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THE YOUNG MEASURE METHOD FOR A 
NONLINEAR VARIATIONAL WAVE EQUATION 

PING ZHANG,t Yuxi ZHENG* 

Abstract. A nonlinear wave equation arises in a simplified liquid crystal model through the 
variational principle. The wave speed of the wave equation is a given function of the wave amplitude. 
Hunter and Saxton has derived a simple asymptotic equation for weakly nonlinear unidirectional 
waves of the nonlinear wave equation. Previous work has established the existence of weak solutions 
to the initial value problem for the asymptotic equation for data in the space of bounded variations. 
We improve the previous work to the natural space of square integrable functions, and we establish 
the uniqueness of weak solutions for both the dissipative and conservative types. Our main point here 
is to show the new method called Young measure method which does not need bounded derivatives 
for compactness. 

We also have results on the full nonlinear wave equation. It has been known from joint work with 
Glassey and Hunter for the equation that smooth initial data may develop singularities in finite time, 
a sequence of weak solutions may develop concentrations, while oscillations may persist. We formulate 
a viscous approximation of the equation and establish the global existence of smooth solutions for 
the viscously perturbed equation. For monotone wave speed functions in the equation, we find an 
invariant region in the phase space in which we discover: (a) smooth data evolve smoothly forever; 
(b) both the viscous regularization and the smooth solutions obtained through data mollification and 
step (a) for not-as-smooth initial data yield weak solutions to the Cauchy problem of the nonlinear 
variational wave equation. The main tool is the Young measure theory and related techniques. 

More specifically, we study the Cauchy problem for the nonlinear wave equation 

f   uu - c(u)[c(u)ux}x =0,     t > 0,z £ R 

1   (u,dtu)\t=o = (uo,u1)(x)e(H\L*). 

The latest results are 
(1) On the asymptotic equation, we have existence and uniqueness of multiple weak solutions 

in the weak norm L2 of the derivative Ux. 
(2) For the nonlinear wave equation, we found some invariant regions and some global smooth 

solutions. U 

1. Origin of the variational wave equation. For nematic liquid crystals 
([CGH][EK][V]) , there is this Oseen-Prank potential energy 

(2) W (n, Vn) = a |n x (V x n)|2 + /3(V • n)2 + 7 (n • V x n)2 , 

where n G S2 denotes the mean orientation field of the long molecules of the crystal, 
while the positive constants a, /3, and 7 are elastic constants of the liquid crystal. For 
the special case a = /3 = 7, the potential energy density reduces to 

W^Vn^alVnl2, 

which is the potential energy density used in harmonic maps into the sphere S2. Similar 
to studies in harmonic maps, there are three types of equations associated with (2): 
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the elliptic, parabolic, and hyperbolic equations: 

8W 
Sn 

+ An = 0, 

6W     x 
nt = —i h An, 

on 
SW    \ 

n« = — 1-An. 
on 

Equation (1) is the hyperbolic type in one space dimension.   See [GH2] for more 
background information. 

For the one-dimensional case where n is restricted to S1 and u is used to represent 
the angle of n with the x-axis (see Figure 1), the potential reduces to 

W = c2{u){dxu)21 

where 
c2 (u) = a cos2 u + (3 sin2 (u). 

The equation in (1) is the Euler-Lagrange equation of the least action principle 

^ ff{(dtu)2-c2(u)(dxu)2}dxdt = 0. 

Figure 1. The angle of the molecule. 

2. Asymptotic equations. Despite its simplicity, equation (1) is not easy. A 
study of its geometric optical solutions is helpful and interesting. Look for solutions 
of the form: 

ip(t, x) = UQ + e'u(et, x — cot) + 0(e2) 

where ^o is a constant state and CQ = C(UQ) > 0 is its speed, Hunter and Saxton ([HS]) 
found that ?/(•, •) satisfies 

(3) (ut+uux)x = -ux 
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up to a scaling factor, assuming that c'^o) ^ 0. 
If ^o is such that c'(uo) = 0, cf/(uo) ^ 0, then the equation is 

(ut + u2ux)x = uu2
x. 

In general if UQ is such that C^\UQ) = 0, k = 1,2... n - 1, but c(n)(uo) 7^ 0, the 
equation is 

(ut + unux)x = -nu71'1^. 

