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ON THE CONVERGENCE OF FULLY-DISCRETE

HIGH-RESOLUTION SCHEMES WITH VAN LEER’S FLUX

LIMITER FOR CONSERVATION LAWS∗

NAN JIANG†

Abstract. A class of fully-discrete high-resolution schemes using flux limiters was constructed
by P. K. Sweby [SIAM J. Numer. Anal. 21 (1984), 995-1011], which amounted to add a limited
anti-diffusive flux to a first order scheme. This technique has been very successful in obtaining
high-resolution, second order, oscillation free, explicit difference schemes. However, the entropy
convergence of such schemes has been open. For the scalar convex conservation laws, we use one of
Yang’s convergence criteria [SIAM. J. Numer. Anal. 36 (1999) No. 1, 1-31] to show the entropy
convergence of the schemes with van Leer’s flux limiter when the building block of the schemes is
the Godunov or the Engquish-Osher. The entropy convergence of the corresponding problems in
semi-discrete case, for convex conservation laws with or without a source term, has been settled by
Jiang and Yang [Methods and Applications of Analysis 12 (2005), No. 1, 089-102].
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1. Introduction. We consider numerical approximations to the scalar conser-
vation laws

{

ut + f(u)x = 0,
u(x, 0) = u0(x),

(1.1)

where f ∈ C1(R) is convex, and u0 ∈ BV (R). Here BV stands for the subspace of
L1

loc consisting of functions z with bounded total variation

TV (z) := sup
h 6=0

∫

R

|z(x + h) − z(x)|

|h|
dx. (1.2)

In particular, we are interested in numerical schemes that admit conservative form

un+1
k = H(un

k−p, · · · , un
k+p; λ) = un

k − λ(gn
k+ 1

2

− gn
k− 1

2

), (1.3)

where h and τ are spatial and temporal steps respectively, λ = τ
h
; un

k = u(xk, tn)
are nodal values of the piecewise constant mesh function uh(x, t) approximating the
solution u(x, t). The numerical flux g is given by

gn
k+ 1

2

= gk+ 1
2
[un; λ], (1.4)

where

gk+ 1
2
[v; λ] = g(vk−p+1, vk−p+2, · · · , vk, · · · , vk+p; λ), (1.5)

for any data {vj}. Throughout the paper, we simply write gk+ 1
2
[v; λ] as gk+ 1

2
[v]

whenever this is not ambiguous.
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The function g is Lipschitz continuous with respect to its first 2p arguments and
is consistent with the conservation law in the sense that

g(u, u, · · · , u, λ) ≡ f(u). (1.6)

A scheme of the form (1.3)-(1.6) is called self-similar if λ is fixed, i.e., g is independent
of the step-size. In this paper, we only consider self-similar schemes, which contain
many classical high-resolution schemes. We would mention that, for the entropy
convergence analysis, it is in the case of self-similar schemes that one faces the most
formidable challenge. See [15] for a comment on entropy analysis of schemes with
step-size dependent fluxes. The collection of points {xk−p, · · · , xk+p} is said to be the

stencil of the scheme at the point (xk, tn). For a sequence of numerical solutions, we
assume that the corresponding sequence of step sizes tends to zero.

Initial ideas of using flux limiters to construct high-resolution schemes can
be traced back, for example, to the early works of van Leer [14], Roe [10] and,
Chakravarthy and Osher [1]. Later, Sweby’s contributions along this direction [12] in-
clude: introducing a class of limiters, unifying the flux limiters independently studied
by van Leer, Roe and, Chakravarthy and Osher into his general framework, presenting
a technique to obtain a scheme that is high-resolution, second order and oscillation
free by the addition of a limited anti-diffusive flux to a first order scheme, and in-
vestigating the entropy convergence of these schemes. His preliminary analysis has
supported his conjecture of the entropy satisfaction of any such scheme, provided that
the underlying first order scheme (which we called the building block of the scheme)
is entropy satisfying and diffusion at expansions is not decreased with respect to its
building block. Although, the schemes with flux limiters have been demonstrated to
be some of the most effective methods that are capable of producing high-resolution
shock profiles (see, for example, [9, 12]), the rigorously theoretical analysis of the
entropy consistence of these schemes has been fallen behind. In fact, the convergence
issues of the fully-discrete flux limiter schemes, introduced by Sweby, remain open.
The objective of this paper is to settle one of these open problems.

During the 80’s, the entropy convergence analysis heavily depends on the classical
cell entropy inequality (CEI) approach, which demands to establish entropy inequality
for each computational cell. As a result, the entropy convergence of many effective
schemes, such as flux limiter schemes, cannot be justified by CEI method. Recent
years, among the different approaches emerged, Yang’s wavewise entropy inequal-
ity (WEI) [15, 16] concept has been stand out. For semi-discrete and fully-discrete
schemes, this new concept has produced four convergence criteria respectively. For
convex conservation laws, one of criteria, in semi- or fully-discrete case, essentially
states that, a WEI across the area of rarefaction where uj ≤ uj+1 for all xj is suf-
ficient for convergence to the entropy solution. Hence, in the convergence analysis,
one may safely remove the shock area from scrutiny. Further, even in the rarefaction
area, a much weaker condition than CEI is sufficient for the convergence. To demon-
strate that this approach has brought a powerful tool into the success of convergence
analysis, we name the following established convergence results.

