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Dedicated to Professor Richard Askey on the occasion of his 65th birthday. 

ABSTRACT. In this paper, we utilize multiple basic hypergeometric series tech- 
niques to derive two new infinite families of 77-function expansions, three infinite 
families of expansions of products of the form (ga;g6)oo, and a t/(n + 2) extension 
of the quintuple product identity. The £7(3) case of this extension immediately 
yields an elegant proof of the quintuple product identity. More specifically, we find 

expansions for (g; q)£+2, ^(g)-2^2, fa q)£, T^)"2, (9™; q™)£(g"-', ^ g™)",, 

(^gm~Z;gm)oo(gm;gm)So , and {qrn-l\qrn)<x>(qrn\qrn)'£~1. All of these expan- 
sions, as well as the proof of the quintuple product identity, are consequences of 
various summation and transformation formulas for U(n + 1), equivalently j4n, 
multiple basic hypergeometric series. When we compare the powers of 77 in our 
expansions with those in Macdonald's (1972) 77-function expansions correspond- 
ing to affine root systems of type Bt, Cf, BC^ and Di, we utilize Chebyshev 
polynomials to show that the dimensions which give the same powers of 77 con- 
sists of very sparse "Lucas sequences", which include the Pell numbers and the 
squares of the entries of the classical sequence which is the hypotenuse of the n-th 
Pythagorean triangle with consecutive integral legs. 

1. Introduction 

Ever since Euler proved that 
00 00 

n(w)= E (-i)v(3y+i)/2, (i.i) 
i=l 1/=—ex) 

mathematicians have been looking for other identities of this form. In 1829, Jacobi 
[12, Section 66] utilized his triple product identity to derive 

00 00 

11(1 - j? = Et-1^2*/ + l)q^+y)'2. (1.2) 
i—l y=0 

Since then, expansions have been found for (g; q)^ for many values of c where 
00 

0 < \q\ < 1        and        (a)*, = (a; qU := fJC1 - "**)• (1-3) 
i=0 
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These included several infinite families of expansions and a few exceptional cases. See 
the introduction to [15] for more details. 

In a 1972 paper, Macdonald [18] related most of these expansions for (q\ q)^ to 
affine root systems. A few notable exceptions are: c = 2 found by Hecke and Rogers, 
c = 4 by Ramanujan, and c = 26 by Atkin. In this paper, we add infinitely many 
more values to this list of exceptions by deriving expansions for the cases c = n2 + 2 
and c = n2, and conjecturing one for c = n2 — 2. We convert the cases c = n2 + 2 and 
c = n2 into expansions of these powers of the 77-function by means of the definition 

n(q)--=q1/2\q;q)~. (1.4) 

In Section 2, we utilize the multiple basic hypergeometric series techniques from [15] 
to derive the expansions for ri(q)n +2, and in Section 3, we obtain the expansions for 
rj(q)n . In [15], we derived new expansions for (#;<Z)2O

+2TI
 and showed that they were 

equivalent to Macdonald's [18] An family of expansions for rj(q)n +2n. All of this work 
is motivated by the multiple basic hypergeometric series treatment of the Macdonald 
identities for A[ ' in [19]. 

When we compare the powers of rj in our expansions in this paper with those in 
Macdonald's [18] 77-function expansions corresponding to affine root systems of type 
Be, Ce, BCe, and De, we utilize Chebyshev polynomials to show that the dimensions 
which give the same powers of 77 consist of very sparse "Lucas sequences" [27, pp. 53- 
74], which include the Pell numbers [27, pp. 55 and 72] and the squares of the entries of 
the classical sequence [28, pp. 16-20] which is the hypotenuse of the n-th Pythagorean 
triangle with consecutive integral legs. We discuss this situation in greater detail in 
Section 6. 

Even when the power of rj is the same, the sum sides of our identities and those of 
Macdonald [18] are generally in different dimensions-with ours being larger. However, 
our identities appear to be somewhat simpler. Other than one dimension, the identities 
are still different even in the rare case when the powers and dimensions are the same. 
Thus, our infinite families of 77-function expansions appear to be new. 

For convenience of illustration, consider the case n = 2 of our expansion for 
(q^q)^2 (see Theorem 2.2 below) given by 

(q;q)60o=     £     (yi + 2/2) [i + 2(w- w)] ^+^+» (1.5) 
-oo<2/i,3/2<oo 

where 0 < \q\ < 1. Keeping in mind the lines of symmetry yi =0 and 2/2 = —1/2, we 
rewrite (1.5) as 

00 

(?! q)to = X> + 22/2)2^2+J/2 +2     £      [1 + 4(2/2 + y* - y*)} <&+$+*     (1.6) 
2/2=0 2/i>0,2/2>0 

where 0 < \q\ < 1. The 77-function versions of (1.5) and (1.6) are not the same as 
the expansions for 77(g)6 in Macdonald's BC2 identity [18, pp. 137-138, (6)(c)], or 
Ramanujan's identity [24, p. 176 (Sec. 19), and pp. 178-179 (Sec. 22)]. 

Macdonald [18] gave a variety of identities involving products and quotients of 77- 
functions. More recently, similar identities for 77-functions were found by several other 
authors including [4], [14], [16], and [32]. In Section 4 of this paper, we give expansions 
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for 

(9m; qm)£(qm-1, ql; qm)^     (ql,qm-1; gm)oo(qm; qm)i, 

and       (?m-,;gm)oo(«m;«m)SD
a-1 (1.7) 

where, for products of ^-shifted factorials, we use the more compact notation 

(ai, a2,..., am; q)^ = (ai; q)^^ q)oo • • * (am; q)^ . (1.8) 

While the products in (1.7) cannot be written as products or quotients of 77-functions, 
they are still of the same general form as those cited above. 

Another identity which has attracted much attention in the theory and application 
of ^-series is the quintuple product identity in [8, Ex. 5.6, p. 134], [2, pp. 80-83], 
and [3]. (See (5.1) below.) In Section 5 of this paper, we give a new proof, by first 
deriving a multivariable U(n + 2) extension, of the quintuple product identity, and 
then applying the Jacobi triple product identity [8, (1.6.1), p. 12] to the n = 1, or 
[7(3) case. That is, the quintuple product identity is a natural consequence of a two- 
dimensional [/(3) triple product identity and the classical [7(2) Jacobi triple product 
identity. 

All of the expansions in this paper, as well as the proof of the quintuple product 
identity, are consequences of various summation and transformation formulas for I7(n+ 
1), equivalently An, multiple basic hypergeometric series. See [21] for more background 
on these series. 

In addition to (1.3) and (1.8), the following notation is used throughout the re- 
mainder of this paper: 

m—1 

(a)m = (a; q)m := J] (1 - aq') (1.9) 
2=0 

where m is a nonnegative integer and \q\ < 1. 
As motivation, note that (a\q)m = (oi]q)OQ/(aq'm]q)00 where (a;g)oo is defined by 

(1.3). 