Another form of the first asymptotic equation is 

dtv + dx(uv) = -v ■ v. 

We shall not study the second and higher asymptotic equations in this short talk. 

3. Phenomena for asymptotic equations. Prom joint work with Hunter 
([HZ]), we know that the first asymptotic equation has singularity formation (mild 
blow-up) and the solution can be continued beyond singularity formation by two dif- 
ferent ways resulting in the dissipative and conservative solutions, see Figure 2, where 
the solution is continued either by zero (not shown in the figure) or the decaying solu- 
tion beyond t*. We explain that the data in Figure 2 is that v(0, x) = -1 for x € [0,1] 
and zero otherwise. The blow-up at t = t* is such that v -» -00. The support of 
v(t, x) shrinks to a point at the precise rate that the L2 norm of v(t, •) is constant. 

Figure 2.   A conservative solution. 

The first asymptotic equation also has persistence of oscillation, which we choose 
not to discuss here. 
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4. Classical existence of solutions. We can establish the a priori estimate: 
L2 norm of v is non-increasing in time. 

If the initial v(x, 0) has bounded total variation, then the global existence of weak 
solutions has been established in joint work with Hunter [HZ], by removing small sets 
of singularity in the approximate solutions. 

5. Compensated compactness. It is natural to ask for the existence result 
in the space i2, in view of the a priori estimate. Let us rewrite (3) and consider the 
initial-boundary value problem 

J vt + (uv)x = \v2,    ux = v,        (x>0,t> 0) 

I v(x,( ,0) = vo(x),        u(0,t)=0. 

Suppose there is a sequence of approximate solutions {vn,un} so that 

(5) < + (unvn)x = i (O2,    < = „". 

We would like to use compensated compactness to derive strong compactness for vn 

in L2. So we multiply (5) with vn to obtain 

(6) [(vn)2}t + KK)2]x = o. 

Suppose the right-hand side of (5) is compact in if-1. However the determinant of 
the four terms on the left-hand sides of (5) and (6) is always zero. So compensated 
compactness fails here. For the frame work of compensated compactness, see Tartar 
[T]. 

6. Young measure method (formal proof of existence in L2). We let 

(un,vn,(vn)2)^(u,v,w). 

We know immediately that 

w > (v)2 

from functional analysis. On the other hand, we can find a closed system of equations 
for the three quantities {u, v,w}: 

dtv + dx(uv) = -w 

dtw + dx(uw) = 0 

dxu = v. 

To compare the two quantities w and v2 using the equations, we multiply the w 
equation with ^w-1/2 to derive 

dtw^2 + dx{uw^2) = \vw^2 

whose right-hand side is less than that in the equation for v, in view of w > (i;)2. 
With same initial data for (w) 2 and v due to strong convergence of the initial approx- 
imations, it follows from the equations that the reverse inequality 

w < v2 
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holds. So 

W = v2, 

which implies strong convergence of the sequence {v71} in L2. U 
For the rigorous proof, see [ZZ1]. For Young measures, see Gerard [G]. For similar 

applications of Young measures, see Lions [L2]. 

7. Uniqueness of solutions. 
(A) For nonnegative data, the dissipative and conservative solutions are the same. 

And they are unique. The method is mollification, and the uniqueness of the inverse 
flow of characteristics is essential. See [ZZ2]. 

(B) For general L2 data, the inverse flow of characteristics is not unique. We 
follow characteristics and estimate sets of singularities. The criteria are: Conserva- 
tive solutions conserve local energy between any pair of characteristics; Dissipative 
solutions have upper bound v < |. Details are in [ZZ3]. 

We comment on mollification for uniqueness. Mollify the equation 

dtv + udxv = --v2,    ux=v 

by */>e to yield 

dtve + udxv
e = -^(v2)6 + Re,    ux = v, 

1^,2xe   ,    r>e 

where Re = udxv
e - (udxvy. Then follow characteristics, find ve and pass limit e -> 0. 

DiPerna-Lions folklore Lemma on commutator ([DL] or [LI]) 

u - Vve - {u • V^)e -^ 0 

is handy. 

