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Extremal binary matrices without constant
2-squares

Roland Bacher and Shalom Eliahou

In this paper we solve, by computational means, an open problem
of Erickson: denoting [n] = {1, . . . , n}, what is the smallest integer
n0 such that, for every n ≥ n0 and every 2-coloring of the grid
[n] × [n], there is a constant 2-square, i.e. a 2 × 2 subgrid S =
{i, i+ t}×{j, j + t} whose four points are colored the same? It has
been shown recently that 13 ≤ n0 ≤ min(W (2, 8), 5 · 2240

), where
W (2, 8) is the still unknown 8th classical van der Waerden number.
We obtain here the exact value n0 = 15. In the process we display
2-colorings of [13] × Z and [14] × [14] without constant 2-squares,
and show that this is best possible.

AMS 2010 subject classification: 05D10, 11B75.

1. Introduction

For a positive integer n, denote [n] = {1, . . . , n}. In his lovely book, Martin
J. Erickson posed the following problem [9, p. 36].

Open Problem 4. Find the minimum n such that if the n2 lattice points
of [n] × [n] are two-colored, there exist four points of one color lying on the
vertices of a square with sides parallel to the coordinate axes.

The author further hints in Exercise 4.24 of [9, p. 70] that the least such
n satisfies n ≤ 9(281 + 1)(2(281+1)2 + 1).

Let us slightly rephrase the problem. A 2-square in the grid [n] × [n] is
a 2 × 2 subgrid of the form

S = {i, i + t} × {j, j + t}

for some index t ≥ 1. It follows from a theorem of Gallai (see Section 5.2)
that if n is large enough, then for any 2-coloring

c : [n] × [n] → {0, 1},
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the grid [n] × [n] must contain a monochromatic 2-square, i.e. whose four
points are all colored 0 or 1 under c. The smallest integer n for which this
occurs is denoted R2(S) in [2]. In that paper, it is shown that

13 ≤ R2(S) ≤ min(W (2, 8), 5 · 2240
),

where W (2, l) is the classical lth van der Waerden number. Recall that
W (k, l) is the smallest m ≥ 1 for which any k-coloring of [m] contains a
monochromatic subsequence forming an arithmetic progression of length l.

Perhaps surprisingly in view of such bounds, in this paper we solve
Erickson’s problem by computer and obtain the exact value

R2(S) = 15.

The situation may be compared to that of van der Waerden numbers.
The best known general upper bound for W (2, l), due to Gowers [10], is

W (2, l) ≤ 2222
2l+9

.

However, the actual values of W (2, l) for 3 ≤ l ≤ 6, namely 9, 35, 178 and
1132, respectively, are much smaller than that. The value W (2, 6) = 1132
has been obtained recently by clever reductions and massive parallel com-
putations with a specially designed SAT solver [13]. At the time of writing,
the numbers W (2, l) are unknown for l ≥ 7. See [11] for a wealth of papers
on Ramsey theory.

1.1. Erickson matrices

For convenience, we shall rather adopt the language of binary matrices, i.e.
matrices with coefficients in the 2-element field F2. As for grids, a 2-square
in a matrix A is a 2× 2 submatrix S with row indices {i, i + t} and column
indices {j, j + t} for some t ≥ 1. In this case, we say that S is of span t + 1.

Definition 1.1. An Erickson matrix is a binary matrix containing no con-
stant 2-squares.

We shall actually refine our claimed solution R2(S) = 15 as follows. (See
also Theorem 4.1 below.)

Theorem 1.2. There exist Erickson matrices of sizes1 13×∞ and 14×14.
There exist no Erickson matrices of size 14 × 15.

1Throughout the paper, the symbol ∞ shall stand for ℵ0, the smallest infinite
cardinal.
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In other words, every 2-coloring of the grid [14]×[15] contains a monochro-
matic 2-square. Conversely, there do exist 2-colorings of the grids [13] × Z

and [14] × [14] without monochromatic 2-squares.
The paper is organized as follows. In Section 2, we investigate Erickson

matrices with special properties, such as antisymmetry, symmetry, and with
constant first row, and obtain the maximum possible size in each case. In
Section 3, we explain the backtracking algorithm we have used in the general
case. In Section 4, we exhibit an extremal Erickson matrix of size 13 ×∞,
and give a parametric description of all square Erickson matrices of size
14 up to automorphisms. This allows us to show that there are no Erickson
matrices of size 14×15. In the last section, we discuss related structures such
as Erickson tori, Erickson triangles and higher dimensional analogues. We
conclude with some historical remarks about a theorem of Gallai preventing
such objects of being too large.

