
Journal of Blockchain Research Volume 1 (2022) 19–27

Scalable and secure crowdsourcing atop

blockchain via off-chain payment

Anxin Zhou, Cong Wang, and Xiaohua Jia
∗

Blockchain facilitates atomic exchange by serving as a
decentralized coordinator. It recently has been applied to
crowdsourcing for settling the payment between the mu-
tually untrusted data collector and data providers. How-
ever, this is still not practical due to the blockchain’s poor
performance. This paper presents a crowdsourcing system
that uses the blockchain in a secure and scalable fashion.
A crowdsourcing task can involve an unlimited number of
data providers but with a constant transaction cost. For this
purpose, we design an off-chain payment system based on
trusted hardware. In this way, the data collector can use off-
chain payment for crowdsourcing, and the blockchain mainly
performs lightweight verification to ensure honest payment.
We implement and evaluate an application of text data col-
lection. The evaluation shows the desirable performance.

Keywords and phrases: Blockchain, Off-chain payment,
Crowdsourcing, Trusted hardware.

1. INTRODUCTION
Crowdsourcing is a common approach for data collection.

A data collector can solicit data from many different sources.
A known problem in crowdsourcing is false reporting and
free riding [12]. If the data collector receives data before pay-
ment, it may pay less or even reject payment. Conversely,
if the data collector pays first, data providers may submit
low-quality data or even reject that. In practice, this con-
flict is handled by a crowdsourcing platform [17, 18] that is
trusted to deliver the right data and payments.

However, such centralized trust is not always reliable. In-
cidents such as in-house misbehavior [11] and bias in re-
solving disputes [12] are still occurring. Recent works (e.g.,
[11, 12]) instead use the blockchain to settle payment and
thus makes the trust spread out. However, this meanwhile
hurts scalability. Blockchains such as Ethereum and Bitcoin
still have low throughput and high transaction fees. It is not
practical to heavily use a blockchain for crowdsourcing.

This paper presents a crowdsourcing system that uses the
blockchain to settle payment in a secure and scalable fash-
ion. A crowdsourcing task can involve an unlimited number
of data providers but with a constant transaction cost. Our
∗Corresponding author.

idea is to use off-chain payment [3, 8]. An untrusted server,
which could be a crowdsourcing platform, helps collect en-
crypted data from data providers. The data collector makes
payments with the off-chain funds that can later be trans-
ferred to the blockchain. The blockchain verifies the off-chain
payment and punishes a dishonest data collector.

Unfortunately, existing off-chain payment systems do not
consider the payment verification for a blockchain applica-
tion. Thus, we design a new one based on the popular com-
modity hardware, Intel SGX [2], which allows creating a pro-
tected memory region, called enclave. The untrusted server
is required to use an enclave program to manage off-chain
funds. The enclave ensures that these funds can only be up-
dated by the prescribed operations. It can also provide an
attestation for the blockchain to verify off-chain payment.

The remaining challenge is to support secure persistent
storage for off-chain balance. The enclave only has volatile
memory. Although the bulletin sealing mechanism can per-
sist the balance outside the enclave with integrity protec-
tion, this mechanism is vulnerable to rollback attacks [13].
An enclave cannot know whether the sealed balance are lat-
est or not. This allows the untrusted server to spend the
same funds twice. To address this issue, we follow the idea
in [8] and use the blockchain to decide if an update on the
balance can be accepted. The blockchain tracks the latest
balance and will reject an update on an old version.

We implement an application for a data collector to col-
lect text data. We use the state-of-the-art unsupervised al-
gorithm, TextTruth [22], to guarantee the data quality. We
implement TextTruth as an enclave program so that the
untrusted server can help evaluate data quality but with-
out seeing plaintext data. According to the evaluation on
our local Ethereum testnet and a commodity PC, a crowd-
sourcing task has a gas cost of 275.1k, about 13x of the mini-
mum transaction cost 21k on Ethereum. Off-chain payment
has a throughput of 9k/s, which outperforms Ethereum’s
throughput that is about 15/s.

In summary, we make the following contributions.

• We design a blockchain-based crowdsourcing system
that can settle the payment in crowdsourcing with a
constant transaction cost.

• We design an off-chain payment system that allows the
payment verification for a blockchain application.