2. An expansion for (g;g)So+2 

In this section, we derive new expansions for (<?;g)£o+2 and rj(q)n +2. 
We begin by setting x = -t"1 and Zi = x* for i = 1,..., n in Theorem 1.53 from 

[19]. This identity also can be derived by bilateralizing Theorem 5.44 from [21], 

(*)c (t-Nzwds, n [(?) (#) 
l<r<s<n 

= E { n \i-^f'-*]f[[x7»-<n+"*~)] 
-oo<yi<oo ^l<r<s<n L * J i==1 

l,...,n 

(_l)n(2/i+-+2/n)^n[(!/
2i)+...+(^)]^2/1+22/2+-..+ni/n \t-(yi+-+yn) # (2.1) 

i=l,...,n 

X 
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We then apply the identity 

H  I"1 - r?*"1"]= E ^w ft f^-v^-*5!      (2.2) 
l<r<s<n (T£Sn 2=1 

where 5n is the symmetric group on n elements.  Next, rearrange and permute the 
subscripts of y. This yields the identity: 

= E E s^^ln kns'c(<)~(!'i+"'+yn)+<T(i)~ii 
i=l,...,n 

x (-i)»(»n-"Hh.)gEJLi[t»?+(<-j)i«]|r(w+...+1h,)    (2>3j 

where n > 1 and 0 < |g| < 1. 
Next, we take the derivative with respect to t and set t = 1. We also take 

d^/dxldx\...dx^ and then set x, = ... = Xn = l. For more details on this 
process, see Section 3 of [15]. The motivation for using derivatives here is that they 
also simplify the standard proof of (1.2) in [11]. We have 

11il ■ (<7)~+2 =      E       E siga(a)\(-ir(y^-^)(y1 + --- + yn) 
2=1 -oo<2/i<oo CTeSn { 

i=l,... ,n 

x &*[**+{-*)«] fi g [ny<T(i) -{yi + ... + yn) + a(i) _, _ 0. _ ^ \ 

(2.4) 

Observe that the inner sum in (2.4) depending on a E Sn can be rewritten as the 
determinant 

  n 

det (cy) = J^ sign(c7) JJ c^i (2.5) 
O-e^Sn 2=1 

where 

3-1 

dj = It [^ " (2/1 + * *' + Vn) + i - j - (k - 1)],    if j > 1 and cy = 1, if j = 1. 
&=i 

(2.6) 

We evaluate the determinant in (2.5) by a special case of the well-known generalized 
Vandermonde determinant formula in [31] and [23, Ex.2, p. 353 (see also pp. 340-341)] 
The special case, also used in [15], that we need is 
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Lemma 2.1. 

1    zi    (zi-l)(z1-2)    ...     (2fi-n + 2)(zi-n + l)---(^i-2n + 4) 

1    Z2    (*2-l)(*2-2)    ...     (z2-n + 2)(z2-n + l)---{z2-2n + 4:) 
det 

1    zn    (zn - l)(zn - 2)    ...    (zn - n + 2){zn - n + 1) • • • (zn - 2n + 4) 

=       I]      (Zs-Zr)-      (2.7) 
l<r<s<n 

Applying Lemma 2.1 to the determinant in (2.5) gives 

det(cy) =     JJ    [ny8 -nyr + s- r]. (2.8) 
l<r<s<n 

Thus, we have proved the theorem: 

Theorem 2.2. Letn>l and \q\ < 1. Then 

(«; ^)S,2+2 = 11 v-1    E    {(-ir^+'-^J (yi + • • • + yn) 
i=l —oo<3/i<oo ^ 

y=l,...,n 

x     [J    ^ -nVr + s-r]qE?-i[9vi+(i-9)v*]\ (2.9) 
l<r<s<n ^ 

The case n = 1 of Theorem 2.2 is equivalent to (1.2), once we combine the yi and 
—(yi 4-1) terms in the sum side of (2.9) for yi > 0. The case n = 2 of Theorem 2.2 
is discussed in (1.5) and (1.6). It should be possible to transform Theorem 2.2 into a 
generalization of (1.2) and (1.6) by appealing to the symmetry techniques in Sections 
4 and 5 of [15]. 

To put Theorem 2.2 into the form of an 77-function identity, we let yi = (vi — i)/n 
for i = 1,... ,n. Note that since the yiS are integers, the v^s must satisfy Vi = i 
(mod n). Recalling (1.4), we must multiply each side of Theorem 2.2 by q^n +2)/24. 
Thus, we obtain the following theorem. 

Theorem 2.3. Letn>l and \q\ < 1. Then 

n-l 

(-D^n*-1    E   {h + -n-^-?i±l| 
Vi=i    (mod n) 

t=l,. ..,n 

x(-l)^+-+^     U     [va-vr]q&ZZ-i('w<-nma\. (2.10) 
l<r<s<n 

2 

3. An expansion for (g; q)^ 

In this section, we derive a new expansion for (g; g)^. This is accomplished by first 
using an identity of Euler and a diagonal sum argument to rewrite Theorem 1.58 of 
[19]. We then appeal to the differentiation techniques in Section 3 of [15] and the 
classical determinant evaluation in Lemma 2.1. 
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We start with the case z -* -tq of an identity of Euler from [8, p. 9, (1.3.16)] given 

where {q-q)m is determined by (1.9). Theorem 1.58 of [19] can be written as 

(ffJST1   H     (J1)   (q^f)  }={-i)(n-Vm{xl...xn)-m
q-

m(m+w 
\<r<s<n L ^    s' oo  \   Xr/ooJ 7l/       * 

E { n b-^--} 
-oo<yi<oo    kl<r<s<n 

2/1H h2/n=m 
n 

x II bri ^K"^-1--^^)] ?in+a»9+...+n»B 1 (3 2) 

where m is any integer.   Now, multiplying both sides of (3.1) by the left side of 

SalT!       ^"t (n3-2)' *>»«*»°#* —tions, ani thin summing 0^ the 

=       E      {    11    [l-^g«"-«"]lTfa:i
n,w-(yi+-+*->l 

-oo<yt<oo  (-l<r<s<n Xs tl  L J 

X (q)^+...+yJ-l)n^+---+y»)q4(V21)+---+m qy1+2y2+.:+nyn }ty1+...+yn 

(3.3) 
where n > 1 and 0 < |g| < 1. 

The identity in (3.3) can also be derived by bilateralizing Theorem 5.50 from [21] 
over a tnangle". We first shift the index of summation for eash y, down byN/n 

abft the W'8 up by N/n, simplify, then replace tt, ,, and «, by -», ^> and x/^ 

SSSS sSCie^) ^ " —• SOme ^^ **^ 

-°o<yi«x> <TeSn I j=iL J 
J/i+-+!/n>0 

X(«);i
1
+-+yn(-l)n(yi+-+S"')^-[^.?+0-?)vi]|fV1+-f^> (3_4) 
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Set t = 1. We also take d^/dx^dxl • • - dx^"1 and then set Xi = • • • = xn = 1. For 
more details on this process, see Section 3 of [15]. We have 

"   ?+M)»] 11il ■ («>» =     E       E sign(a){(-l)^+-+^)(g)-V..+J/n g^-^ 
i=l — oo<yi<oo creSn ^ 

!/i+-+yn>o 
n   2—1 N 

x n n ^w - (»i+• • •+»»)+^w - z - a -1)] L    (3 
2=1 7 = 1 ^ 

The same analysis as in (2.5)-(2.8) when applied to the inner sum in (3.5), which 
depends on a € Sn, transforms (3.5) into the following theorem. 

Theorem 3.1. Let n > 1 and \q\ < 1. Then 

2=1 -00<2/i<00    ^ 
2/l+-+2/n>0 

x     n    [nys - nyr + s - r] g^-ilf y?+(<-9Jw] \ (3.6) 
l<r<s<n ^ 

The case n = 1 of Theorem 3.1 is the case t ^ 1 of (3.1). 
Just as for Theorem 2.3, multiplying each side of Theorem 3.1 by q(n ^Z24 gives the 

theorem: 

Theorem 3.2. Let n > 1 and |g| < 1. Then 

v(qf = (-i)«Vl/l2 n A-1   E   (-ir^-^wri/nx^-^-^Dn/a) 
2=1 Vi—i    (mod n) 

l'l+-+fn>(nJ1) 

x     I]    ^-i/r]9(1/2n)E"-[(l/i-n/2)2]. (3.7) 
l<r<s<n 

We conclude this section with a formal identity that yields a conjectured expansion 
for (g; qOSo-2. We use the term "formal identity" since our application of the multiple 
power series ratio test did not establish absolute convergence of the multiple series 
involved here. We describe this situation in more detail following equation (3.9) below. 