Throughout the paper, we shall interchangeably display binary matrices
as plain matrices or as black-and-white boards, with white for 0 and black
for 1. For ε ∈ F2, we shall denote ε = 1 − ε and call this operation the flip.
Thus 0 = 1 and 1 = 0.

2. Three special cases

This work started with the objective of constructing a large Erickson matrix
by computer. In order to cut down the volume of computations, we chose
to focus on skew matrices with zero diagonal (see below). The first surprise
occurred: even though millions of such matrices were found in size n×n with
n ≤ 10, only very few remained for n = 11 already, and none for n ≥ 12.
This gave a strong hint that in the general case, the maximum size of an
Erickson matrix would not be too far from 11, and be actually reachable by
exhaustive computer search. This turned out to be true: the maximum size
of a square Erickson matrix is found here to be n = 14.

In this section, we study extremal square Erickson matrices in three
special cases: skew, symmetric, and with constant first row. The maximum
admissible size in each case turns out to be 11, 8 and 9, respectively (see
below).

The construction method by computer in these instances does not need
to be very sophisticated. In its most basic version, for each n ≥ 1, one stores
the set of Erickson matrices of size n with the given property, up to some
automorphisms to reduce the load. A somewhat simple extension process
then allows to pass from n to n + 1. One useful trick consists in completing
constant elbows. This means that, whenever an unassigned entry aij lies in
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a 2-square whose three other entries are equal to ε ∈ F2, then aij must be
set to ε = 1 − ε.

The reader may sense the importance of this trick by trying it out on
this partially filled matrix:

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1
1 0 1 0 �
0 0 0 0 �
0 1 1 0 �
0 � � � 0

⎞
⎟⎟⎟⎟⎟⎠

.

By completing constant elbows, a few seconds suffice to check by hand that
there is a unique 5 × 5 Erickson matrix coinciding with the partial ma-
trix A.

2.1. Skew Erickson matrices

We start with skew binary matrices, i.e. square matrices A = (aij) over F2

satisfying aji = aij = 1 − aij for all i �= j. No hypothesis is made on the
diagonal entries aii. Those entries are in fact irrelevant in the present case
for the Erickson property, as shown now.

Proposition 2.1. Let A be a skew Erickson matrix. Denote by B any matrix
obtained from A by flipping some diagonal entries. Then B is also a skew
Erickson matrix.

Proof. Set A = (aij). We may assume that in B, a single diagonal entry of A
is flipped, say aii is replaced by aii. Of course, B is skew since A is. Assume
that B contains a constant 2-square S. Then one of the four positions of S
is (i, i). This position cannot be the NW or SE corner of S, for otherwise S
would also be skew, a contradiction. Therefore (i, i) must either be the NE
or SW corner of S, and hence S is entirely contained in either the upper or
the lower triangular part of B. Denote S′ the symmetric image of S under
transposition. Then one of the entries of S′ is still aii at position (i, i) as
in S, but the other three entries of S′, being off-diagonal, are flipped with
respect to the corresponding entries in S. This implies that S′ is in fact a
constant 2-square in the original matrix A, a contradiction.

Consequently, when investigating skew Erickson matrices, we may freely
assume that the diagonal is zero. This further reduces the volume of com-
putations needed. Our computational result is that the largest possible size
of a skew Erickson matrix is n = 11.
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Theorem 2.2. There exist no skew Erickson matrices of size n ≥ 12. In
size n = 11, there exist exactly 8 skew Erickson matrices with zero diagonal;
up to automorphisms, they are all equivalent to the following one:

Note that the automorphism group of the set of skew Erickson matrices
is of order 8. It is generated by transposition, half-turn rotation, and flipping
of all the entries.

2.2. Symmetric Erickson matrices

The largest possible size for a symmetric Erickson matrix turns out to be
8. An example is given in Figure 1. The automorphism group of the set of
symmetric Erickson matrices is the same as in the skew case.

Theorem 2.3. There are no symmetric Erickson matrices of size n ≥ 9.
There are exactly 152 symmetric Erickson matrices of size 8, partitioned
into 38 orbits under the automorphism group.

More precisely, the 152 symmetric Erickson matrices of size 8 can be
partitioned into five families S1, . . . , S5, as follows.