In the semi-discrete case, for homogeneous convex conservation laws, Yang [15]
has shown the entropy convergence of the generalized MUSCL scheme and the schemes
based on minmod limiter [9] when the general building block of the schemes is an ar-
bitrary E-scheme [8], and based on Chakravarthy-Osher limiter [1] when the building
block of the schemes is the Godunov [3], the Engquist-Osher [2], or the Lax-Friedrichs
[7]. Recently, Yang and the author [5, 17] have made significant advances at this front.
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Not only we have extended all of previous convergence results of Yang to the convex
conservation laws with an arbitrary C1 source term, we have further established that,
for convex conservation laws with or without a source term, the schemes with van
Leer’s limiter [12, 14], when the building block of the schemes is the Godunov, the
Engquist-Osher, or the Lax-Friedrichs, converge to the physically correct solution as
well.

In the fully-discrete case, the convergence analysis is generally more challenge,
yet for homogeneous convex conservation laws, Yang [16] has shown the entropy con-
vergence of explicit MUSCL scheme using his forth convergence criterion. The main
result of this paper is the entropy convergence of the schemes with van Leer’s lim-
iter when the building block of the schemes is the Godunov or the Engquist-Osher.
Again, we use Yang’s last convergence criterion of the fully-discrete case to show the
convergence.

The paper is organized as follows. In section 2, we first review the notions of the
extremum paths and the schemes with flux limiters. We then establish the extremum
traceableness of the general TVD (total variation diminishing) schemes, which is under
the necessity of analyzing the entropy convergence that follows in the next section. In
section 3, we present a simplified version of Yang’s convergence criterion, an important
estimate, and the proof of the main result.

2. Extremum traceableness of the TVD schemes.

2.1. The extremum paths. In this subsection, we review the flux limiter meth-
ods described by Sweby [12] and the notions of Yang’s extremum paths [16]. For the
consistency, we closely follow notations introduced by Sweby and Yang respectively.
Denote

(∆fk+ 1
2
)+ = f(un

k+1) − gE
k+ 1

2

, (2.1)

(∆fk+ 1
2
)− = gE

k+ 1
2

− f(un
k), (2.2)

where gE
k+ 1

2

= gE(un
k , un

k+1) is the flux of an E-scheme [8] that satisfies

sgn (un
k+1 − un

k )[ gE
k+ 1

2

− f(u) ] ≤ 0, (2.3)

for all u in between un
k and un

k+1.

We use

ν+
k+ 1

2

=
λ(∆fk+ 1

2
)+

∆un
k+ 1

2

, ν−

k+ 1
2

=
λ(∆fk+ 1

2
)−

∆un
k+ 1

2

, (2.4)

to define a series of local CFL numbers, where, by convention, ∆un
k+ 1

2

= ∆+un
k =

∆−un
k+1 = un

k+1 − un
k . We also set

α+
k+ 1

2

=
1

2
(1 − ν+

k+ 1
2

), α−

k+ 1
2

=
1

2
(1 + ν−

k+ 1
2

); (2.5)
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and

r+
k =

α+
k− 1

2

(∆fk− 1
2
)+

α+
k+ 1

2

(∆fk+ 1
2
)+

, r−k =
α−

k+ 1
2

(∆fk+ 1
2
)−

α−

k− 1
2

(∆fk− 1
2
)−

. (2.6)

Very often, to enhance the readability, we use Sweby’s shorthand notations: uk ≡
un+1

k , uk ≡ un
k , where k and n are the spatial and temporal indices respectively. The

schemes with flux limiter are given by

uk = uk − λ ( gk+ 1
2
− gk− 1

2
), (2.7)

where

gk+ 1
2

= gE
k+ 1

2

+ ϕ(r+
k )α+

k+ 1
2

(∆fk+ 1
2
)+ − ϕ(r−k+1)α

−

k+ 1
2

(∆fk+ 1
2
)−, (2.8)

and ϕ is a flux limiter, which is Lipschitz continuous function and its graph lies in
the second order TVD region derived by Sweby [12]:

{(r, ϕΦ(r)) : ϕΦ(r) = max(0, min(Φr, 1), min(r, Φ)), 1 ≤ Φ ≤ 2, r ∈ R}. (2.9)

Some of the well known instances of such flux limiters are van Leer, Roe and
Chakravarthy-Osher’s limiters [12]. We shall assume for the remainder of the pa-
per that the local CFL numbers satisfy |ν±

k+ 1
2

| ≤ 1 for all k ∈ Z.