We begin with the case z i-* t of another identity of Euler from [8, p. 9, (1.3.15)] 
given by 

(f.s^Ez^r-' (3-8) 
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with |t| < 1. An analysis just like that applied to (3.1) to (3.3) when applied to (3.8) 
immediately gives 

(ttfwsr1  n  [(?) (*£) 

- E { n LnVr-Va 

-oo<yi<oo  vl<r<s<n L 

yi+-+Vn>0 

n 
TT L^2/i-(2/i+-+yn)l 

J i=l 

x (^)yi+-+2/i 
(-_l)(n-1)(2/i+-+2/n)^--e2(yi,.-.)2/n) 

X g(ri-1)[(1/21)+-+(y2n)] gW+2y3+-+(n-l)ynltyi+. ••+yn (3.9) 

where 0 < |g| < 1, suitable convergence conditions hold, 62(2/1,... ,2/n) is the second 
elementary symmetric function of {2/1,..., 2/n}, and n > 1. 

In studying the convergence of (3.9) and the other multiple series in this paper, we 
utilize the analysis in [21, p. 134] that depended on the following multiple power series 
ratio test. 

Lemma 3.3. Let f{yi)..., yn) be a function of{yi^..., yn}. Given the multiple series 

^{yi,.;yn}>of(yi>'->yn)> Mt 

f(yi, • • • > 2/m-l, 2/m + 1, J/m+1 j • • • > Vn) 
9m(yi,--,yn) 

for m = 1,..., n. Then, if 
f(yi,-',yn) 

(3.10) 

(3.11) lim gm(syi9...,6yn) < 1 
e—»-oo 

for m = 1,..., n, the multiple series converges absolutely. 

Before applying Lemma 3.3 to check the convergence of (3.9), we utilize the com- 
parison test and consider the dominating multiple series determined by replacing 

g(»-l)[(V)+»-+(,?)]g-ea(yll...>yn) 

by 
-((n-l)/2)(yi+...+yn) 

(3.12) 

(3.13) 

This step depends upon the identity 

(n-l) (»)+••+(-) 62(3/1, ...,2/„) 

= -^2^(2/1 + --- + yn) + l      E     (Vr-Vs)2- (3-14) 
l<r<s<n 

Now, for the dominating multiple series, apply (2.2), interchange the summations, 
and then apply Lemma 3.3 to the multiple power series arising from each of the 
resulting n! inner multiple sums. We find that some inner multiple power series require 
at least 0 < \q\ < 1 in order to converge absolutely, while the rest need 1 < \q\. If one of 
these conditions is true, the other is false. Thus, this application of Lemma 3.3 to (3.9) 
is inconclusive. A more delicate analysis is required to establish the convergence of 
(3.9). On the other hand, a similar (or even simpler) analysis is sufficient to establish 
convergence in the rest of this paper. 
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We next carry out an analysis similar to that in (3.4) to (3.6). Apply (2.2) to (3.9), 
rearrange, and permute the subscripts of y. In the resulting identity, set t = <j, then 

take d(2)/dxidx2'"dxn'~1, and finally set xi = ••• = xn = 1. Again, apply the 
classical determinant evaluation in Lemma 2.1. We obtain the conjecture: 

Conjecture 3.4. Let n > 1 and 0 < \q\ < 1.   Assume that suitable convergence 
conditions hold. Then 

i=l — oo<2/i<oo   ^ 
2/i+-+yn>0 

x q-e^^Vn) qY-=1[i^lly^(i-i^l)yi}        JJ ^ _ ^ + , 

l<r<s<n 

w;ftere 62(2/1,..., 2/n) ^ itfte second elementary symmetric function of {2/1,..., yn}. 

The case n = 1 of (3.15) is just the case t = q of (3.8). The case n = 2 is not the 
same as that found by Hecke and Rogers. 

The case n = 2 of Conjecture 3.4 is given by 

>-r]}   (3. 15) 

(vq) 2 _ y^ [1 + 2(2/2-2/1)]   ^-QT/x+ya ^(yi-^+^+Sya]^ (3^ 

- 00 < 7/1,2/2 < 00 
yi+y2>o 

te 4) yi+y2 

where 0 < \q\ < 1. We have checked with Mathematica [33] that both sides of (3.16) 
agree up to g300. 

The case n = 4 of Conjecture 3.4 yields an expansion for 77(g)14 that is different 
from the G2 expansion for r}(q)u in [18, pp. 141-142, (6)]. 

4. Some expansions for products of powers of (<?a;<?m)oo 

In this section, we derive three infinite families of expansions for the products of powers 
of (ga;gm)c5o which are listed in (1.7). 

The first expansion is a consequence of the U(n + 1) generalization of the Jacobi 
triple product identity given by Theorem 1.2 from [22]. That is, we start with the 
theorem: 

Theorem 4.1 (A U(n + 1) generalization of the Jacobi triple product identity). Let 
t and asi,... ,xn be indeterminate, and let n > 1. Suppose that none of the denomi- 
nators in (4.1) vanishes, and that 0 < |g| < 1. Then 

s   { n i - J^H n [(^)nyi"(yi+-+yn)] 
x (_l)(n-l)(2/i+-+!/n)9[n[(y

2
1)+-..+(^)]+yi+2y2+...+n2/n] 

n r / T \ yii *) 
x TT   ( — )       g-ca(yi,...,yn) I ^i+-+2/n 

= n [(?) (.fO ]n[(-^) K'^j^l   <«) 
where 62(2/1, •.., 2/n) is #&e second elementary symmetric function of {2/1,..., 2/n}- 
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Apply identity (2.2) to (4.1), rearrange, and permute the subscripts of y.   This 
yields the identity: 

-oo<$/i,...,2/n<oo <TeSn M=l 

xx(i
n+1)^(n)-2(2/i+---+3;n)+o-(n)-n,    1wn_1)(2/1+...+yn) 

x gE?=i[W2)y-+(«--n/2)2/i]-e2(2/1,...,2/n)l t2/1+...4-2/n 

- n [(i) fe) ] n [(-*£) (-'-'I) ("4 <") 
l<r<s<n L x4*'* / oo     \   a/r / ooJ    j—i L \        ^^ / oo   \ aj% / <x> J 

Let m > 2 be an integer and let I be an integer such that 1 < I < m. Replace g by 
qm and then replace £ by —tq~l. We obtain 

53 Y sign(a){n [a>
+1>Mi>-(vi+-"+yn)+<T(iMJ 

,i,-.,2/n<oo cre5n ^i=l -oo<yi 

X XTI 
(n+l)y<7(n)-2(yi+--+2/n)+<T(n)-n,      sn(2/1+...+2/n) 

i-iy 
x ^E?=i[(^^/2)yt

?+(mz-mn/2-Z)2/i]-me2(t/i,...>2/n) Uyi+-+yn 

(4.3) 

where we have used the standard notation for products of ^-shifted factorials in (1.8). 