• We implement and evaluate an application of text data
collection.

https://www.intlpress.com/site/pub/pages/journals/items/jbr/_home/_main/index.php

The remainder of this paper is organized as follows. Sec-
tion 2 formulates our problem. Section 3 introduces SGX
enclaves. Section 4 presents the off-chain payment system.
Section 5 presents the crowdsourcing system. Section 6 de-
scribes the application of text data collection. Section 8 dis-
cusses related work. Section 9 discusses our work. Section 10
concludes this paper.

2. PROBLEM FORMULATION

2.1 System model
The data collector is the entity that posts a crowdsourc-

ing task to request data and make off-chain payments. Data
providers are the entities that provide data to the task for
receiving payments. The enclave server is the entity that
provides crowdsourcing and off-chain payment services. The
blockchain supports smart contracts for verifying payment
and punishing a dishonest data collector.

Fig. 1 shows the crowdsourcing workflow. Data providers
first submit encrypted data to the server, which notifies the
blockchain about the amount that the data collector should
pay. Then the data collector makes off-chain payments, and
the blockchain verifies the payment. Finally, the server sends
the encrypted data to the data collector.

Figure 1. Crowdsourcing system.

2.2 Threat model
The data collector is rational and will pay honestly if the

blockchain can punish incorrect payment.
Data providers may submit low-quality data to cheat for

payments. This assumption could be adjusted based on how
to detect low-quality data. For example, in a truth discovery
algorithm [22], some data providers need to be reliable.

The server is a covert adversary that will not misbehave
if its operations are verifiable. The server may be a crowd-
sourcing platform that aims for best services but may mis-
behave covertly. As in [5, 14], we also assume that the server
will not collude with the data collector. Otherwise, the data
collector could receive data without making payments.

The enclave and blockchain are trusted for their function-
alities. Similar to many enclave applications [4], we do not
consider side-channel attacks.

2.3 Problem definition

Our first goal is to design a crowdsourcing system where
a data collector can post a task to request data, and data
providers can submit data to receive payments. The system
should satisfy:

Atomicity: A task succeeds if the data collector receives
data, and data providers receive payments. A task fails
if neither occurs.

Scalability: A task has a constant transaction cost.
Confidentiality: Only the data collector can receive plain-

text data.

Our second goal is to design an off-chain payment system
where a user can transfer on-chain funds to its off-chain
account for payment and transfer the off-chain funds back
on demand. The system should satisfy:

Integrity: Only the prescribed operations that manage the
funds can take effect.

Atomicity: An operation either succeeds according to its
specification or fails without changing the funds.

Verifiability: The blockchain can verify off-chain payment.

3. BACKGROUND

SGX [2] is an instruction set built into some Intel CPUs,
which allows an enclave program to define protected regions
of memory called enclaves, and only allows the enclave pro-
gram to access the code and data inside an enclave.

Remote attestation and abstraction. SGX provides remote
attestation for users to verify that an enclave program is cor-
rectly running on an untrusted server. The enclave program
first generates a report containing the enclave identity and
the application data (digest) that can specify the program
outputs to be attested. Next, the quote enclave (provided by
Intel) on the same server converts the report to an attesta-
tion. Finally, the users or the server can send the attestation
to Intel Attestation Service (IAS), which checks the attes-
tation and returns a report that is publicly verifiable.

To avoid frequent contact with IAS, as in [21], an en-
clave program can generate a key pair of a digital signature
scheme and run the remote attestation once to attest the
public key. The enclave program later uses its signature to
attest execution.

Motivated by [15], we abstract the above remote attesta-
tion procedure as Σatt = (Attest,Verify):

• Σatt.Attest(eid, fid, outps) → σatt. The algorithm attests
the outputs of an enclave function.

• Σatt.Verify(eid, fid, outps, σatt) → 0/1. The algorithm
verifies the attestation of the function outputs.

In the remaining part of this paper, we will omit the enclave
identity and function identity for simplicity.

20 A. Zhou, C. Wang, and X. Jia

Data persistence and deficiency. Due to the volatile en-
clave memory, the data inside an enclave may get lost for
many reasons (e.g., a power outage). To support secure per-
sistent storage, SGX allows an enclave to seal data outside
the enclave, and only the enclave or enclave author (in some
design) can retrieve the sealed data.

However, the sealing mechanism is vulnerable to rollback
attacks [13]. The enclave program cannot know whether the
sealed data is the latest after a restart. Although an enclave
can use the bulletin hardware counters to track versions, this
mechanism still has performance and security issues [13].