It is easy to see that the schemes (2.7)-(2.8) can be written in an increment form

uk = uk − Ck− 1
2
∆uk− 1

2
+ Dk+ 1

2
∆uk+ 1

2
, (2.10)

with

Ck+ 1
2

= ν+
k+ 1

2

{ 1 + α+
k+ 1

2

[
ϕ(r+

k+1)

r+
k+1

− ϕ(r+
k ) ] }, (2.11)

and

Dk+ 1
2

= −ν−

k+ 1
2

{ 1 + α−

k+ 1
2

[
ϕ(r−k )

r−k
− ϕ(r−k+1) ] }. (2.12)

The concept of discrete extremum paths was introduced by Yang (see Definition
6.3 [15] and Definition 2.13 [16]). For the convenience of applications, we quote
relevant definitions of the fully-discrete case. Consider a numerical solution u defined
on the set of grid points X := {(xj , tn) : j ∈ Z, n ∈ Z

+}. A finite set of successive
grid points {xq, · · · , xr} with r ≥ q is said to be the stencil of a spatial maximum,
or simply an E-stencil of u at the time tn, provided un

q = · · · = un
r , un

q−1 < un
q and

un
r+1 < un

r . Notions of E-stencils for minima and E-stencils for general extrema are
defined similarly. Throughout the paper, we refer to [16] for the definitions, lemmas
and theorems that we have quoted.

Definition 2.1 (see Definition 2.13 [16]). A nonempty subset of X denoted by
Etn,tm

, n ≤ m, is called a ridge of the numerical solution u from tn to tm if
(i) for all ν, n ≤ ν ≤ m, the set

PE(ν) := {xj : (xj , tν) ∈ Etn,tm
} = {xqν , · · · , xrν}
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is not empty and is an E-stencil of u at tν ;
(ii) for all ν, n ≤ ν ≤ m − 1,

PE(ν) ∪ PE(ν + 1) = {xj : min(qν , qν+1) ≤ j ≤ max(rν , rν+1)}.

The set PE(ν) is called the x-projection of Etn,tm
at tν . The value of u along the

ridge is denoted by VE(ν) : VE(ν) = uν
j for qν ≤ j ≤ rν .

If, for all ν, n ≤ ν ≤ m, the E-stencil in the item (i) of the definition is replaced
by an E-stencil, then the set is called a trough of u from tn to tm and is denoted
by Etn,tm

. The related notions PE(ν) and VE(ν) are defined similarly. Ridges and
troughs are also called extremum paths. When we do not distinguish between ridges
and troughs, we use Etn,tm

, PE(ν), and VE(ν) for either type. We write

E1
tn,tm

< (≤)E2
tn,tm

, if maxPE1(ν) < (≤)maxPE2(ν) for n ≤ ν ≤ m.

Definition 2.2 (see Definition 2.14 [16]). A scheme is said to be extremum

traceable if there exists a positive constant c ≥ 1 such that for each numerical solution
u of the scheme and each integer N > 0, there exists a finite or infinite collection of
extremum paths {El

t0,tN
}l2

l=l1
with the following properties:

(i) {PEl(N)}l2
l=l1

is precisely the set of E-stencils of un
j at the time tN arranged

in ascending spatial coordinates.
(ii) If El

t0,tN
is a ridge (trough), then VEl

(n) is a non increasing (non decreasing)
function of n.

(iii) Let PEl(n) = {xql(n), · · · , xrl(n)} for 1 ≤ n ≤ N . If PEl(n)∩PEl(n + 1) = ∅,
then

|un
ql(n+1) − un

rl(n) | ≤ c |VEl(n + 1) − VEl(n) | when ql(n + 1) > rl(n),

|un
rl(n+1) − un

ql(n) | ≤ c |VEl(n + 1) − VEl(n) | when ql(n) > rl(n + 1).

(iv) If l2 > l1, then El
t0,tN

< El+1
t0,tN

for l1 ≤ l ≤ l2 − 1.

2.2. Extremum traceableness of the TVD schemes. For the numerical
solutions concerned, total variation diminishing in time is a desirable property that
is shared with the exact solution of (1.1). TVD schemes prevent new extrema values
(that generate spurious oscillations of the solutions) other than those which propagate
from the previous time-level. In compliance with the extremum traceable condition
of Yang’s WEI convergence criterion, we focus our attention on the general TVD
schemes and we are able to show the following result.

Theorem 2.3. The sufficient conditions for the schemes (2.7)-(2.8) to be ex-

tremum traceable are the following inequalities:

0 ≤ Ck+ 1
2
, 0 ≤ Dk+ 1

2
, 0 ≤ Ck+ 1

2
+ Dk+ 1

2
≤ 1, for all k; (2.13)

there is a positive constant µ such that, if uk is a space extremum, then

max {Ck± 1
2
, Ck± 3

2
, Dk± 1

2
, Dk+ 3

2
} ≤

µ

4
<

1

4
, (2.14)

where Ck+ 1
2

and Dk+ 1
2

are given by (2.10)-(2.12).
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Notice that the inequalities of (2.13) are the Harten’s sufficient TVD conditions
[4] for the schemes (2.7)-(2.8). By Lax-Wendroff theorem [6] and Helly’s theorem, the
numerical solutions of the schemes (2.7)-(2.8) converge to a weak solution of (1.1).
We will show the entropy convergence of the schemes of (2.7)-(2.8) in the next section.