Set t = 1 and xn = 1. Take M2'/dxidx^... c^n-i and then set xi = • • • = £n_i 
= 1. We have 

rn—1    i 

-oo<2/i 
Y   Y ^w {n n [(n+i)»»(o -(w+---+»») 
i,...,2/„<oo o-G5n ^i=lj=l 

+ a(i)-i-(;-l)] 
X ( — l)n(2/i+---+2/n)^E?=i[(m^/2)l/t

?+(mz-mn/2-'Z)2/i]-me2(2/i,...,2/n) I 

(-ir-^i!   [J   [(«ro,9m;«m)jn[(«m-',g',?m;gm)J.     (4.4) 
i=l      l<r<s<n 

We need to evaluate 

n—1    i 

2=1 

^ sign(a) fj [] [(n + l)ya(i) - {yi + • • • + yn) + <r(t) - i - (j - 1)] .       (4.5) 

First, change the index on the first product so that i = 2,..., n instead of i = 1,..., n— 
1.  Now define f3(i) = cr(i — 1) for i = 2,... ,n and /3(1) = (j(n).  This means that 
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sign(cr) = (—l)n~1sign(/3). Thus, the following holds: 
n—1   i 

£ sign(a) H 11 [(n + VV'W - (Wi + •' • + Wn) + ^(*) - * - 0' - 1)] 
creSn i=l j=l 

n   z—1 

= (_ir-i£sign((T)j]j-j 
(3€Sn i=2 j=l 

(n + l)vp(i) "-(yi + '-' + Vn) 

+ i9(<)-(i-l)-0,-l) 
n   i—1 

= (-ir-1^Sign(a)nn (n + l)yp(i) -(yi + --- + yn) 

+ I3(i)-(i-i)-(j-i) (4.6) 

Now, the last sum in (4.6) is the same determinant which occurred in Sections 2 and 
3. Therefore, we have proven the theorem: 

Theorem 4.2. Let \q\ < 1 and let I and m be integers such that m > 2 and 1 < I < m. 
Let n > 1. Then 

(qm;qm)£(qm-l,ql;qm)Z, 
n-1 

= ni!"1       E 11    [(n + l)ys-(n + l)yr + s-r} 
i=l       — cx)<2/i,...,yn<oo   l<r<s<n 

x (_l)^(l/i+---+2/n)^E?=i[(rnn/2)yi+(7Tli-rrin/2--02/i]-^e2(i/i,...,yn) (4^ 

^Aere 62(2/1,..., 2/n) w t/ie second elementary symmetric function of {2/1,..., yn}. 

The case n = 1 of Theorem 4.2 gives various well-known specializations of the 
Jacobi triple product identity. We obtain (1.1) when n = 1, m = 3, and £= 1. Taking 
m = 2 and ^ = 1 in (4.7) leads to an expansion for 

(?;?)2?(92;92)fe-1)a-1- (4-8) 
For example, the case n = 2, m = 2, and ^ = 1 of (4.7) gives 

(<r,*)4oo=       £       [l + 3(y2-yi)]<f^f+2(
1+'T-). (4.9) 

-oo<yi,2/2<oo 

Observe that (yl + y^) and (2/2 — 2/1) are unchanged when (2/1,2/2) is reflected through 
the line 2/1 + 2/2 = 0, that is when (2/1,2/2) •-> (—2/2, — 2/i)- We then rewrite (4.9) as 

00 00 

(«;«)£,= E (ej/x + i^+^+X^? 
2/i=-oo 2/!=! 

+ 2        £       [1 + 3(j,2 - m)) qvl+y^r-i-"). (4.10) 
—oo<2/i,y2<oo 

2/1+2/2 >0, 2/1 #2/2 

The first sum in (4.10) is a specialized derivative of the quintuple product identity 
sum, and the second is the classical theta function i?3(0, q2) minus 1. By an identity 
of Ramanujan [2, Entry 8(ix), p. 114], first proven by Gordon [9, (11)], the first 



236 LBININGER AND MILNE 

sum equals (q4;q4)Uq4;qs)l, and a classical identity of Gauss in [1, p. 23 (2 2 12)1 
unplies that the second sum equals [-1 + foVW-^V)",]. See [20, p. 589] for 
more detailed discussion of these two sums in (4 10) 

of S8^? T-A "irJ^i=1 of (4-7) gives an expansion for the eiehth power 
of the product side of the Kac-Peterson identity in [13, final equation]. 
_   To derive the second family of expansions, we begin with (2.3). Let m > 2 be an 
integer and let I be an integer such that 1 < I < m. Repiace q by ^ in (2.3) md then 
replace t by tq\ We obtain 

(V)*-
19m-<;<r)oo(<r;<r&   n   \(^--)(qm-,qm^;qm) ' 

l<r<s<n<-^ Xs)  V       ** Xr'       )^ 

=      S       S sign(^){n L^'W"^^--HhO+'W-*! 
-oo<yi<oo(Te5n '•1=1 J 

i=l,...,n 

X (-l)"(3'i+-+2/n)i-(J/l+-+!/„)gEr=l[
J¥i^+(mi-^-/)yi]\ 

Set t = 1. TaJce d^) ldx\dx\ ... dx^ aiid then set x1 = ■ ■ • = xn = 1. We have 
n-1 

Hi! • (9'' <7m"'; ?ro)oo(gm; gm)So(gro; 9
m)^-1) 

2=1 

= zi E s^c-7)] n n^w -(»!+•••+»»)+aw -»- a -1)] 
J=l,...,n ^ 

x (_l)»(»i+-+»»)?E?.x["!?»W?+(m<-i¥i-j)y4] 1 i2 

in r^T ^ ^ T081!!26,.^ the inner SUm in (4-12) is the same determinant as in (3.5). We have derived the theorem: 

Theorem 4.3. Let \g\ < 1 and let I and m be integers such that m > 2 and 1< I < m 
Let n > 1. Then ~ 

^r-^Uiq^q^^fiil-1      £ 11    ^s -nyr + s -r] 
i=l          -cx><yi<oo l<r<s<n 

*=1 n 

X (-l)n(Vi+-+Vn)qi:?=1[*Pv?+(mi-zp-l)yi]^     (4 ^ 

The case n = 1 of Theorem 4.3 gives various well-known specializations of the 
Jacobi triple product identity. Note that the cases n = 1 of the right-hand sides of 
4.7 and (4 13) are equal. Thus, the case n = 1, m = 3, and t = 1 of (4.13) also gives 

(1.1). Now, taking m = 2 and / = 1 in (4.13) leads to an expansion for 

(<7;<7&(9V)Sr2. (4.14) 
For example, the case n = 2, m = 2, and I = 1 of (4.13) gives 

[(g;9)oo(gW)oo]2=        ^       [l + 2{y2-y1)]qivl+Zvl+V2-vK ^^ 
-00<2/1,2/2<00 
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In the same way that we rewrote (4.9) as (4.10), we find that (4.15) equals 

00 00 

+ 2       Y,       [i + 2(y2-yi)]q2yl+2y2*+y2-yi.    (4.16) 
-oo<2/i,2/2<oo 

Vi +2/2 >0, 2/17^2/2 

The first sum in (4.16) is the case q H-» ^2 of (1.2). Just note that yi > 0 gives the 
k = even terms in (1.2) and 2/1 < 0 gives the odd terms. Thus, the first sum in (4.16) 
is (q2] q2)^. The second sum in (4.16) is the classical theta function #3(0, q4) minus 1, 
and thus equals [—l-f (q8] q8)oo{—q4) q8)lo]- The product in (4.16) is the square of the 
product side of the Kac-Peterson identity in [13, final equation]. 