4. OFF-CHAIN PAYMENT SYSTEM

4.1 Overview
A user of the system can request the server to execute

three operations. The two operations, On2Off and Off2On,
allow a user to transfer funds between its on-chain and off-
chain accounts. The other operation Pay allows making pay-
ments with off-chain funds.

Fig. 2 shows the workflow. The user first issues a request
to execute an operation. Then the enclave server updates the
off-chain balance and commits the update on the blockchain.
If the current operation is On2Off or Off2On, the blockchain
also updates the on-chain balance.

Figure 2. Off-chain payment system. Note that off-chain
payment does not include Step 4*.

In the above workflow, the server is required to commit
the off-chain update on the blockchain so that the enclave
program can securely persist off-chain balance outside the
enclave. In this way, the server cannot replay an old version
of the balance because the blockchain can check the version
before accepting the update.

For checking the version, the blockchain will checkpoint
the off-chain balance. In more detail, the enclave program
will record the off-chain balance in a ledger L (e.g., Merkle
tree) and use the ledger digest H(L) as a checkpoint. (H is a
hash function). In normal cases, the blockchain and enclave
program will agree on the same digest. So, if the server uses
an old version of the balance, the blockchain can detect that
due to the different digest.

In the following, we will present the design of the oper-
ations (Fig. 3), where the server uses the enclave program

(Fig. 4) to update the off-chain balance and uses the smart
contract (Fig. 5) to commit off-chain updates and update
the on-chain balance. We only consider one user for simplic-
ity. It is easy to extend our design to many users.

4.2 Off-chain payment
A user can issue a request reqpay = {(toAcnti, amnti)

k
i=1,

fromAcnt, msg}, to transfer the amount amnti from the ac-
count fromAcnt to the account toAcnti. The message msg
could be used in crowdsourcing for a data collector to spec-
ify which task to pay. Here we assume the request has been
signed by the account fromAcnt.

Update off-chain balance. In this step, the server calls
the enclave function Pay to update the off-chain balance.
The function transfers the amount amnti from the account
fromAcnt to the account toAcnti and returns the attesta-
tion σpay that attests {H(Lold),H(Lnew),H(reqpay)}. The two
digests, H(Lold) and H(Lold), are the digests before and af-
ter the off-chain update. The digest H(Lold) will be used to
verify that the current update uses the correct ledger. The
digest H(Lnew) will be used to verify the next update.

Commit off-chain update. In this step, the server invokes
the smart contract function CmtPay, which will do some
checks before committing the off-chain update. The func-
tion first checks the attestation σatt to ensure that the func-
tion inputs are from the enclave program. Then the function
checks if the digest H(Lold) is already on-chain to ensure
that the off-chain update uses the correct ledger. Finally,
the function stores {H(Lnew),H(reqpay)} on the blockchain.
The digest H(Lnew) will be used to verify the next off-chain
update. The digest H(reqpay) allows one (e.g., the user or
the blockchain in the crowdsourcing system) to verify the
corresponding payment.

4.3 On2Off/Off2On transfer
We only present the design of the operation Off2On

because the two operations are similar. A user can issue
a request reqf2n = {offAcnt, onAcnt, amnt} to transfer the
amount amnt from the off-chain account offAcnt to the on-
chain account onAcnt. Here we assume the request has been
signed by the account offAcnt. We only consider one transfer
in this request since it is trivial to batch many transfers.

Update off-chain balance. In this step, the server calls
the enclave function F2N to update off-chain balance.
The function debits the amount amnt from the ac-
count offAcnt and returns the attestation σf2n that attests
{H(Lold),H(Lnew),H(reqf2n)}.As in the operation Pay, the di-
gest H(Lold) will be used to verify that the current off-chain
update uses the correct ledger, and the digest H(Lnew) will
be used to verify the next update.

Commit off-chain update & Update off-chain balance. In
this step, the server invokes the smart contract function
CmtF2N, which will do some checks before committing

Scalable and secure crowdsourcing atop blockchain via off-chain payment 21

Figure 3. Operation Pay, On2Off, and Off2On in off-chain payment system.

Figure 4. Enclave program in off-chain payment system.

the off-chain update and updating the on-chain balance.
As in the operation Pay, the function checks the attes-
tation σf2n to ensure that the function inputs are from
the enclave program; and checks that the digest H(Lold)
has been stored on the blockchain to ensure that the off-
chain update uses the correct ledger. Finally, the function
stores {H(Lnew),H(reqf2n)} on the blockchain and credits the
amount amnt to the account onAcnt.