Proof of Theorem 2.3. To show the extremum traceableness of a scheme of the
form (2.7)-(2.8), it suffices to consider the case N = n + 1 and to show that we
can construct a collection of two level extremum paths {El

tn,tn+1
}l2

l=l1
that satisfies

Definition 2.2.
Step 1. In this step, we show that, under the given conditions, certain patterns

of two level extremum paths can not exist, which will ensure the construction of the
extremum paths in Step 2, the order preserving property of the extremum paths and
the backward traceability of the extrema of the scheme. We only give the proof of
the case that uk is a maximum. When uk is a minimum, the proof is similar and has
been omitted.

We begin with showing the first implication: if uk > uk±1, and uk ≤ uk±1, then
either uk+2 < uk+1 or uk−2 < uk−1. Otherwise, it derives a contradiction:

(uk − uk+1) + (uk − uk−1) = (1 − 2Ck− 1
2
− Dk− 1

2
)∆uk− 1

2
+ Ck− 3

2
∆uk− 3

2

− (1 − Ck+ 1
2
− 2Dk+ 1

2
)∆uk+ 1

2
− Dk+ 3

2
∆uk+ 3

2

≤ 0.

Equivalently, if uk > uk±1, uk+2 ≥ uk+1 and uk−2 ≥ uk−1, then uk > uk+1 or uk >
uk−1. In fact, by (2.13), we have the second implication: if uk > uk±1, uk+2 ≥ uk+1

and uk−2 ≥ uk−1, then uk > uk±1.
Next, we show the third implication: if uk > uk±1, uk+2 > uk+1, uk ≤ uk±1 and

uk+2 ≤ uk+1, then either uk+2 < uk+3 or uk−2 < uk−1. Otherwise,

(uk − uk+1) + (uk+2 − uk+1) + (uk − uk−1)

= −(1 − 2Ck+ 1
2
− 2Dk+ 1

2
)∆uk+ 1

2
+ (1 − Ck+ 3

2
− 2Dk+ 3

2
)∆uk+ 3

2

+ (1 − 2Ck− 1
2
− Dk− 1

2
)∆uk− 1

2
+ Dk+ 5

2
∆uk+ 5

2
+ Ck− 3

2
∆uk− 3

2

≤ 0,

which derives a contradiction.
Finally, we show the fourth implication: if uk > uk±1, uk ≤ uk±1 and uk+2 ≤

uk+1, then uk+1 − uk < max(uk−1 − uk, uk+1 − uk+2). Otherwise,

uk+1 − uk

= (1 − Ck+ 1
2
− Dk+ 1

2
)∆uk+ 1

2
+ Dk+ 3

2
∆uk+ 3

2
+ Ck− 1

2
∆uk− 1

2

≥ (1 − Ck+ 1
2
− Dk+ 1

2
− Dk+ 3

2
− Ck− 1

2
)∆uk+ 1

2

≥ 0,

which gives a contradiction.
Step 2. In this step, we construct the extremum paths. Without loss of generality,

we only give the construction of a ridge in the generic case. Note that the first and
the second implications and Harten’s TVD conditions of (2.13) guarantee that if, at
time t = tn+1,

un+1
q > max(un+1

q−1 , un+1
q+1 ),
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then there exists at least one E-stencil, at time t = tn, among

{xq−2, xq−1, xq, xq+1, xq+2}.

Let {xq′

ν
, · · · , xr′

ν
}µ

ν=1 be the set of all such E-stencils at t = tn arranged in as-

cending spatial coordinates. The construction of a ridge Etn,tn+1
with PE(n + 1) =

{xq, · · · , xr} goes as follows.
Case 1. There exists an integer ν with 1 ≤ ν ≤ µ such that

{xq′

ν
, · · · , xr′

ν
} ∩ { xq, · · · , xr} 6= ∅. (2.15)

Set PE(n) = {xq′

ν
, · · · , xr′

ν
} for an arbitrary ν that satisfies (2.15).

Case 2. µ = 1, {xq′

q1
, · · · , xr′

r1
} = {xq−1}. Set PE(n) = {xq−1}.

Case 3. µ = 1, {xq′

q1
, · · · , xr′

r1
} = {xr+1}. Set PE(n) = {xr+1}.

Case 4. µ = 2, {xq′

q1
, · · · , xr′

r1
} = {xq−1}, {xq′

q2
, · · · , xr′

r2
} = {xr+1}. Set

PE(n) =

{

{xq−1} if un
r+1 ≤ un

q−1,
{xr+1} if un

r+1 > un
q−1.