Figure 1: An extremal symmetric Erickson matrix of size 8.
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The family S1 is given by

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 x1 1 1 1 1 x2

0 1 0 0 1 0 x3 0
x1 0 1 0 0 x4 1 0
1 0 0 1 x5 1 0 0
1 1 0 x5 0 1 1 0
1 0 x4 1 1 0 1 1
1 x3 1 0 1 1 0 1
x2 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

subject to (x1, x2, x4) �= (1, 1, 1). This family gives rise to 20 orbits. Eight
orbits correspond to x1 = 0 and come in pairs (x1 = 0, x2, x3, x4, x5), (x1 =
0, 1 − x2, 1 − x3, 1 − x4, 1 − x5). The twelve solutions arising from x1 = 1
give 12 more orbits which are all distinct.

The family

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1 1 x1

0 1 0 0 1 0 x2 0
1 0 1 0 0 x3 1 0
1 0 0 1 x4 1 0 0
1 1 0 x4 0 1 1 0
1 0 x3 1 1 0 1 0
1 x2 1 0 1 1 0 1
x1 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

yields 8 orbits corresponding to the pairs (x1, x2, x3, x4), (1− x1, 1− x2, 1−
x3, 1 − x4).

The family S3 is given by

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 1 x2 0 1 0 0 x3

1 0 1 0 1 0 1 1
x2 1 0 1 1 x4 1 0
0 0 1 1 0 0 0 0
1 1 1 0 0 1 1 x5

0 0 x4 0 1 1 0 0
0 1 1 0 1 0 1 0
x3 1 0 0 x5 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

subject to the inequalities

(x1, x2) �= (0, 0), (x1, x3) �= (1, 1), (x3, x4) �= (0, 0), (x3, x5) �= (0, 0).
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This leaves 7 possibilities for the parameters giving rise to 7 orbits.

The next family

S4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 1 1
0 1 0 0 1 0 0 1
0 0 1 0 x1 1 0 0
1 0 0 1 0 1 0 1
1 1 x1 0 0 1 1 1
1 0 1 1 1 0 0 1
1 0 0 0 1 0 1 1
1 1 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gives rise to 2 orbits, and the last family represented by

S5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0 1
1 0 1 0 1 0 1 1
1 1 0 1 1 1 0 1
0 0 1 1 0 0 0 0
1 1 1 0 0 1 1 0
0 0 1 0 1 1 0 0
0 1 0 0 1 0 1 0
1 1 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gives rise to a unique orbit.

Summarizing, the orbits of these families sum up to 38 = 20+8+7+2+1,
representing all 152 symmetric Erickson matrices of size 8 × 8.

2.3. Erickson matrices with constant first row

We have found by computer that the largest size of a square Erickson matrix
with constant first row is 9. It is probably possible to obtain this result by
a case-by-case analysis carried out by hand. Indeed, this is how the authors
of [2] have shown that a square Erickson matrix with constant middle row
has maximum size 7, thereby proving R2(S) ≤ W (2, 8).

Theorem 2.4. For n ≥ 1, let γ(n) denote the number of square Erickson
matrices of size n with first row constant to 0. Then γ(n) �= 0 for n ≤ 9 and
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γ(n) = 0 for n ≥ 10. The lexicographically smallest instance of size 9 is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 0 0
0 1 0 1 1 0 1 0 1
1 1 0 0 0 0 1 1 1
1 0 1 0 1 1 0 1 0
1 0 1 1 0 0 0 0 1
0 1 1 0 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

More precisely, we have

(γ(1), γ(2), . . . , γ(10)) = (1, 3, 23, 213, 3754, 35002, 156188, 79570, 26276, 0).

3. The general case

We start here our study of general square Erickson matrices. After a brief
description of their automorphism group, we explain the algorithm we have
used to construct them and to uncover their maximum possible size.

3.1. Automorphisms

The automorphism group G of the set of square Erickson matrices is of order
16. It is isomorphic to the direct product

G ∼= D4 × C2,

where D4 is the dihedral group of order 8 preserving the square, and C2 is
the group of order 2 flipping the entries, i.e. exchanging 0 and 1.

3.2. The algorithm

Consider binary variables x1, x2, x3, . . . organized in an infinite array X as
follows:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x3 x6 x11 x18 . . .
x2 x4 x8 x13 . . . . . .
x5 x7 x9 x15 . . . . . .
x10 x12 x14 x16 . . . . . .

x17 x19 . . .
. . .

