k1 6 · · · 6 km, then N∗E(X; p) 6 km.

Proof. Suppose that f ∈ A∗
km

(X; p). Then the induced ring homomorphism

f∗ : H∗(X;Z/p) −→ H∗(X;Z/p)

is surjective, since all generators xi are in the image. Then in each degree Hi(X;Z/p)
is finitely generated, which implies that the induced epimorphism f∗ : Hi(X;Z/p) →
Hi(X;Z/p) is an isomorphism for all i. Thus f ∈ A∗

∞(X; p) = E(X) by Lemma 3.2.

Lemma 4.7. Let M be a closed simply-connected manifold of dimension 2n. If
f : M → M is a map of degree ±1, then f ∈ E(M) if and only if f ∈ A∗

n(M).

Proof. Suppose that f ∈ A∗
n(M). By 12 Theorem (p. 248) of [17], there is a natural

short exact sequence:

0 −→ Ext(Hi+1(M),Z) −→ Hi(M) −→ Hom(Hi(M),Z) −→ 0.

Hence f ∈ A∗
n(M) implies that f ∈ An−1

∗ (M). Then by the natural Poincáre duality
Hn+i(M) ∼= Hn−i(M) for i = 1, . . . , n, we get f ∈ A∗

2n−1(M). Since deg(f) = ±1,
f∗ : H2n(M) → H2n(M) is an isomorphism and hence f ∈ A∗

2n(M) = E(M).
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We end the paper with a theorem given by Professor Haibao Duan.

Lemma 4.8 (The Hard Lefschetz Theorem). Let M be a simply-connected compact
Kähler manifold of real dimension 2n with the Kähler class d ∈ H2(M,Q). Then the
multiplication

dn−r ∪ − : Hr(M ;Q) −→ H2n−r(M ;Q)

is an isomorphism for 0 6 r 6 n.

Theorem 4.9 (Duan). Let M be a simply-connected compact Kähler manifold with
torsion-free cohomology and H2(M) a cyclic group. Then N∗E(M) = 2.

Proof. Let dim(M) = 2n. We may choose a Kähler class d of M such that (M,d) is
a Kähler manifold with H2(M ;Z) ∼= Z〈d〉. By Lemma 4.7, it suffices to show that a
self-map f of M satisfying f∗(d) = ε · d(ε = ±1) belongs to A∗

n(M).
For each 2 6 r 6 n, since Hr(M) is torsion free, there exist cohomology classes

x1, . . . , xmr
such that Hr(M) ∼=

⊕mr

i=1 Z〈xi〉. Then {xi}
mr

i=1 is also a Q-basis of
Hr(M ;Q). By Lemma 4.8, {dn−rxi}

mr

i=1 is a basis of H2n−r(M ;Q). There are rela-
tions:

dn−rxixj = aijd
n, aij ∈ Q, 1 6 i, j 6 mr.

Then A = (aij)mr×mr
is a non-singular matrix by the Poincáre duality.

Let f∗(xi) =
∑mr

k=1 bikxk and put Br = (bij) ∈ Mmr
(Z). Applying the ring homo-

morphism f∗ to the above relations, we have

εn−rdn−r(

mr∑

k=1

bikxk)(

mr∑

k=1

bjkxk) = aijε
ndn.

Let BT
r denote the transpose of Br. Then we get an equality of matrices:

εn−rBrABT
r = εnA.

The non-singularity of A then implies that det(Br)
2 = εrmr = 1. Thus Br is non-

singular and therefore f ∈ A∗
n(M).

Example 4.10. Let n 6 m < ∞, Gn(Cm) be the Grassmannian of n-dimension vector
subspaces of Cm. By 4.10 Example of [5], Gn(Cm) is a Kähler manifold and by
Chapters 6, 14 of [10], Gn(Cm) satisfies the other conditions in Theorem 4.9. Thus
N∗(Gn(Cm)) = 2.
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