(2.16)

We have exhausted all possibilities. Indeed, if

µ = 2, {xq′

q1
, · · · , xr′

r1
} = {xq−2}, {xq′

q2
, · · · , xr′

r2
} = {xr+2},

then, by the definition of the ridge, this case implies that uq−2 > uq−1 and uq+2 >
uq+1 (i.e. ur+2 > ur+1). Now following the second implication in the Step 1, we have
uq ≥ uq±1, which means that this case falls into Case 1 of the construction. We can
also exclude the following two cases. If

µ = 1, {xq′

q1
, · · · , xr′

r1
} = {xq−2},

then, by the definition of the ridge, we have un
q−2 > un

q−1 ≥ un
q ≥ un

q+1 ≥ un
q+2, which

derives the following contradiction:

0 < un+1
q − un+1

q−1

= (1 − Cq− 1
2
− Dq− 1

2
)∆un

q− 1
2

+ Dq+ 1
2
∆un

q+ 1
2

+ Cq− 3
2
∆un

q− 3
2

≤ 0.

Similarly, if

µ = 1, {xq′

q1
, · · · , xr′

r1
} = {xr+2},

then, by the definition of the ridge, we have un
r−2 ≤ un

r−1 ≤ un
r ≤ un

r+1 < un
r+2, which

derives the following contradiction:

0 > un+1
r+1 − un+1

r

= (1 − Cr+ 1
2
− Dr+ 1

2
)∆un

r+ 1
2

+ Dr+ 3
2
∆un

r+ 3
2

+ Cr− 1
2
∆un

r− 1
2

≥ 0.

Clearly, the ridge satisfies (i) in the Definition 2.2. The ridge also satisfies (ii).
In fact, the satisfaction of the Case 1 follows directly from (2.10). In the Case 2, if
∆un

q+ 1
2

≥ 0, then ∆un
q+ 1

2

≤ −∆un
q− 1

2

; otherwise, it derives a contradiction:

0 < −(un+1
q+1 − un+1

q ) (2.17)

≤ −(1 − Cq− 1
2
− Cq+ 1

2
− Dq+ 1

2
)∆un

q+ 1
2

− Dq+ 3
2
∆un

q+ 3
2

≤ 0.
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Thus,

VE(n + 1) − VE(n) = un+1
q − un

q−1 ≤ (1 − Cq− 1
2
− Dq+ 1

2
)un

q− 1
2

≤ 0

as desired. If ∆un
q+ 1

2

< 0, we have

VE(n + 1) − VE(n) = un+1
q − un

q−1 = (1 − Cq− 1
2
)un

q− 1
2

+ Dq+ 1
2
∆un

q+ 1
2

≤ 0

as well. Therefore, the Case 2 satisfies (ii) and similarly, we can show the satisfaction
(ii) of the Case 3. For the Case 4, if PE(n) = {xq−1}, the proof is similar to the Case
2; if PE(n) = {xr+1}, the proof is similar to the Case 3.

Step 3. In this step, we verify that the paths constructed in the Step 2 satisfy
the property (iii) of the Definition 2.2. Since the Case 1 is irrelevant to this property,
we start with the Case 2. We claim that if un

q ≥ un+1
q , then c = 1; if un

q < un+1
q , then

c = 1
1−C

q− 1
2
−D

q+ 1
2

. Indeed, un
q ≥ un+1

q implies that

|VE(n + 1) − VE(n) | = un
q−1 − un+1

q ≥ un
q−1 − un

q = |un
q−1 − un

q |.

Next, un
q < un+1

q implies that if un
q+1 ≤ un

q , then

|VE(n + 1) − VE(n) | = un
q−1 − un

q + un
q − un+1

q

= −∆un
q− 1

2

+ Cq− 1
2
∆un

q− 1
2

− Dq+ 1
2
∆un

q+ 1
2

≥ ( 1 − Cq− 1
2

)(−∆un
q− 1

2

)

≥ ( 1 − Cq− 1
2
− Dq+ 1

2
)|un

q−1 − un
q |;

if un
q+1 > un

q , we have ∆un
q+ 1

2

≤ −∆un
q− 1

2

(otherwise, it yields a contraction (2.17)),

and therefore

|VE(n + 1) − VE(n) | = −∆un
q− 1

2

+ Cq− 1
2
∆un

q− 1
2

− Dq+ 1
2
∆un

q+ 1
2

≥ ( 1 − Cq− 1
2
− Dq+ 1

2
)|un

q−1 − un
q |.

For the Case 3, we claim that if un
q ≥ un+1

q , then c = 1 and if un
q < un+1

q , then

c = 1
1−C

q− 1
2
−D

q+ 1
2

. Indeed, un
q ≥ un+1

q implies that

|VE(n + 1) − VE(n) | = un
q+1 − un+1

q ≥ un
q+1 − un

q = |un
q+1 − un

q |.