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Thus, for each n ≥ 1, the first n2 variables lie in an n × n square sub-array
of X. We shall say that a variable is specialized when it is assigned a value
in F2. Denote by s(X) the set of all finite specializations of X, meaning that
a finite number of the variables xi have been specialized. We now describe
a simple forcing procedure

ϕ : s(X) → s(X),

meant to avoid constant 2-squares whenever possible. It is of course analo-
gous to the process of “completing constant elbows” discussed in Section 2.
Let A ∈ s(X). If some unassigned variable xt in A lies in a 2-square S whose
three other entries are all equal in A to some ε ∈ F2, then set xt = ε in A
and define ϕ(A) ∈ s(X) to be the resulting partially specialized array. In
other words, we set

ϕ(A) = A|xt=ε.

In order for this to be well-defined, we may choose t to be the least index,
if any, with the required property, and at the same time choose S to be the
lexicographically smallest corresponding 2-square. If there is no such index
t, then we set

ϕ(A) = A.

Note that, even if A does not contain constant 2-squares, it may well happen
that ϕ(A) does. This will happen if xt lies in two 2-squares S, S′, one having
three 0’s in A, and the other having three 1’s in A.

Of course, the simple forcing procedure ϕ may be iterated. Of special
interest to us are the fixed points of ϕ. They are reached in a finite number
of steps, depending of course on the initial argument A.

Now let m ≥ 0, and denote by Em the set of all finite specializations
A ∈ s(X) with the following properties:

(1) The first m variables x1, . . . , xm have been assigned 0 or 1 in A.
(2) A is the final fixed point of the forcing procedure ϕ applied iteratively

to the element A′ with all variables xk unassigned for k ≥ m + 1 and
coinciding with A for its first m coefficients x1, . . . , xm.

(3) A contains no constant 2-squares on its assigned entries.

Note that, for each A ∈ Em, most variables xi with i ≥ m + 1 remain unas-
signed. But some of those variables may have been forced to a value 0 or 1 in
A in order to satisfy the required properties. Indeed, even if only x1, . . . , xm
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have been specialized at first, further variables might get specialized by suc-
cessive applications of ϕ.

Observe that the set En2 is in one-to-one correspondence with the set of
all Erickson matrices of size n × n.

The union
⋃

m≥0 Em has the structure of a rooted plane tree, where
the root is the unique element of E0 having no assigned variables. Given an
element A ∈ Em, its immediate left (respectively right) successor, if it exists,
is the unique element Ã of Em+1 which coincides with A for x1, . . . , xm and
satisfies xm+1 = 0 (respectively xm+1 = 1).

Note that the tree
⋃

m≥0 Em is finite. This follows from the fact that
square Erickson matrices are uniformly bounded in size.

Our algorithm is now the classical depth-first algorithm for visiting all
vertices of a finite rooted plane tree: start at the root in the direction of
its leftmost child and continue walking turning always to the left at each
bifurcation, respectively turning around and backtracking when hitting a
leaf.

An important point is that this algorithm has only very small mem-
ory requirements: we do not need to store the tree

⋃
m≥0 Em, we only store

the currently used element in Em and use it to compute immediate suc-
cessors or the unique immediate predecessor. This is crucial, since there
happen to be more than 1011 Erickson matrices of size 9 × 9. (See be-
low.)

Using the fact that the two subtrees issued from the two elements of
E1 (corresponding to x1 = 0 and x1 = 1 with all other entries unassigned)
are mirrors of each other, we can halve the total amount of work by vis-
iting only the subtree issued from the leftmost vertex (corresponding to
x1 = 0) of E1. A further improvement is obtained by removing subtrees
issued from solutions A ∈ En2 such that A is lexicographically after the
transposed solution At. The resulting subset of leaves in En2 then contains
all Erickson matrices of size n × n, up to transposition and up to flipping
all coefficients.

3.3. Outcome

Denote by Er(n) the number of square Erickson matrices of size n and
with NW corner equal to 0. Thus, the total number of square Erickson
matrices of size n is equal to 2 Er(n). Running the above algorithm yields the
following values of Er(n), for n = 2, 3, . . . , 15. The square Erickson matrices
of maximum size 14 will be described in the next section.
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n Er(n)
2 7
3 138
4 5490
5 390856
6 29169574
7 1533415720
8 29085496072
9 156515895928

10 54978562276
11 2510360996
12 1990028
13 570132
14 116114
15 0

4. Extremal Erickson matrices

The main computational result of this paper is Theorem 1.2, obtained with
the backtracking algorithm of Section 3.2, and recalled here in a slightly
different way.