Note that the operation On2Off still has a potential issue.
This is because the off-chain update is before the on-chain
update. The operation could fail if the user consumes its on-
chain balance before the on-chain update starts. This does
not affect the security of our design because, in this case,

Figure 5. Smart contract in off-chain payment system.

the blockchain will not accept the off-chain update. When
this issue becomes a concern, the operation may start with
locking the on-chain balance.

4.4 Analysis
It is easy to see our system satisfies verifiability ($2.2). We

argue that the system also satisfies integrity and atomicity.
The system achieves integrity because only the smart con-

tract and enclave program can update the on-chain and off-
chain balance. Although the server can replay a stale ledger
to the enclave program, this will not take effect because the
blockchain can verify that with the ledger digest.

To see how the system achieves atomicity, we analyze the
possible results of an operation. In the system, an operation
will first be executed by the enclave program and then the
smart contract. The part executed by the enclave program
will not take effect unless it is committed on the blockchain.
In this case, the smart contract will finish the remaining

22 A. Zhou, C. Wang, and X. Jia

part of the execution. If the execution can be finished, the
operation succeeds. Otherwise, the operation fails without
changing the on-chain or off-chain funds.

5. CROWDSOURCING SYSTEM

5.1 Overview
To settle the payment in crowdsourcing efficiently, our

idea is to use off-chain payment. The data collector makes
payments with off-chain funds. A rationale data collector
will behave honestly because the blockchain can verify that
and punish dishonest payment.

As shown in the previous section, the off-chain payment
system allows the blockchain to verify payment by checking
the corresponding request’s digest H(reqpay) is on-chain. The
blockchain still needs to know the correct request to be used
for crowdsourcing. In other words, it should know how much
the data collector should pay each data provider.

An intuitive solution is to let data providers submit data
to the blockchain so that the blockchain can compute the
amount to pay each data provider. However, this breaks
confidentiality because the blockchain is transparent. This
is also not scalable because the transaction cost is linear
with the number of data providers.

Instead, we let the server receive encrypted data from
data providers, compute the payment amount via the en-
clave program, and stores on the blockchain a digest about
the payment amount. The blockchain can verify that with
the enclave’s attestation. In this way, the confidentiality is
preserved, and the transaction cost becomes constant.

Note that for simplicity, we omit the details about punish-
ing dishonest payment. In practice, the data collector may
be required to deposit collateral on the blockchain. In case
of dishonest payment, the collateral may be used to com-
pensate data providers.

5.2 Design details
The following describes the design of the crowdsourcing

procedures (Fig. 6), where the enclave program (Fig. 7) is
used to compute the payment amount, and the smart con-
tract (Fig. 8) is used to verify the payment.

Post task. The data collector calls the smart contract
function PostTask to set up the task on the blockchain.
The function stores on the blockchain the task information
taskInfo = {pkc, cAcnt, budget, ∗}. The public key pkc is to
disclose encrypted data after crowdsourcing. The account
cAcnt is for off-chain payment. The budget is the amount
that the data collector is willing to pay. The symbol ∗ de-
notes other application-specific data.

Submit data. Data providers send to the server
{data, pAcnts}, where pAcnts are the accounts to re-
ceive payments. We assume that before {data, pAcnts} is
sent out, it is already encrypted and authenticated by the
secret key shared with the enclave program. This could be
implemented by remote attestation and key exchange [15].

Compute payment amount. The server first calls the en-
clave function CmptPayAmnt. We assume the server will use
the correct taskInfo as the function input because before
submitting data, data providers can verify that via remote
attestation. This assumption prevents the server from using
its own public key in taskInfo to decrypt the output datact
that is supposed to be decrypted only by the data collector.

The enclave function first uses a data valuation algorithm
ValuateData(data, pAcnts, budget) → (pAcnti, amnti)

k
i=1 to

filter out low-quality data and compute the amount amnti
that the data collector should transfer to the account
pAcnti. This algorithm could be customized by the data
collector before crowdsourcing. The function finally outputs

Figure 6. Crowdsourcing procedures.

Scalable and secure crowdsourcing atop blockchain via off-chain payment 23

Figure 7. Enclave program in crowdsourcing system.

Figure 8. Smart contract in crowdsourcing system.

{reqpay, datact, σatt}. The request reqpay is based on the above
payment amount and will be used for the data collector to
make off-chain payments. The ciphertext datact is encrypted
with the public key pkc of the data collector.