Note that Case 3 implies that ∆un
q+ 1

2

≥ 0. Now un
q < un+1

q ensures that if ∆un
q− 1

2

≥ 0,

then

|VE(n + 1) − VE(n) | = un
q+1 − un

q + un
q − un+1

q

= Cq− 1
2
∆un

q− 1
2

+ (1 − Dq+ 1
2
)∆un

q+ 1
2

≥ ( 1 − Dq+ 1
2

)∆un
q+ 1

2

≥ ( 1 − Cq− 1
2
− Dq+ 1

2
)|un

q+1 − un
q |;

if ∆un
q− 1

2

< 0, we have −∆un
q− 1

2

≤ ∆un
q+ 1

2

; otherwise, it derives a contradiction:

0 < un+1
q − un+1

q−1

= ( 1 − Cq− 1
2
− Dq− 1

2
)∆un

q− 1
2

+ Cq− 3
2
∆un

q− 3
2

+ Dq+ 1
2
∆un

q+ 1
2

< ( 1 − Cq− 1
2
− Dq− 1

2
− Dq+ 1

2
)∆un

q− 1
2

+ Dq− 3
2
∆un

q− 3
2

< 0.
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Now,

|VE(n + 1) − VE(n) | = Cq− 1
2
∆un

q− 1
2

+ (1 − Dq+ 1
2
)∆un

q+ 1
2

≥ ( 1 − Cq− 1
2
− Dq+ 1

2
)|un

q+1 − un
q |.

Finally, we deal with the Case 4. Without loss the generality, we consider the
generic case: q = r. Then we have un+1

q ≥ un
q , which follows easily from (2.10). Thus

c = 1
1−C

q− 1
2
−D

q+ 1
2

. The proofs of the instances un
q−1 ≥ un

q+1 and un
q−1 ≤ un

q+1 are

similar to that of the Case 2 and the Case 3 respectively for the Case 4.
Step 4. In this step, we verify the property (iv) in the Definition 2.2. Without

loss of generality, it suffices to consider the case that {xq, · · · , xr} is an E-stencil of
u at t = tn+1 and {xr+1, · · · , xr+m} is an E-stencil of u at t = tn+1. Suppose that
{xq′ , · · · , xr′} and {xq

′′ , · · · , xr
′′ } are the choices of the x-projection at t = tn for

the ridge and the trough, respectively. We need to show that r′ < q′′. In fact, this
property follows directly from the construction given in the Step 2 and the implications
of the third to the last in the Step 1. The proof is completed.

In terms of the local CFL numbers, the following result is an easy consequence of
the Theorem 2.3.

Corollary 2.4. The sufficient conditions for the schemes (2.7)-(2.8) to be ex-

tremum traceable are the following inequalities:

ν+
k+ 1

2

− ν−

k+ 1
2

≤
2

2 + Φ
, for all k, (2.18)

where Φ is given by (2.9); when uk is an extremum, there is a constant µ, 0 ≤ µ < 1,
such that

2(ν+
k± 1

2

− ν−

k± 1
2

) ≤
µ

2
, (2.19)

and

max {ν+
k− 1

2

, ν+
k± 3

2

, −ν−

k+ 3
2

,−ν−

k+ 1
2

} ≤
µ

6
. (2.20)

Proof. Indeed, for all k, by Sweby [12], we have Ck+ 1
2
≥ 0, Dk+ 1

2
≥ 0, and

Ck+ 1
2

+ Dk+ 1
2
≤ (ν+

k+ 1
2

− ν−

k+ 1
2

)(
2 + Φ

2
).

When uk is an extremum, following the equalities:

Ck− 1
2

= ν+
k− 1

2

[ 1 − α+
k− 1

2

ϕ(r+
k−1) ], Dk+ 1

2
= −ν−

k+ 1
2

[ 1 − α−

k+ 1
2

ϕ(r−k+1) ],

Ck+ 1
2

= ν+
k+ 1

2

[ 1 + α+
k+ 1

2

ϕ(r+
k+1)

r+
k+1

], Dk− 1
2

= −ν−

k− 1
2

[ 1 + α−

k− 1
2

ϕ(r−k−1)

r−k−1

],

we have arrived

2Ck− 1
2

+ Dk− 1
2
≤ 2( ν+

k− 1
2

− ν−

k− 1
2

) ≤
µ

2
< 1,
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Ck+ 1
2

+ 2Dk+ 1
2
≤ 2( ν+

k+ 1
2

− ν−

k+ 1
2

) ≤
µ

2
< 1,

Ck+ 1
2

+ Dk+ 1
2

+ Dk+ 3
2

+ Ck− 1
2

≤ 2(ν+
k+ 1

2

− ν−

k+ 1
2

) + ν−

k+ 1
2

− 2ν−

k+ 3
2

+ ν+
k− 1

2

≤ µ < 1,

Ck− 1
2

+ Dk− 1
2

+ Dk+ 1
2

+ Ck− 3
2

≤ 2(ν+
k− 1

2

− ν−

k− 1
2

) − ν+
k− 1

2

− ν−

k+ 1
2

+ 2ν+
k− 3

2

≤ µ < 1,

and so on, which are desired.
The next Lemma concerns the flux limiter methods when the building block of

the schemes is the Godunov [3] or Engquist-Osher [2] scheme.
The Godunov scheme:

gGod(uj , uj+1) =

{

minuj≤w≤uj+1
f(w) when uj ≤ uj+1,

maxuj≥w≥uj+1
f(w) when uj ≥ uj+1.

