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Abstract


In a recent article, Cheng, Maji and Pothen [3] consider squares of sparse Erdős–Rényi graphs $G(n, p)$ with $p = \Theta (1/n)$ as interesting benchmark instances to evaluate parallel algorithms that color the input graph in the context of estimating a sparse Jacobian for optimization. (Here $n$ is the number of vertices in the graph and every edge is included independently with probability $p$.) These authors prove that if $G$ is sampled from $G(n, p)$ with $p = \Theta (1/n)$, then with high probability, the chromatic number of the square graph $G^2$ lies between $\Omega \left ( \frac{\log n}{\log \log n} \right)$ and $\mathcal{O}(\log n)$. In this work we obtain a tight $\Theta \left ( \frac{\log n}{\log \log n} \right)$ bound on the chromatic number of $G^2$. Along the way we also obtain asymptotically tight bounds for the maximum degree of the $k$-th power of graphs sampled from $G(n, p)$.
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