Then the server calls the smart contract function
SubmPayAmnt. The function first verifies the attestation
σatt to ensure that function inputs are from the en-
clave program. Then the function stores the two di-
gests {H(reqpay),H(datact)} on the blockchain. The digest
H(reqpay) will be used to verify the off-chain payment. The
digest H(datact) will be used for the data collector to verify
the data received from the server.

Make off-chain payments. The server sends the request
reqpay to the data collector, which verifies the request by
checking that the digest H(reqpay) is on-chain.

The data collector then makes off-chain payments with
the request reqpay and calls the smart contract function
VerifyPay, which verifies the payment by checking that the
digest H(reqpay) is already in the smart contract of the off-
chain payment system. Note that the digest H(reqpay) stored

in the previous procedure only belongs to the smart contract
of the crowdsourcing system. Although it is feasible to use
the same smart contract, this will limit the application scope
of the off-chain payment system.

Finally, the server sends the ciphertext datact to the data
collector, which verifies the ciphertext by checking that
H(datact) is on-chain. The data collector can decrypt the
ciphertext datact with its public key pkc.

5.3 Analysis

It is easy to verify that the system achieves confidential-
ity and scalability ($2.2). We argue that the system also
achieves atomicity.

If the data collector does not make honest payments, it
cannot receive data from the server because, by assumption,
the server will not collude with the data collector. On the
other hand, after the data collector makes payments, it will
receive the correct data from the server because, by assump-
tion, the server is a covert adversary that will not misbehave
when its operations are verifiable. So, we only need to show
that the server can verify the payment, and the data collec-
tor can verify the data.

The server can know that after the data collector com-
pletes the smart contract function VerifyPay. The data col-
lector can know that after the server puts H(datact) on the
blockchain with the smart contract function SubmPayAmnt.

6. TEXT DATA COLLECTION

Many works [14, 23] have studied crowdsourcing with pri-
vacy protection and quality assurance. But they treat text
data equally as numerical data, making the quality eval-
uation less effective [22]. On the other hand, the quality
evaluation algorithm [22] dedicated to text data is often
too complex to be made privacy-preserving by crypto-based
approaches. This motivate us to implement an application
of text data collection based on our crowdsourcing system,
where the quality of text data is evaluated inside the enclave
so as to achieve both privacy and efficiency.

We adopt the state-of-the-art unsupervised algorithm
TextTruth [22] to evaluate the quality of text data. In the
context of TextTruth, a crowdsourcing task consists of many
text questions, such as “What are the symptoms of flu?”.
TextTruth somehow uses the majority to decide if an an-
swer is reliable, so each text question will be answered by
multiple data providers.

In our work, we use TextTruth to implement the data
valuation algorithm ValudateData. Based on the data qual-
ity from TextTruth, we allocate the payment amount to
each data provider proportionally; we regard it as an in-
dependent interest to use a different incentive mechanism.
To make TextTruth more efficient, we adopt the suggestion
in its paper and set the concentration parameter of the vMF
distribution to ∞ as in [16].

24 A. Zhou, C. Wang, and X. Jia

7. EVALUATION

7.1 Methodology
In the crowdsourcing system and off-chain payment sys-

tem, the smart contracts and enclave programs play a key
role. Thus, we aim to answer the following questions:

• What are the transaction fee and maximum throughput
of each smart contract function?

• What is the throughput of each enclave function?

Here we target the maximum throughput of each smart con-
tract function because in practice there could be other ap-
plications using the same blockchain.

For Ethereum, the transaction fee of a smart contract
function is computed from the gas cost, which in turn is
computed according to the low-level opcodes used by the
function. Specifically, the transaction fee is computed by:

Tx fee = Gas cost ∗ Gas price ∗ ETH price

The maximum throughput is estimated by:

Max tx/s =
Block gas limit

Gas cost ∗ Block time

We will use the average gas price of 9.1 * 10−8, ETH price
of $2868.5, block gas limit of 30M, and block time of 13.2s
as per February, 2022 [19].

To evaluate the throughput of the enclave function
CmptPayAmnt that relies on TextTruth, we synthesize a
dataset as follows. Each data provider submits a 10-keyword
answer to each question. Each keyword is a word vector of
length 100 and is randomly generated.