Theorem 4.1. There exist no Erickson matrices of size m×n with m ≥ 14
and n ≥ 15. These bounds are sharp.

The next subsections exhibit extremal Erickson matrices, i.e. of size 13×
∞ and 14×14. In the latter case, we give a complete parametric description
of all possible matrices up to automorphisms. This parametrization is then
used in Section 4.3 to show that there are no Erickson matrices of size
14 × 15.

4.1. An Erickson matrix of size 13 × ∞

We now exhibit an Erickson matrix of size 13×∞. The first row has period
26, repeating the sequence s:

s = (1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0).

Theorem 4.2. Let A be the binary matrix indexed over [13]×Z defined as
follows: the first row of A is 26-periodic repeating s, and each subsequent
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row is obtained by shifting the preceding one 5 units to the left. Then A is a
13 ×∞ Erickson matrix.

This construction can be enlarged to get a doubly-infinite binary ma-
trix containing no constant 2-squares of span up to 13. The reader might
appreciate the Escher-like structure of the corresponding grid coloring. (See
Figure 3.)

Theorem 4.3. Let B be the doubly-infinite, doubly-periodic binary matrix of
biperiod 26×26, indexed over Z×Z, whose first row is 26-periodic repeating
s, and where each row is obtained by shifting the preceding one 5 units to
the left. Then B contains no constant 2-squares of span less than or equal
to 13.

Figure 2: A 13 ×∞ Erickson matrix.

Figure 3: A binary coloring of Z × Z without constant 2-squares of span up
to 13.
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More Erickson matrices of size 13 × ∞ can be obtained from square
Erickson tori of size 13. See Section 5.1.

4.2. Erickson matrices of size 14 × 14

We describe here the set of all extremal square Erickson matrices of size
14 × 14, harvested with the backtracking algorithm of Section 3.2.

For n = 14, the total number of binary Erickson matrices of size 14×14 is
equal to 232228. These matrices are partitioned into exactly 14557 pairwise
disjoint orbits under the automorphism group G. More precisely, these 14557
orbits divide up into exactly

• 14481 orbits of maximum size 16,
• 57 orbits of size 8, and
• 19 orbits of size 4.

The 8 · 57 Erickson matrices with a G-orbit of size 8 are all invariant under
a half turn. The same is true for the 4 · 19 Erickson matrices with a G-orbit
of size 4, which are further invariant under flipping all entries followed by a
1/4 turn or a 3/4 turn.

For the record, Figure 4 displays the lexicographically smallest Erickson
matrix of size 14 × 14.

We now list the complete set of 232228 square Erickson matrices of size
n = 14 up to automorphisms. They are partitioned into four families A1,
A2, A3, A4.

Figure 4: The lexicographically first square Erickson matrix of size 14.
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4.2.1. The family A1

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 1 0 0 1 1 1 1 0 0 1 0 x2

1 1 1 1 0 0 1 0 x3 0 1 0 0 1
0 1 0 x4 0 1 0 0 1 1 1 1 0 0
1 0 0 1 1 1 1 0 0 1 0 x5 0 1
1 1 0 0 1 0 x6 0 1 0 0 1 1 1
0 x7 0 1 0 0 1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1 0 x8 0 1 0 0
0 0 1 0 x9 0 1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1 0 0 1 0 x10 0
1 1 1 0 0 1 0 x11 0 1 0 0 1 1
1 0 x12 0 1 0 0 1 1 1 1 0 0 1
0 0 1 1 1 1 0 0 1 0 x13 0 1 0
1 0 0 1 0 x14 0 1 0 0 1 1 1 1

x15 0 1 0 0 1 1 1 1 0 0 1 0 x16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Any binary assignment of the 16 variables in A1 yields an Erickson matrix,
provided

(1) (x1, x2, x15, x16) �= (0, 0, 0, 0), (x1, x2, x15, x16) �= (1, 1, 1, 1).

Thus, the binary specializations of A1 yield 14 · 212 = 57344 Erickson ma-
trices. Under the action of the automorphism group G, they yield a total of
229376 Erickson matrices.