To derive the third family of expansions, we begin with (3.4) and follow the same 
steps which lead to Theorem 4.3. The only difference is that, in this case, we may 
allow 0 < I < m and m > 1. We obtain the theorem: 

Theorem 4.4. Let \q\ < 1 and let I and m be integers such that m > 1 and 0 < I < m. 
Letn > 1. Then 

n-1 

= nirl E (9m;9'%V.+*.     11    [nV.-nVr + *-r] 
i=l -oo<2/ivM2/n<o° l<r<s<n 

2/i+-+2/n>0 

x(_l)n(2/i+--'+yn)gEr=i[Iir2/?+(mi--^n-Z)y^ ^^ 

If m = 1 and £ = 0, then we get Theorem 3.1. If n = 1, we get various specializations 
of the Euler identity in (3.1). If m = 2 and £ = 1, then (4.17) gives an expansion for 

(q;q)oo(q2;q2)£-2. (4.18) 

For example, the case n = 2, m = 2, and £ = 1 of (4.17) gives 

te <zM<z2; ^ -      E      [\+
2
2(-y2r

yi)] q
2yl+2y2>+y*-yi (4.19) 

-oo<yi>ya<oo     ^  ' ^  m+M 
2/1+2/2 >0 

where 0 < \q\ < 1. Since the first sum in (4.16) is (tf2;*?2)^, and Slater's identity of 
Rogers-Ramanujan type from [29, p. 160, eq. 83] can be written as 

^    a2y2 (a a7 a8- a8)    (a6 a10- a16) 

it follows that (4.19) can be transformed into 

(n2  n14  n16.n16\     (n12  fflQ.efl2\ 

MooiqW)^ = -i + {Ml + {q'q 'g 'r
g
2.)oo

2
g ,q ,9 )o0 
Joo 
,.2_i_o„.2 j __                                      a^vl+22/2 +2/2 -yi 

+ j; [i + 2(ifc-ifr)]2--_  (4.21) 
-oo<yi,y2<oo ^ '* ^i+y2 

2/1+2/2 >0, yi#y2 
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where 0 < \q\ < 1. The expression [-1 + (g2;^2)^] comes from the 2/1+2/2 = 0, 
2/12/2 7^ 0 terms in (4.19), and the quotient of products in (4.21) results from applying 
(4.20) to the single sum of 2/1 = 2/2 > 0 terms in (4.19). 

5. A proof of the quintuple product identity 

In this section, we give a new derivation of the quintuple product identity [8, Ex. 5.6, 
p. 134] 

00 

£   (_ W<3v-l)/2^(i + ^ = {q> _Z) _q/z. g)oo(^2) q/z2. q2)oo (5jl) 

2/=-oo 

where 0 < |g| < 1 and z ^ 0. 
We obtain (5.1) as the case n = 1 of a U(n + 2) extension of the quintuple prod- 

uct identity. We derive this multivariable extension from (4.1) and the Jacobi triple 
product identity [8, (1.6.1), p. 12] given by 

(g,-xgi-x-1;g)0O=   £ &qtf+vV* (5.2) 
2/=—00 

where 0 < \q\ < 1 and x ^ 0. 
We first use (5.2) to transform the product side of (4.1). Set x = txi/xn and then 

take the product of both sides of (5.2) for i = 1,..., n. This gives 

('4[(-^L(-(-t), 
n n 

Y^      t»i+-+»»a.-(wi+-+ih.)JJa;WjJ9(»?+Vi)/a#    (5-3) 
-oo<yi<oo z=l i=l 

-cx?<2/i 

Observe that the product side of (5.3) is the second product of (4.1). Thus, we can 
rewrite (4.1) as 

E   { n i-^-qvr~v°\n[for^14---^] 
'iv)2/n<oo M<r<s<n *■ 8 -' i=l 

x (_l)(n-l)(yi+-»+yn) g[n[(v
2

1)+-+(1,
2-)]+yi+22/2+-+n2/n] 

n  r /    \ 2/*T 1 xn   ( —)       g-69^-"*-) l t»1+- 

- n [(I) \xt) ] 
x       ^      tw+.»+y»x-(yi+.»+y„)JJa.y*JJg(»?+»i)/2   (54) 

■•••+yn 

l<r<s<n 

n n 

-oo<yi<oo 
i=l,...,n 

z=l        i=l 

where n>l,0<|^|<l, and 62(2/1,.. .,2/n) is the second elementary symmetric 
function of {yi,...,yn}. 
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2/l + "-+2/n=0 
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Equating the coefficients of t0 in (5.4) yields the following identity. 

E   { n [i-^'--]n[^+1)l 
1,...,yn<oo ^l<r<3<n L 3 J i=l 
••+yn=0 

X q2 (Vi+-+yn)+l/a+2V3+-+(n-l)yn q-e2(yi^,yn)\ 

= u [(?) (.?) ]    E    fkfurf/2-   (5-5) 
l<r<s<nLV   s/oo   \      r/ 00J _oo<yi,...,yn<oo 2=1 i=l 

2/1H {-yn=0 

If we assume that n > 2, then we can write 2/n = — (yi H h yn-i)- Apply this to 
(5.5) and simplify. We have 

n-l r 

E      n 
-oo<yi,...,yn-i<oc l<r<s<n-l L 

n-l r /       \ (n+l)yi 

I _ ^LqUr-ys n 
z=l 

1 _ fl^i + d/lH-'+l/n-l) 

U—1 r / N.   I 

n[(£) 7Er=ri
1[(n+l)t/?-(n-z)yi]+(n+l)e2(2/i,...,yn-i) 

n 
l<r<s<n ?/oo   V   XrJ 00 

n-l r 3/tl 

r7y?+-+y^_1+e2(yi,..-)2/n-i) (5.6) -    E    n 
-oo<yi,...,yn_i<oo i=l 

Next, set Xi/xn = ^ in (5.6), and then rewrite the first product in the right-hand 
side of (5.6) by means of the identity: 

n [(?) («?) 1- n [(?) («?) IntMoofe-'w. 
l<r<s<n L\^/oo  \   Zr/ooi        l<r<s<n-l L \zs / oo \   ^Z ooJ  i=1 

(5.7) 

Letting n 1—> n + 1 now yields the theorem: 

Theorem 5.1 (A U(n + 2) extension of the quintuple product identity). Let 21,..., 
zn 6e indeterminate. Let n>l and 0 < |g| < 1. Then 

£ J]    [i-J:^-!/Jjj[1_z.g3/i+(!/1+-+vn)] 
'i,---,yn<oo l<r<s<n L * J i—i 

n 
x TT L(n+2)Vil   gEr=1[(n+2)y?-(n+l-i)yi]+(n+2)e2(y1,...,yn) 

-oo<yi 

2=1 

n [(?) l<r<s<n 

X 

n 

H [(^)^(92r1)oo] 
z=l 

.2  1 1 n.2 

-cx)<yi,...,yn<cx) 2=1 

where 62(2/1,..., 2/n) ^ ^/ie second elementary symmetric function of {yi,..., yn} 

(5.8) 
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It is not hard to see that the quintuple product identity in (5.1) is an immediate 
consequence of (5.2) and the case n = 1 of (5.8) given by 

oo oo 

y1=z~oo 2/l=-00 

In (5.2), take x »-> ziq~1/2 and then set q »-» q2. Apply the resulting identity to the 
sum on the right-hand side of (5.9), and then set z\ \-+ —z. We obtain 

oo 

Y,   [(1 + zq2y) (-lyftft-y] = {-z, -qz-^ qUizq, z^q, q2; q2)^ 
y=—oo 

= (-z,-zq,-z 1q,-z 1q2,zq,z  1q,q2;q2)00 

= (-z, -z-W, q2; fUtfq2, z-\2; q^. 
(5.10) 

Finally, let q i-* tf-l2. Equation (5.10) then becomes the quintuple product identity in 
(5.1). 