The smart contracts are implemented with solidity 0.5.2
and tested on our local Ethereum testnet. The enclave pro-
grams are implemented with C++ and Intel SGX SDK v2.11
and tested on a PC equipped with Intel i7-9700K @ 3.60GHz
CPU, 16GB RAM, and Ubuntu 18.04 LTS. The ledger in the
off-chain payment system is implemented as a Merkle tree.
The hash function is implemented as SHA-256.

7.2 Crowdsourcing system
Smart contract. Table 1 shows the performance of
each smart contract function in the crowdsourcing sys-
tem, including the function PostTask, SubmPayAmnt, and

Table 1. Performance of smart contract functions

Function Gas cost Tx fee Max tx/s
PostTask 129.4k $33.8 17.6
SubmPayAmnt 75.9k $19.8 29.9
VerifyPay 21.8k $5.7 104.3
CmtN2F/CmtF2N 69.8k $18.2 32.6
CmtPay 48.0k $12.5 47.3
Note that the minimum gas cost of a transaction is 21k on Ethereum.

VerifyPay. Based on the result, we can estimate the trans-
action fee of a crowdsourcing task. In a task, each above
function will be called once. Besides, the function CmtPay
will be used once to make off-chain payments. In total, a
task has a gas cost of 275.1k, which is about 13x of the min-
imum gas cost 21k of a transaction. However, a task still
has a high transaction fee of $71.8 due to the high price
of ETH. We regard it as an independent interest to use a
cheaper blockchain to reduce the transaction fee.

Enclave program. Table 2 shows the execution time of the
enclave function CmptPayAmnt. The main part of this func-
tion is TextTruth, which has a time complexity linear with
the number of questions or data providers. When the num-
ber of providers is 50, the function could process questions
at a speed of 230/s, which is enough for many crowdsourc-
ing tasks. When this throughput becomes a concern, one
may optimize our implementation or use a more efficient
algorithm to evaluate the quality of text data.

Table 2. Execution time of enclave function CmptPayAmnt

#Providers = 50 #Questions 1000 2000 3000 4000
Exec. time 4.3s 9.0s 13.0s 16.8s

#Questions = 50 #Providers 300 900 1500 2100
Exec. time 1.6s 4.4s 7.4s 9.7s

7.3 Off-chain payment system

Smart contract. Table 1 shows the performance of each
smart contract function in the off-chain payment system,
including the function CmtN2F/CmtF2N and CmtPay. The
result suggests that the On2Off/Off2On operation is ineffi-
cient because every operation needs a transaction. Although
it is also true for the operation Pay, a user can make an lim-
ited number of payments in one operation. This could be
further improved by extending our design to multiple users.

To improve the operation On2Off/Off2On, we study the
impact of batching, that is, let one function process multi-
ple requests. We evaluate the performance of the function
under different batch sizes. Fig. 9(a)-9(c) suggests that a
large batch size can reduce the total gas cost and the aver-
age transaction fee for requests and increase the maximum
throughput of processing requests. In more detail, batching
could reduce ≈70% total gas cost and average transaction
fee and increase 2.4x maximum throughput. Batching can
take effect because every transaction on Ethereum has the
minimal gas cost of 21k. This also implies the effect of batch-
ing is limited since it cannot avoid the other gas cost.

Enclave program. Fig. 9(d) shows the execution time of
the enclave function Pay and N2F/F2N. Both the functions
have a time complexity that is linear with the number of
requests. Their throughput is 9k/s and 18k/s respectively.

Scalable and secure crowdsourcing atop blockchain via off-chain payment 25

Figure 9. (a)-(c): Performance of smart contract function CmtN2F. (d): Performance of enclave function Pay and N2F/F2N.

Although the function N2F/F2N has a relative good per-
formance, the operation On2Off/Off2On may still be inef-
ficient, because the complexity of the smart contract func-
tion CmtN2F/CmtF2N is linear with the number of requests.
Thus, to utilize the system, it is better for users to keep us-
ing off-chain payments.

8. RELATED WORK
Many works [11, 12] have used the blockchain for crowd-

sourcing, while few of them consider the scalability issue.
NF-Crowd [10] is among the first to make the transaction
cost constant. However, it is only applicable to specific tasks,
where only a few data providers will receive payment. Be-
sides, it relies on voting for quality evaluation while we allow
the algorithm to be customized.

Existing off-chain payment systems could be categorized
based on how off-chain payment is committed. The first
kinds of works, payment channels [3] and ZK-rollups [1],
need to submit the payment result to the blockchain. The
transaction cost is linear with the number of data providers,
thus not suitable for our purpose.