4.2.2. The family A2

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1 0 x1 0 1 0 0 0
0 1 0 x2 0 1 0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 x3 0 1 0 0 1 1 0
0 x4 0 1 0 0 1 1 1 1 0 0 1 1
0 1 1 1 1 0 0 1 0 0 0 1 0 1
0 0 1 0 x5 0 1 0 0 1 1 1 1 1
0 1 0 0 1 1 1 1 0 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0 0 1 0
1 0 x6 0 1 0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 1 0 0 0 1 1
1 0 0 1 0 1 0 1 0 0 1 1 1 0
x7 0 1 0 0 1 1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Here the situation is simpler. Any binary assignment of the 7 variables in
A2 yields an Erickson matrix. This amounts to 128 Erickson matrices. As
these matrices all have a G-orbit of size 16, they yield a total of 211 = 2048
Erickson matrices under the action of G.

4.2.3. The family A3

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1 0 x1 0 1 0 0 0
0 1 0 x2 0 1 0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 x3 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1 1 1 0 0 1 1
0 1 1 1 1 0 0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 1 1 1 1
0 1 0 0 1 1 1 1 0 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0 0 1 0
1 0 1 0 1 0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 1 0 0 0 1 1
1 0 0 1 0 1 0 1 0 0 1 1 1 0
0 1 0 1 1 0 0 0 x4 1 1 0 1 x5

1 1 1 1 0 0 1 0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here again the situation is simple. Any binary assignment of the 5 variables
in A3 yields an Erickson matrix, with a G-orbit of size 16. Thus, this family
yields a total of 29 = 512 Erickson matrices under automorphisms.

4.2.4. The family A4

A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 1 0 1 1 0 0 0 x2 1 1 0 1 x3

0 0 0 1 0 1 0 1 0 0 1 1 1 0
1 0 1 1 1 1 0 0 1 0 0 0 1 1
0 0 1 0 1 0 0 1 1 1 1 0 0 0
0 1 1 0 0 1 0 1 0 1 0 0 1 0
x4 1 0 0 1 1 1 1 0 0 1 0 0 1
1 0 1 0 0 0 1 0 0 1 1 1 1 1
1 1 1 1 1 0 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 1 1 1 0 0 1 x5

0 1 0 0 1 0 1 0 1 0 0 1 1 0
0 0 0 1 1 1 1 0 0 1 0 1 0 0
1 1 0 0 0 1 0 0 1 1 1 1 0 1
0 1 1 1 0 0 1 0 1 0 1 0 0 0
x6 1 0 1 1 x7 0 0 0 1 1 0 1 x8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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In the present case, a binary assignment of the 8 variables in A4 yields an
Erickson matrix if and only if

(x1, x3, x6, x8) �= (0, 0, 0, 0), (x1, x3, x6, x8) �= (1, 1, 1, 1),(2)

(x1, x2) �= (1, 1), (x7, x8) �= (1, 1), (x3, x5) �= (0, 0), (x4, x6) �= (0, 0).(3)

Because of symmetries in A4, the orbits of its various specializations attain
sizes 4, 8 and 16. This family, under the above affine constraints and the
action of G, yields a total of 292 Erickson matrices.

Note that the matrices A1 and A4 are invariant under a 1/4 turn followed
by a suitable permutation of indices and the flipping of all entries.

4.2.5. Summary Summarizing the above, we obtain the following com-
plete description of square Erickson matrices of size n = 14.

Theorem 4.4. A binary square matrix of size 14 is an Erickson matrix if
and only if it is equivalent, up to automorphisms, to a binary specialization of
either A1 under constraints (1), or A2, or A3, or A4 under constraints (2,3).
There are exactly 232228 square Erickson matrices of size 14, where

232228 = 229376 + 2048 + 512 + 292

according to the partition into types A1, A2, A3 and A4.

4.2.6. What about linear algebra? It is natural to wonder whether
Erickson matrices have any special linear algebraic properties. A first explo-
ration of this question did not reveal much so far. Let us only mention a few
observations:

• All 14 × 14 Erickson matrices have rank equal to 13 or 14.
• Among all determinants of 14 × 14 Erickson matrices, one finds 38

and 55.
• The determinant of A3 is much simpler than for A1, A2, A4. It is equal

to

3(x1 − 1)(990 + 35x2 − 90x3 − 495x5 − 80x2x3 − 123x2x5 + 45x3x5

+ 23x2x3x5).

• The characteristic polynomial of A4 is divisible by (X2 − 5)(X2 + 3).
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4.3. The case of size 14 × 15

For the proof of Theorem 4.1 to be complete, it remains to show that there
are no Erickson matrices of size 14×15. This can easily be checked as follows,
by using our parametric description of Erickson matrices of size 14× 14. Up
to reversion and up to flipping all entries, all four vectors corresponding to
the first and last rows and the first and last columns of a 14 × 14 Erickson
matrix are of the following type:

(0, 0, 0, 0, 1, 1, 0, 1, ∗, 1, 0, 1, 1, 1),
(0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, ∗, 0),
(x1, 0, 1, 0, 0, 1, 1, 1, x2, 0, 0, 1, 0, ∗),

with (x1, x2) �= (0, 0) and with ∗ an arbitrary element of {0, 1}. The first
two rows arise in the families A2 and A3, and the last row occurs in A4 and
with x2 assigned to 1 in A1.