The case n = 1 of (5.8), via (4.1), is directly related to the £7(3) or A2 denominator 
formula. That is, the above derivation of the quintuple product identity in (5.1) 
followed from three applications of (5.2) (the A^ * denominator formula), and one 
of the A2 denominator formula. Standard Lie algebra proofs in [17, p. 38] of (5.1) 
utilized just the A2 denominator formula, or in [7, p. 289], the unspecialized character 
formula for a fundamental standard module for A\ ' (which was equivalent to the 
denominator formula for A2  ). 

6. A comparison of powers of 77 with those in Macdonald 

In this section, we utilize the classical results of [25, pp. 348-378] and properties of 
Chebyshev polynomials [6, pp. 183-187], [10, pp. 1032-1033] to derive various formulas 
and recursions for all the dimensions which yield the same powers of 77(g) in Theorems 
2.3, 3.2, and Macdonald's [18] expansions corresponding to affine root systems of type 
Ae, Be, Ct, BCe, and IV These dimensions consist of very sparse "Lucas sequences" 
[27, pp. 53-74], which we express in terms of Chebyshev polynomials. We also show 
that the powers n2 — 2 of (q; q)^ in Conjecture 3.4, for n > 2, never appear as a power 
of 77(g) in these expansions of Macdonald. 

The powers of 77(g) in Theorems 2.3 and 3.2 are n2+2 and TI
2
, respectively, for n > 1. 

On the other hand, the powers of 77(g) in Macdonald's expansions corresponding to At 
(£ > 1), Be (£ > 3), Ci (£ > 2), BCt (£ > 1), and Di (£ > 4) are £2+2£, 2£2+£1 2£2+£1 

2£2 — £, and 2^2 — £, respectively. These expansions can be found in pages 134-135 
((6)(a)-(b)), 135 ((6)(a)), 136 ((6), 137-138 ((6)(c)), and 138 (6), respectively, of [18]. 

Except for £ = n = 1, in the case of n2 -f 2 = £2 + 2£, there are no positive integral 
solutions (£, n) to equating n2 + 2, n2, or n2 — 2 with £2 + 2£. Similarly, there are no 
such solutions when equating n2 + 2 with £2 or £2 — 2, or equating n2 with £2 — 2. We 
use the analysis in [25, pp. 348-349] and compare u — v and u + v with the factors of 
N in the Pell equations u2 - v2 = N, for N = 1,2,3, and 4. 

We now study the rest of the cases in which each of n2 + 2, n2, n2 + 2ra, or n2 — 2 
equals 2^2 + £ or 2^2 — £. For convenience, we use the variables x = £ and y = n. We 
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then seek all positive integral solutions of the following eight quadratic Diophantine 
equations: 

2x2 - y2 + x - 2 = 0, 2a;2 - y2 - x - 2 = 0, (6.1) 

2a;2 - y2 + x = 0, 2x2 - y2 - x = 0, (6.2) 

2a;2 - y2 + x - 2y = 0, 2x2 - y2 - x - 2y = 0, (6.3) 

2x2 - y2 + x + 2 = 0, 2a;2 - y2 - x + 2 = 0. (6.4) 

Completing the square in (6.1)-(6.4) as in [25, p. 375] immediately gives the following 
Pell equations: 

8<;2 = -136 

a2 - 8v2 = -136 

w2_8v2 = _8 

u* - Sv' = -8 

u2 - 8v2 = 56 

u2    Q-2 8vz = 56 

Sv2 = 120 

u2 - 8v2 = 120 

w 

where   x = -(v — 1 
4 

where   x = T(^ + 1 
4 

where   x = -(v — 1 
4 

where   x = -(v + 1 
4 

where   x = - (v — 1 
4 

where   x = T(^ + 1 
4 

where   x = -(v — 1 
4 

where   x = -(i; + 1 
4 

and y = -w, (6.5) 

and y = -u, (6.6) 

and y = -u, (6.7) 

and y = -w, (6.8) 

and y = -n - 1, (6.9) 
o 

and y = -tx - 1, (6.10) 

and   y = -u, (6.11) 

and   y = QU. (6.12) 
o 

At this point, it is useful to recall the Chebyshev polynomials Tn(x) and Un(x) 
defined in [6, p. 184] by 

Tn(cos 6) := cos n0 

sin (n +1)0 
[/n(cos 0) := 

sin 6 

for   n = 0,1,2,..., 

for   n = —1,0,1,2,...,    where   x = cos 8. 

Note that we have the three-term recursions from [6, p. 185, (16)] given by 

Tn(x) = 2xTn-1(x)-Tn-.2(x),  with (To(a;),Ti(x)) = (l,a?),for n > 2, 

Un{x) = 2xC/n_i(a;) - C/n-2(x),  with (J7-i(a:),E/b(a;)) = (0,1),for n > 1. 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

Thus, if x is an integer, then so are Tn(x) and Un(x). Our use of Chebyshev polyno- 
mials is motivated by [25, p. 389, Prob. 35]. 

In order to state our first theorem involving (6.7) and (6.8), which compares n2 

with 2£2 ±£, we also need the Pell numbers {Pr} from [27, pp. 55, 72], [30, sequence 
M1413] determined by 

Pr = 2Pr_1 + Pr_2,        with    (Po,Pi) = (0,l),        for   r > 2. (6.17) 

The {P2r+2} are the bisection of Pell numbers in [30, sequence M2030] and {Pjr+i} are 
the classical Pythagorean triangles sequence in [28, pp. 16-20], [30, sequence M3955]. 

We now have the theorem: 
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Theorem 6.1. All positive integral pairs (£,n) for which Theorem 3.2 and Macdon- 
ald's Bij Ce, BCe, and De results give expansions for the same power n2, as respec- 
tively, 2£2 -\-t or 2£2 — l, ofr}(q) are given by (£,ri) = (xr,yr), with 

(xr,yr) = (Pl+2,\P4r+i) = (4f/r
2(3),f/2r+1(3)) for   r>0,      (6.18) 

(Xr,Vr) = (Pi+l, ^4r+2) = ((^(3) - C/r-l(3))2, %r(3)) for    T > 0,        (6.19) 

respectively, where Pr are the Pell numbers in (6.17), and Tr(x) and Ur(x) are the 
Chebyshev polynomials in (6.15) and (6.16).  The P2r+i = Ur(3) — J7r_i(3) in (6.19) 
is the hypotenuse of the r-th Pythagorean triangle with consecutive integral legs. 

The yr in (6.18) and (6.19) are determined by the recursion 

yr = 34ifr-i - yr-2       for   r>2 (6.20) 

where (yo>2/i) equals (6,204) or (1,35), respectively. The xr in (6.18) are determined 
by 

xr = 34av_i - a;r_2 + 8       for   r > 2 (6.21) 

where (XQ,XI) = (4,144), and the xr in (6.19) are determined by 

xr = 34a;r_i - Xr-2 - 8       for   r > 2 (6.22) 

where (xo,a;i) = (1>25). Except for (xo,yo) = (1>1)> ^e have xr < yr in (6.18) and 
(6.19). 

Substituting (6.18) and (6.19) into (6.2) yields interesting identities for the Pell 
numbers Pr and specialized Chebyshev polynomials. Additional relationships for the 
{xr} and {yr} in (6.18) and (6.19) follow from the material in [26], [27, pp. 53-74], [6, 
pp. 183-187], and [10, pp. 1032-1033]. 