8. Blow-up of smooth solutions of the wave equation. This is from joint 
work with Glassey and Hunter [GHZ]. 

The idea is to choose data close to the regime covered by the asymptotic equation 
(i.e., small amplitude with high frequency). Show blow-up before d changes sign. 

Sketch of blow-up of the wave equation: 
Assume no blow-up. 
Take any UQ such that c'^o) 7^ 0. 
Choose peaked data near uQ with large 5 = 0(l/e) and small R. See Figure 3. 

Here R and 5 are the "Riemann invariants" (see Section 10 later). And e is the small 
amplitude. 

Use energy in a cone to control the integral of R2. 
Then estimate growth of u from UQ (which is 0(Vie)) to control the sign of c'. 
Then 5 satisfies a Ricatti equation, which blows up at 0(1) time. 

9. Oscillation/annihilation phenomena of the wave equation. The wave 
equation has weak formulation 

utt - (c2ux)x = -cc'^z)2. 

It seems need strong compactness of ux in L2. But example shows 
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Figure 3. Initial Data for blow-up. 

un —► — uniformly, 

i£ -^ 0 weakly in L2, 

«)2 -^ a ^ 0 weakly in L1, 

^(^JCO2 -^ 0 weakly in L1. 

So the weak limit (the constant |) is still a weak solution despite lack of 
convergence. 

10. An invariant region of the wave equation. We always assume i 

0 < Ci < c(-) < (72, and  |c^(.)| < Mi 

for / > 1. We also assume in most cases that 

c'(-)>0. 

In some cases we even assume 

(7) c'(u) > CM > 0,    u e [-M, M]. 

Let 
R := dtu -h c(u)dxu,        S := dtu — c(u)dxu, 

c(.):=\lnc(.), 

so that cf(u) = c,(w)/[4c(w)]. Then the wave equation can be written in the ne 

(     dtR-cdxR = c'{u)(R2-S2)) 

dtS + cdxS = c'(u)(S2-R2), 

By- R-S 
oxu - 2c(u). 

LEMMA (EXISTENCE OF INVARIANT REGION). Assume d > 0, i?(0,a 
5(0, x) < 0.  Then R(t,x) < 0 and S(t,x) < 0. 
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For a proof, one needs to consider 

dtRe - c(ue)dxRe = c'(ue)(R
2

e - S2
e) + edlRe, 

dtSe + c{ue)dxSc - c'{uc){S* - R2
€) + ed2

xSe, 

UxUe —   2c(ue) ' 

see [ZZ4]. There exists a global smooth solution for the Cauchy problem. There holds 
the maximum principle. 

This result contrasts sharply with the blow-up phenomena of Fujita [F] for 

dtV=±V2 + e%V, 

with any initial data VQ(X) such that Vo(xo) > 0 for some point XQ. 

11. Rarefactive solutions of the wave equation. 
Denote #0 = R(0,x),So = 5(0,x). 

THEOREM 1 (GLOBAL RAREFACTIVE L
P
 SOLUTIONS). Assume d > 0,^0 < 

0,5o < 0, and (RO,SQ) G L
P
(R) with compact support for some p > 3. Then (1) 

has a global admissible weak solution. The solution can be obtained either through 
initial data mollification or vanishing viscosity. Moreover, there holds (R,S)(t,x) £ 
L00(R+,Lp(R)). Furthermore, if (7) holds, then dxu(t,x) e Lp+1([0,T] x R) for any 
T>0. 

THEOREM 2 (GLOBAL RAREFACTIVE L2 SOLUTIONS). Assume (7) holds and 
Ro < 0,So < 0, (i^o^o) € L2(R) with compact support. Then (1) has a global 
admissible weak solution. Moreover, there holds dxu G L2+Q:([0,T] x R) for any a < 1 
and T < 00. Furthermore there exists a constant C > 0 such that 

C C 
-- < R{t,x) < 0, < S(t,x) < 0, 

t G (0,1], x G R; and (R, S) remain bounded from below by —C for all time t > 1. 

For proofs of Theorems 1-2, see [ZZ4]. 

This talk was also given at the AMS regional meeting, Gainesville, Florida, the 
International Conference on Partial Differential Equations at the University of Iowa, 
Iowa City, and the Hyperbolic Aspect of Fluids at Oberwolfach, Spring, 1999. 
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