The presumed existence of a 14 × 15 Erickson matrix would imply that
one of these rows arises as the second or second-to-last row or the second
or second-to-last column of a 14 × 14 Erickson matrix. However, a direct
inspection on A1, A2, A3, A4 shows that this is not the case, thereby settling
our claim.

5. Related structures

Here we discuss some variants of the notion of Erickson matrices.

5.1. Erickson tori of square size

Besides 2-colorings of the grids [m] × [n], it is also interesting to consider
2-colorings of toroidal grids. This amounts to binary matrices with indices
in Z/mZ×Z/nZ. We define an Erickson torus of size m× n to be an array
indexed by Z/mZ × Z/nZ, containing no constant 2-squares with indices
of the form {(i, j), (i + t, j), (i, j + t), (i + t, j + t)} ⊂ Z/mZ × Z/nZ for
t = 1, . . . ,min(n,m) − 1.
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For each n ≥ 2, the number τ(n) of Erickson tori of square size n× n is
given by the following computer-constructed table.

n τ(n)
2 14
3 156
4 6112
5 114040
6 878448
7 360360
8 160416

9, 10 0
11 180224
12 0
13 427336

≥ 14 0

Of course, Erickson tori give rise to Erickson matrices. However, they be-
have somewhat differently. In particular, subarrays of Erickson tori are not
generally Erickson tori of smaller size. This is a partial explanation of the
gaps for n = 9, 10, 12 in the table above. Moreover, the group of automor-
phisms acting on Erickson tori of square size is larger than the group of
automorphisms acting on Erickson matrices. It contains of course all 16
elements preserving Erickson matrices, but it also contains all shifts of
indices corresponding to cyclic permutations of rows and columns. More-
over, in the case of Erickson tori of square size n × n, we get all dilata-
tions

ai,j �−→ aλi,λj

with λ ∈ (Z/nZ)∗.
Erickson tori of square size n × n give rise to doubly periodic infi-

nite binary arrays containing no constant 2-squares of span at most n.
Every row and column of such an array defines an n-periodic binary se-
quence.

A particularly nice class of examples is given by Erickson tori associated
to n-periodic row-sequences differing only by shifts of their indices. Such an
Erickson torus of size n×n is thus completely described (up to a translation
of its indices) by a row-period (α0, α1, . . . , αn−1) ∈ {0, 1}n and by the shift κ

relating two adjacent rows. Reading indices modulo n, the associated infinite
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array is thus

...
...

...
. . . α0 α1 α2 . . . αn−1 α0 . . .
. . . ακ α1+κ α2+κ . . . αn−1+κ ακ . . .
. . . α2κ α1+2κ . . .

...
...

Note that replacing the shift value κ by n − κ gives rise to an isomorphic
solution.

Examples of such “sequential” Erickson tori of square size exist for all
n for which τ(n) �= 0. The following table gives for each such n a full period
(α0, . . . , αn−1) ∈ {0, 1}n together with the value κ indicating the shift of
indices between adjacent rows.

n (α0, α1, . . . , αn−1) κ

2 (0, 1) 1
3 (0, 1, 1) 1
4 (0, 0, 1, 1) 1, 2
5 (0, 0, 1, 0, 1) 2
6 (0, 0, 0, 1, 1, 1) 2
7 (0, 0, 0, 1, 0, 1, 1) 2, 3
8 (0, 0, 1, 0, 1, 1, 0, 1) 3

11 (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1) 2, 5
13 (0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1) 5

5.2. Gallai’s theorem

The presence of a constant 2-square in any binary square matrix of suf-
ficiently large size follows from a d-dimensional generalization of van der
Waerden’s theorem due to Tibor Gallai in the 1930’s. See e.g. [1] or [12,
page 40]. Our attempt to locate the first written mention of this theorem
revealed a somewhat confused situation, which we have tried to clarify and
put in historical context in the last section. See also [17, Chap. 42]. Here is
Gallai’s theorem as stated in [1], where a nice proof is included.