We are led to an elegant generalization of Theorem 6.1 by considering the four 
families of quadratic Diophantine quations in x and y determined by: 

u2 - (m2 - l)v2 = -(ra2 - 1)     where   x = -^:—     and     y =    2^   ,    (6.23) 

u2 - (m2 - l)v2 = -(ra2 - 1)     where   x = 7     and     y = —~—-,    (6.24) v / v J m+1 ra2-!'    v      J 

u2-(m2-l)v2 =-(m2-1)     where   x = —?—-    and     y = —^—-,    (6.25) 
m? — 1 m2 — 1 
ft)   —-   VYt <!/ 

n2 - (ra2 - \)v2 = -(ra2 - 1)     where   z = —^—-    and     y =—z—7?    (6.26) 
ra2 — 1 raJ — 1 

where ra = 2,3,4, — 
Prom the case D = ra2 — 1, u = ra — 1, and v = 1 of Corollary 6.35.1 in [25, p. 354], 

we have that (IA, V) = (ra, 1) is the fundamental solution of u2 — (ra2 — l)*;2 = 1. 
Furthermore, this fact and Theorem 6.43 in [25, p. 363] imply that any fundamental 
solution (u,v) of 

rf _ (m2 _ xy = _(m2 _ j) (6<27) 

must satisfy the inequalities 

0 < v < y/(m + 1)12       and   0 < |ix| < (ra - l)y/(m+l)/2. (6.28) 
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Checking v and solving for u, we find that (ix, v) = (0,1) is one such fundamental 
solution. For m = 3, (0,1) is the only fundamental solution of (6.27). Keeping in 
mind (6.7) and (6.8), it is not hard to see that Theorem 6.1 is a consequence of the 
case m = 3 of the following theorem. 

Theorem 6.2. Let m > 2. All positive integral pairs of solutions (xryyr) to (6.23)- 
(6.26) corresponding to the fundamental solution (z/, v) = (0,1) of (6.27) are given 
by: 

(xr,Vr) = (^^T^'^r-fiM) = (2(m - l)U?(m),Uar+iM) forr> 0, 

(6.29) 

(Xr,yr) = f^y/1,^^)) = ((C/r(m) - [/r-i(m))2,C72r(m)) /orr > 0, 

(6.30) 

(xr,yr) = (
r2r^)

1"
1^2r+i(m)) = (2C/r

2(m),?72r+1(m)) /orr > 0, (6.31) 

0rr,2/r) = f   2r^2 _ j^ ,^2r+2M j = (2i[7r(m)i7r+i(m),C/2r+2(m)) for r > 0, 

(6.32) 

respectively, where Tr(x) and Ur(x) are the Chebyshev polynomials in (6.15) and 
(6.16). 

The yr in (6.29)-(6.32) are determined by the recursion 

yr = 2(2m2-l)yr-1-yr-2       for   r>2 (6.33) 

where (2/0,2/1) equals (2m,Us(m)), {l,U2(m))f (2m,Us(m)), and {Am2 - l.U^m)), 
respectively. The xr are determined by the recursions 

xr = 2(2m2 - l)a;r_i - xr-2 + c(m)       for   r > 2, (6.34) 

with c(m) ^zven by 

4(m-l),        -4(m-l),        4,        and   4m, (6.35) 

respectively, and where (xo^i) equate (2(m~l),8(m-l)m2), (l,(2m-l)2), (2,8m2), 
and (4m,4m(4m2 — 1)), respectively. 

Define Pr(m) by P2r+2(m) :=i/2(m- l)l7r(m) andi^r+iOn) := C/r(m)-C/r_.i(m), 
mtft Po(^) ••= 0 and C/r(x) determined by (6.16) /or r > 0. We then have 

Pr{m) = v/2(m-l)Pr_i(m) + Pr-2M       /or   r > 2 (6.36) 

^/iere(Po,Pi) = (0,l). 

Before proving Theorem 6.2, we need the following identities from [6, pp. 183-187], 
and [10, pp. 1032-1033] for Chebyshev polynomials. 

First, a slight rewriting of [10, p. 1032, 8.940 (1) and (2)] gives 

Tr(x) = \ [{x + y/x* - If + (x- \/x2 - l)r] , (6.37) 

Ur{x) = ^==j [(x + V^iy*1 - (x - V^23!)^1] , (6.38) 
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for r > 0. Next, from [6, p. 187, (34)-corrected, and (36)], we have 

Tn+m (a?) + Tn_m (x) =2Tm (x)Tn (x), with   n > m, (6.39) 

{7n4.m_i(x) + C/n_m_i(a:)=2rm(x)C/n_i(a;), with   n > m. (6.40) 

Equations (3) and (4) from [6, p. 184] are 

Tn{x) = Un(x) - xlln-^x)   and   (1 - x2)i7n_i(x) = xTn(x) - rn+i(a?). (6.41) 

Finally, we have: 

r2r+2(x) - 1 = 2(x2 - l)U*(x)t (6.42) 

T2r+1(x) + 1 = (x + l)(Ur(x) - Ur-i(x))2, (6.43) 

T2r+i{x) -x- 2(x2 - l)J7f._1(s)^P(a!)> (6.44) 

for r > 0. Equation (6.42) is the case n = m = r +1 of [6, p. 187, (35)] and is the 
corrected version of [6, p. 187, (39)]. Equation (6.44) is the case n = r + l, m = rof 
[6, p. 187, (35)]. Use the first relation in (6.41), followed by (6.37) and (6.38) to prove 
(6.43). 

We now prove Theorem 6.2. Recall that (u, v) = (m, 1) is the fundamental solution 
of u2 - (m2 - l)v2 = 1. Thus, by Theorem 6.44 of [25, p. 364], it follows that all 
positive integral solutions (urivr) of (6.27) of the class K of any given fundamental 
solution (^o^o) are determined by the coupled recursions 

ur = mur-i + (m2 — l)vr-i    and   vr = ur-i + mvr-i    for   r > 1, (6.45) 

with m > 2. Using standard matrix methods which utilize a Jordan decomposition 
combined with (6.37) and (6.38), we find that 

ur = uoTr(m) + vo(m2 - l)C7r_i(m) for   r > 0, (6.46) 

vr = uoUr-i(m) + i;oTr(m) for   r > 0. (6.47) 

Taking (uo,vo) = (0,1) = (f7_i(m),To(m)), we obtain 

Ur = (m2 - l)J7r.i(m)    and   vr = Tr(m) for   r > 0. (6.48) 

Equation (6.48) also follows by observing that (6.41) implies that (6.48) satisfies (6.45) 
with (UQ.VO) = (0,1). 

Applying the case m > 2 of (6.45) to (ur,vr) interchanges the conditions 

u = 0    (mod m2 — 1)    and   v = 1    (mod m + 1), 

with 

and also 

with 

u = 0    (mod m2 - 1)    and   v =-1    (mod m + 1), (6.49) 

u = 0    (mod m2 — 1)    and   v = 1    (mod m2 — 1), 

^ = 0    (mod m2 — 1)    and   v = m    (mod m2 — 1). (6.50) 

It now follows that (6.42)-(6.44) and the conditions (6.49) and (6.50) applied to 
(6.48) and (6.23)-(6.26) yield (6.29)-(6.32). 