The second kinds of works, commit-chains [6, 8], commit
off-chain payment with checkpoints. Khalil et al. [8] submit
to the blockchain only the digest of the payment result. The
transaction cost thus becomes constant. CommiTEE [6] uti-
lizes enclaves and makes checkpoints off-chain. It requires no
transactions to commit payment. However, commit-chains
also come at a price. The users rely on a malicious server
to manage off-chain funds. In case the server misbehaves,
each user needs to be periodically online to ask the server
for the off-chain balance and the proof regarding the latest
checkpoint. In our scenario, the server is only a covert adver-
sary. Thus, our off-chain payment system removes the above
overhead for the users. Besides, we also allow the payment
verification for a blockchain application, and compared to
CommiTEE that also use enclaves, we also support secure
persistent storage for off-chain balance.

The last kinds of works, side-chains (e.g., [7, 20]), have a
trusted majority to manage off-chain funds. This avoids the
transaction cost to commit off-chain payment on the (main)
blockchain. We do not consider these works since they rely
on more entities and a trusted majority.

9. DISCUSSION

Issues caused by stronger adversaries. Our design could fail
if the adversaries are more powerful than in our threat model
($2.2). In the crowdsourcing system, if the data collector
can collude with the server, it may receive data without
making payments. If the server can deny services, the data
collector may not be able to receive data after payment. For
the off-chain payment system, if the server can deny services,
the users may not be able to spend their off-chain funds or
transfer the funds to the blockchain.

Comparison to (de)centralized crowdsourcing. Compared
to fully decentralized crowdsourcing systems [11, 12], as a
trade-off for scalability, our crowdsourcing system relies on
an off-chain server. If the server is a more stronger adversary
than in our threat model ($2.2), there may be issues as dis-
cussed above. Despite that, the server is still less powerful
than in centralized crowdsourcing systems [17, 18]. Under
our threat model, the server can only see encrypted data
and cannot influence the atomic exchange between the data
collector and data providers.

Alternative trusted hardware. Although our work focuses
on SGX, other trusted hardware such as Keystone [9] that
supports remote attestation is also applicable.

10. CONCLUSION

This paper presents a crowdsourcing system that can set-
tle the payment in crowdsourcing with a constant transac-
tion cost, and presents an enclave-based off-chain payment
system that allows the payment verification for a blockchain
application. The crowdsourcing system may inspire other
blockchain applications to reduce the transaction cost. The
off-chain payment system may have its independent use.

ACKNOWLEDGEMENTS

This work was supported by the RGC of Hong Kong un-
der Grant CityU 11213920, 11217819, 11217620, 11218521,
N_CityU139/21, RFS2122-1S04, and R6021-20F, by the

26 A. Zhou, C. Wang, and X. Jia

NSFC under Grant 61572412, and by Shenzhen Municipal-
ity Science and Technology Innovation Commission (grant
no. SGDX20201103093004019, CityU).

Received 13 October 2021

REFERENCES
[1] Buterin, V. On-chain scaling to potentially 500 tx/sec through

mass tx validation. https://ethresear.ch/t/on-chain-scalingto-
potentially-500-tx-sec-through-mass-tx-validation/3477. Ac-
cessed 30/03/2022.

[2] Costan, V. and Devadas, S. (2016). Intel SGX Explained.
IACR Cryptol. ePrint Arch. 2016 1–118.

[3] Decker, C. and Wattenhofer, R. (2015). A fast and scalable
payment network with bitcoin duplex micropayment channels. In
Proc. of SSS. MR3420253

[4] Duan, H., Wang, C., Yuan, X., Zhou, Y., Wang, Q. and
Ren, K. (2019). Lightbox: Full-stack protected stateful middle-
box at lightning speed. In Proc. of ACM CCS.

[5] Duan, H., Zheng, Y., Du, Y., Zhou, A., Wang, C. and
Au, M. H. (2019). Aggregating Crowd Wisdom via Blockchain:
A Private, Correct, and Robust Realization. In Proc. of IEEE
PerCom.

[6] Erwig, A., Faust, S., Riahi, S. and Stöckert, T. (2020). Com-
miTEE: An Efficient and Secure Commit-Chain Protocol using
TEEs. IACR Cryptol. ePrint Arch. 2020 1486.

[7] Gaži, P., Kiayias, A. and Zindros, D. (2019). Proof-of-stake
sidechains. In Proc. of IEEE S&P.