(2.21)

The Engquist-Osher scheme:

gEO(uj , uj+1) =

∫ uj

0

max(f ′(w), 0)dw +

∫ uj+1

0

min(f ′(w), 0)dw + f(0). (2.22)

Lemma 2.5. The schemes (2.7)-(2.8) with the building block of Godunov or

Engquist-Osher scheme are extremum traceable, provided that

ν+
k+ 1

2

− ν−

k+ 1
2

≤
2

2 + Φ
for all k, (2.23)

where Φ is given by (2.9); and when uk is an extremum, there is a constant µ, 0 ≤
µ < 1, such that λK ′ = λmaxuk−2≤w≤uk+2

| f ′(w) | ≤ µ
6 .

Proof. By the Corollary 2.4, it suffices to show that when uk is an extremum, we
have

( ν+
k± 1

2

− ν−

k± 1
2

) ≤ λK ′, (2.24)

which can be easily verified. In fact, (2.24) holds for all k, when he building block
of the schemes (2.7)-(2.8) is Godunov or Engquist-Osher scheme. Thus, the proof is
completed.

3. The convergence with van Leer’s flux limiter. The following separation
property at the spatial extrema asserts that, at the next time level, the values of max-
imum (minimum) values of the numerical solutions are not increasing (decreasing).
Similar conditions can been found in [13], where these types of properties have been
used to characterize the convenient TVD conditions by E. Tadmor.

Assumption 3.1. The numerical fluxes gn
k+ 1

2

, −∞ < k < ∞, satisfy

gn
k+ 1

2

≥ f(un
k ) ≥ gn

k− 1
2

if un
k ≥ un

k±1
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and

gn
k+ 1

2

≤ f(un
k) ≤ gn

k− 1
2

if un
k ≤ un

k±1.

Lemma 3.2. The scheme (2.7)-(2.8) satisfies the Assumption 3.1.

Proof. If uk ≥ uk±1, then

gk+ 1
2

= gE
k+ 1

2

− ϕ(r−k+1)α
−

k+ 1
2

(∆fk+ 1
2
)−

≥ gE
k+ 1

2

− (gE
k+ 1

2

− f(uk)) = f(uk),

and

gk− 1
2

= gE
k− 1

2

+ ϕ(r+
k−1)α

+
k− 1

2

(∆fk− 1
2
)+

≤ gE
k− 1

2

+ (∆fk− 1
2
)+ = f(uk).

Similarly, we can show that if un
k ≤ un

k±1, then gn
k+ 1

2

≤ f(un
k ) ≤ gn

k− 1
2

.

Denote ṽj = H(vj−p, · · · , vj+p; λ) (see (1.3)), v̄j =
vj+ṽj

2 for any collection of
data {vj}, and f [w; L, R] be the linear function interpolating f(w) at w = L and
w = R. In this section, we assume that f ′′(w) ≥ 0.

Definition 3.3 (see Definition 2.20 [16]). We call an ordered pair of numbers
{L, R} a rarefying pair if L < R and f [w; L, R] > f(w) when L < w < R. We
call a collection of data Γ = {vj}J+p

j=I−p
an ε-rarefying collection of the scheme to the

rarefying pair {L, R} if, for ε > 0,
(i) L = vI ≤ vI+1 ≤ · · · ≤ vJ = R;
(ii) ṽI ≤ ṽI+1 ≤ · · · ≤ ṽJ , |L − ṽI | < ε, |R − ṽJ | < ε;
(iii) either vI−1 ≥ vI or vI = vI+1; and either vJ+1 ≤ vJ or vJ−1 = vJ .

The conditions (i) and (ii) imply that v̄I ≤ v̄I+1 ≤ · · · ≤ v̄J , |L−v̄I | < ε
2 , and |R−

v̄J | < ε
2 . We define the piecewise constant function gΓ associated with the ε-rarefying

collection Γ as follows:

gΓ(w) = gj+ 1
2
[v] for w ∈ (v̄j , v̄j+1), I ≤ j ≤ J − 1.