Theorem 5.1. Let S be a finite subset of N
d. For any k-coloring of N

d,
there is a positive integer a ≥ 1 and a point v ∈ N

d such that the set
aS + v — i.e., some translation of some dilation of S — is monochromatic.
Furthermore, the dilation factor a and the coordinates of the translation
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point v are bounded by a function that depends only upon the set S and the
number k (and not upon the particular coloring used).

Erickson matrices correspond to the case d = k = 2 and

S = {(0, 0), (0, 1), (1, 0), (1, 1)}.

A simpler case, still with d = k = 2 but with S = {(0, 0), (1, 0), (0, 1)},
corresponds to what might be called Erickson triangles. The maximum size
of such a triangle without constant sub-triangle can be determined by hand,
and is equal to 4. Thus, every binary triangular array

x11

x21 x22

x31 x32 x33
...

...
. . .

of size at least 5 contains a constant subtriangle of the form xij = x(i+t)j =
x(i+t)(j+t). See e.g. [2, Lemma 1].

More generally, for s ≥ 2, we define an s-square in [n] × [n] to be any
s × s square subgrid of the form

{i, i + t, . . . , i + (s − 1)t} × {j, j + t, . . . , j + (s − 1)t}

with s2 points. For any positive integer k ≥ 2, let us denote by n(k, s)
the smallest integer n for which any k-coloring of the grid [n]2 contains a
monochromatic s-square. Gallai’s theorem ensures that n(k, s) is finite. It
would be interesting to understand the behavior of n(k, s) beyond the case
k = s = 2, for which n(2, 2) = 15 by Theorem 1.2. The next interesting
numbers to determine are

• n(3, 2), forcing constant 2-squares for any 3-coloring of [n(3, 2)]2,
• n(2, 3), forcing constant 3-squares for any 2-coloring of [n(2, 3)]2.

Note. While this paper was being refereed, colleagues in computer science
succeeded in establishing the lower bound

n(2, 3) ≥ 663.

They did so by constructing, with the technique of simulated annealing, a
square binary matrix of size 662 without constant 3-squares [4].
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These questions may of course be generalized to any dimension d ≥ 3.
Besides constant “hypercubes”, the simplest non-trivial case for d = 3 is
given by

S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
and gives rise to what might be called “3-dimensional Erickson simplices.”
Here again, it would be most interesting to determine the smallest n forcing
the presence of a monochromatic Erickson simplex in a binary cube of size
n × n × n.

5.3. Historical remarks

We take this opportunity to try to clarify some bibliographical and historical
details, resulting from our attempt to locate the first written source of Gal-
lai’s theorem. Tibor Gallai himself apparently never published it. Rather,
he told it to Richard Rado, who seemingly first stated it in [16]. (But not
in his earlier paper [15], as mistakenly stated2 in [8].) A prior and weaker
version of Gallai’s theorem, yet still generalizing van der Waerden’s theorem
to d dimensions, was obtained by Rado in [14]. This weaker version states
the following: Given k, l, d ≥ 1, for any k-coloring of the grid [n]d with n
sufficiently large, there is a monochromatic subset of the form A1×· · ·×Ad,
where each Ai is an arithmetic progression of length l. Coming back to Gal-
lai’s theorem proper, Rado writes in [16, p. 123]:

“This extension [of van der Waerden’s theorem] was first proved by Dr. G.
Grünwald, who kindly communicated it to me.”

Yes, Grünwald is the original name of Gallai. The change from German-
sounding to more Hungarian-sounding names was frequent for Hungarian
Jews up to the 1930’s, in a context of social pressure and harsh antisemitism
[3, 18]. Yet the initial “G” in the above quotation is quite mysterious and
confusing, as it should have been “T” for Tibor. Indeed, there is another
Hungarian-Jewish mathematician called Géza Grünwald, not a relative but
a close friend of Tibor Grünwald, and who died at age 31 in tragic cir-
cumstances during WWII [3, 18]. Another source of confusion comes from
the fact that both Tibor and Géza Grünwald wrote joint papers with their
common friend Paul Erdős. However, there is no controversy at all, and
Tibor Grünwald is the author of Gallai’s theorem. We will probably never
know why Rado wrote “G. Grünwald” rather than “T. Grünwald” in [16]. It

2Ron Graham kindly confirmed this to us.
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might simply be a typo, as suggested in Soifer’s book [17], whose chapter 42
is dedicated to Gallai’s theorem. See [5, 7] for moving obituaries of Gallai.
See also [6].
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