[8] Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P.

and Gervais, A. (2018). Commit-Chains: Secure, Scalable Off-
Chain Payments. Cryptology ePrint Archive, Report 2018/642.
https://eprint.iacr.org/2018/642.

[9] Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K. and
Song, D. (2020). Keystone: An open framework for architecting
trusted execution environments. In Proc. of ACM EuroSys.

[10] Li, C., Palanisamy, B., Xu, R., Wang, J. and Liu, J. (2020).
NF-Crowd: Nearly-free Blockchain-based Crowdsourcing. In Proc.
of IEEE SRDS.

[11] Lu, Y., Tang, Q. and Wang, G. (2018). ZebraLancer: Private
and Anonymous Crowdsourcing System atop Open Blockchain.
In Proc. of IEEE ICDCS.

[12] Lu, Y., Tang, Q. and Wang, G. (2020). Dragoon: Private De-
centralized HITs Made Practical. In Proc. of IEEE ICDCS.

[13] Matetic, S., Ahmed, M., Kostiainen, K., Dhar, A., Som-

mer, D., Gervais, A., Juels, A. and Capkun, S. (2017).

ROTE: Rollback protection for trusted execution. In Proc. of
USENIX Security.

[14] Miao, C., Su, L., Jiang, W., Li, Y. and Tian, M. (2017).
A lightweight privacy-preserving truth discovery framework for
mobile crowd sensing systems. In Proc. of IEEE INFOCOM.

[15] Pass, R., Shi, E. and Tramer, F. (2017). Formal abstrac-
tions for attested execution secure processors. In Proc. of EU-
ROCRYPT. MR3652106

[16] Straub, J., Campbell, T., How, J. P. and Fisher, J. W.

(2015). Small-variance nonparametric clustering on the hyper-
sphere. In Proc. of IEEE CVPR.

[17] Appen. https://appen.com/. Accessed 30/03/2022.
[18] Amazon Mechanical Turk. https://www.mturk.com/. Accessed

30/03/2022.
[19] Etherscan. https://etherscan.io/. Accessed 30/03/2022.
[20] Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Ger-

vais, A. and Knottenbelt, W. (2019). Xclaim: Trustless, inter-
operable, cryptocurrency-backed assets. In Proc. of IEEE S&P.

[21] Zhang, F., Cecchetti, E., Croman, K., Juels, A. and Shi, E.

(2016). Town crier: An authenticated data feed for smart con-
tracts. In Proc. of ACM CCS.

[22] Zhang, H., Li, Y., Ma, F., Gao, J. and Su, L. (2018). Text-
truth: an unsupervised approach to discover trustworthy informa-
tion from multi-sourced text data. In Proc. of ACM SIGKDD.

[23] Zheng, Y., Duan, H., Yuan, X. and Wang, C. (2017). Privacy-
aware and efficient mobile crowdsensing with truth discovery.
IEEE TDSC.

Anxin Zhou
City University of Hong Kong, Hong Kong
City University of Hong Kong Shenzhen Research Institute,
China
E-mail address: anxin.zhou@my.cityu.edu.hk

Cong Wang
City University of Hong Kong, Hong Kong
City University of Hong Kong Shenzhen Research Institute,
China
E-mail address: congwang@cityu.edu.hk

Xiaohua Jia
City University of Hong Kong, Hong Kong
E-mail address: csjia@cityu.edu.hk

Scalable and secure crowdsourcing atop blockchain via off-chain payment 27

https://ethresear.ch/t/on-chain-scalingto-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scalingto-potentially-500-tx-sec-through-mass-tx-validation/3477
http://www.ams.org/mathscinet-getitem?mr=3420253
https://eprint.iacr.org/2018/642
http://www.ams.org/mathscinet-getitem?mr=3652106
 https://appen.com/
https://www.mturk.com/
https://etherscan.io/
mailto:anxin.zhou@my.cityu.edu.hk
mailto:congwang@cityu.edu.hk
mailto:csjia@cityu.edu.hk

	Introduction
	Problem formulation
	System model
	Threat model
	Problem definition

	Background
	Off-chain payment system
	Overview
	Off-chain payment
	On2Off/Off2On transfer
	Analysis

	Crowdsourcing system
	Overview
	Design details
	Analysis

	Text data collection
	Evaluation
	Methodology
	Crowdsourcing system
	Off-chain payment system

	Related work
	Discussion
	Conclusion
	Acknowledgements
	References
	Authors' addresses