The recursions in (6.33) and (6.34) are consequences of (6.39), (6.40), and the left- 
most equalities in (6.29)-(6.32). If yr equals any of C^r+i^)? ^2r(^)) or ^2r+2(#)j 
then yr satisfies (6.33) with m = x. Just consider (6.40) with (m,n) equal to (2,2r), 
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(2,2r - 1), or (2,2r + 1), respectively, and note that T2(x) = (2x2 - 1). If b is 
any constant independent of r, then each of &T2r+2(#)5 ^2r+i(^)j and 6T2r-t-3(x) 
also satisfy (6.33) with m = x. This time, look at (6.39) with (m,n) equal to 
(2,2r), (2,2r — 1), or (2,2r + 1), respectively. To recover the recursions for xr in 
(6.34), observe that if zr satisfies (6.33) and xr = zr + e, then xr satisfies xr = 
2(2m2 - l)xr_i - xr_2 + 4e(l - m2). 

The case r H-> 2r +1 of (6.36) follows directly from (6.16), while the case r i-> 2r + 2 
is immediate from the definition of the Pr(m). 

This completes the proof of Theorem 6.2. 

The same analysis responsible for Theorem 6.2 specializes to yield the positive 
integral solutions (xr,yr) to (6.1), (6.3), and (6.4) via (6.5), (6.6), and (6.9)-(6.12). 

We have the theorem: 

Theorem 6.3. Let Tr(x) and Ur(x) be the Chebyshev polynomials in (6.15) and 
(6.16). Then, all positive integral pairs of solutions (xr^yr) to (6.5) are given by: 

(xr)yr) = (2U2r-i(3) + ^(3) - i, r2r(3) + 5l72r-l(3)) 

= (2C72r_i(3) + r2r(3) + 4C/r
2_1(3), r2r(3) + 5^-1(3))    for r > 0,    (6.51) 

and 

(xr,yr) = (-2C/2r.+1(3) + ^T2r+2(3) - i, -r2r+2(3) + 5C/2r+i(3)) 

= (-2C/2r+1(3) + r2r+2(3) + 4f/r
2(3), -r2r+2(3) + 5t/2r+1(3))    for r > 0. 

(6.52) 

All positive integral pairs of solutions (xr,yr) to (6.6) are given by 

(«r,Vr) = (2War(3) + jT2r+1(3) + i, T2r+i(3) + 5f/2r(3)) 

= (2C/2r(3) + r2T.+1(3) + (f/r(3) - t/r-i(3))2, r2r+1(3) + 5%r(3)) /or r > 0, 
(6.53) 

and 

(Xr,Vr) = (-2C/2r(3) + j^+^S) + i, -:r2l.+i(3) + 5[/2r(3)) 

= (-2C/2r(3) + r2r+1(3) + (C/r(3) - t/,--!^))2, -r2r+1(3) + 5C/2r(3)) 

/or r > 0. (6.54) 

All positive integral pairs of solutions (xr,yr) to (6.9) are given by 

(xr,Vr) = (20^+1(3) + jT2r+2(3) - i, T2r+2(3) + ^2r+i(3) - l) 

= (2C/2r+1 (3) + 4C/2(3), T2r+2(3) + U2r+1 (3) - l)    for r > 0,        (6.55) 

and 

(xr,Vr) = (2?72r(3) - iT2r+1(3) - i, r2r+1(3) - C72r(3) - l) 

= (2C/2r(3) - ([/r(3) - t/r-i(3))2, T2r+1(3) - ^(3) - l)    for r > 0. 

(6.56) 
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All positive integral pairs of solutions (xr,yr) to (6.10) are given by 

(xr,Vr) = (2t/2r+1(3) - ir2r+2(3) + i, r2r+2(3) - £/2r+i(3) - ij 

= (2C/2r+i(3) - 4^(3), r2r+2(3) - f/2r+i(3) - 1)    for r > 0,        (6.57) 

and 

{XriVr) = hUtriS) + jT2r+i(3) + j, T2r+i(3) + ^2r(S) - ij 

= (2U2r(3) + (0r(3) - C/r-i(3))2, r2r+1(3) + [72r(3) - 1)    /or r > 0. 

(6.58) 

Tfeere are no positive integral pairs of solutions (xr,yr) to either (6.11) or (6.12). 
The xr in (6.51), (6.52), (6.55), and (6.56) are determined by (6.21) where (xo^xi) 

equals (1,33), (9,313), (16,552), or (1,45), respectively. The xv in (6.53), (6.54), 
(6.57), and (6.58) are determined by (6.22) where (XQ^XI) equals (6,194), (2,54), 
(8,264), or (3,95), respectively. The yr in (6.51)-(6.54) are determined by (6.20) 
where (2/0,2/1) equals (1,47), (13,443), (8,274), or (2,76), respectively. The yr in 
(6.55)-(6.58) are determined by 

yr = 342/r_i -2/r_2 + 32       for   r>2 (6.59) 

where (yo^yi) equals (22,780), (1,63), (10,372), or (3,133), respectively. Except where 
(xo,yo) equals (1,1), (2,2), (1,1), or (3,3) in (6.51), (6.54), (6.56), or (6.58), we have 
Xr "^ Vr- 

The proof of Theorem 6.3 depends upon first finding the fundamental solutions 
(u,v) of u2 - 8v2 = N for N = -136, 56, and 120. For N = -136, we have from 
Theorem 6.43 of [25, p. 363] that any fundamental solution must satisfy 0 < v < 5 
and 0 < \u\ < 11. This yields all such fundamental solutions (u,v) = (8,5) and 
(M, V) = (—8,5). On the other hand, for N = 56 or N = 120, we have from Theorem 
6.42 of [25, pp. 362-363] that any fundamental solution must satisfy 0 < v < 2 and 
0 < \u\ < 10, or 0 < v < 3 and 0 < \u\ < 15, respectively. For the N = 56 case, we 
find all such fundamental solutions (uy v) = (8,1) and (z/, v) = (—8,1), in which we use 
(u,v) = (8, —1) instead of (u,v) = (—8,1). For the case N = 120, there are no such 
fundamental solutions. Thus, there are no positive integral pairs of solutions (xr,yr) 
to either (6.11) or (6.12). Having obtained the fundamental solutions, the formulas in 
(6.51)-(6.58) are consequences of the case m = 3 of (6.42), (6.43), (6.45)-(6.47), and 
(6.49). 

From the analysis in the proof of Theorem 6.2, we have that if yr is any of U2r(x), 
U2r+i(x), T2r(x), T2r4.i(a;), or any linear combination of these, then yr satisfies (6.33) 
with m = x. Corresponding recursions for yr -f e, with e a constant, are immediate. 
Specializing these remarks to x = 3 yields all the recursions in Theorem 6.3. Another 
motivation for our recursions is provided by comparing the well-known formula in [5, 
p. 91,(3.7.2)] or [27, pp. 54-55] with (6.37)-(6.38) and (6.46)-(6.47). 

Theorem 6.3 immediately implies the consequences: 

Corollary 6.4. All positive integral pairs (^, n) for which Theorem 2.3 and Macdon- 
ald's Bi, Ct, BCt, and Dt results give expansions for the same power n2 -f 2, as 
respectively 2^2 +^ or 2£2 — (,, of r)(q) are given by (£,n) = (xriyr), with (xr,yr) in 
(6.51) and (6.52), or (6.53) and (6.54), respectively. 



SOME NEW INFINITE FAMILIES OF 77-FUNCTION IDENTITIES 247 

There are no positive integral pairs (£,n) for which Conjecture 3.4 and Macdonald's 
Bi, Ct, BCtj and De results give expansions for the same power n2 — 2 of (g; q)^, as 
respectively 2£2 + £ or 2£2 - £, ofr)(q). 
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