A 0-rarefying collection Γ = {vj}J+2

j=I−2
of the scheme to the pair {L, R} that

satisfies

L = vI−2 = vI−1 = vI = vI+1 ≤ · · · ≤ vJ−1 = vJ = vJ+1 = vJ+2 = R (3.1)

is called a normal collection.
Theorem 3.4 (see Theorem 2.21[16]). An extremum traceable scheme that sat-

isfies Assumption 3.1 converges for convex conservation laws if, for every rarefying

pair {L, R} and ε-rarefying collection to the pair,

∫ R

L

f [w; L, R] dw −

∫ v̄J

v̄I

gΓ(w) dw > δ (3.2)

for some constant δ > 0 depending only on the exact flux f , the numerical flux function

g, and the two numbers L and R, provided that ε is sufficiently small.
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For the class of flux limiter schemes concerned, this convergence criterion can be
simplified by the following Lemma.

Lemma 3.5. An extremum traceable scheme of the form (2.7)-(2.8) converges

for convex conservation laws, provided that for each rarefying pair {L, R} there is a

constant δ > 0 such that the inequality (3.2) holds for all normal corrections of the

scheme to the pair {L, R}.

Proof. Let Λ = {κP−2, · · · , κQ+2} be an arbitrary ε-rarefying collection of the
scheme to the pair {L, R}. Let

S′ =

∫ κ̄Q

κ̄P

gΛ(w) dw =

Q−1
∑

j=P

(κ̄j+1 − κ̄j) gj+ 1
2
[κ]. (3.3)

By (i) and (iii) of Definition 3.3, either κP or κP+1 is a minimum. In either case,
Assumption 3.1 and the condition (ii) of Definition 3.3 imply that

ε > |L − κ̃P | = |κ̃P − κP | = λ|gP+ 1
2
[κ] − gP− 1

2
[κ]| ≥ λ|gP± 1

2
[κ] − f(L)|. (3.4)

Similarly, we have

ε > |R − κ̃Q| ≥ λ|gQ± 1
2
[κ] − f(R)|. (3.5)

Next, we construct a normal collection Γ = {vj}J+2

j=I−2
as follows. First, let I = P − 1

and J = Q + 1 and we also set vI−2 = vI−1 = vI = L, vJ = vJ+1 = vJ+2 = R, and
vj = κj for I + 1 ≤ j ≤ J − 1. Then, we have

gI± 1
2
[v] = f(L) and gJ± 1

2
[v] = f(R), (3.6)

which imply that,

v̄I = ṽI = vI = L and v̄J = ṽJ = vJ = R. (3.7)

Thus, Γ = {vj}J+2

j=I−2
indeed is a normal collection. Secondly, let G be the Lipschitz

constant of the numerical flux g, and K = max{|f(L)|, |f(R)|} + G(R − L). Denote

S =

∫ R

L

gΓ(w) dw =

J−1
∑

j=I

(v̄j+1 − v̄j)gj+ 1
2
[v], (3.8)

then a-priori estimate |S − S′| ≤ 3Kε holds. Let δ′ be a constant such that for
all normal collections of the scheme to the pair {L, R} the inequality (3.2) holds for
δ = δ′. Thus, for δ = δ′, the inequality (3.2) also holds for the normal collection

Γ = {vj}J+2

j=I−2
. Therefore, for δ = δ′

2 , the inequality (3.2) holds for all ε-collection of

the scheme to the pair {L, R} provided that ε ≤ δ
3K

. It remains to show the a-priori
estimate. Notice that gj+ 1

2
[κ] = gj+ 1

2
[v], for P ≤ j ≤ Q − 1, and therefore, κ̄j for

P + 1 ≤ j ≤ Q − 1 are independent of κi for i < P or i > Q. Thus, κ̄j = v̄j for
P + 1 ≤ j ≤ Q − 1, and we have

|S − S′| ≤ |v̄I+1 − v̄I ||gI+ 1
2
[v]| + |v̄I+1 − κ̄I+1||gI+ 3

2
[v]| (3.9)

+ |v̄J − v̄J−1||gJ− 1
2
[v]| + |v̄J−1 − κ̄J−1||gJ− 3

2
[v]|.
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The relationship of Λ and Γ and the inequalities (3.4)-(3.7) yield:

|v̄I+1 − κ̄I+1| <
ε

2
, |v̄J−1 − κ̄J−1| <

ε

2
, (3.10)

|v̄I+1 − v̄I | = |v̄I+1 − L| ≤ |v̄I+1 − κ̄I+1| + |κ̄I+1 − L| < ε, (3.11)

and

|v̄J − v̄J−1| = |v̄J−1 − R| ≤ |v̄J−1 − κ̄J−1| + |κ̄Q − R| < ε. (3.12)

Finally, |S − S′| < 3Kε follows from the inequalities (3.9)-(3.12).
For a normal collection Γ = {vj}J+2

j=I−2
, we denote the vertex (vj , f(vj)) by Vj and

the area of convex polygon Vj1Vj2 · · ·Vjr
by Sj1,...,jr

. Let σΓ = maxI−2≤j≤J+2 |ν
±

j± 1
2

|,

and let

αj =

{

0.5 if ∆vj−2 = ∆vj+1 = 0,
1 otherwise.

When the building block of the schemes (2.7)-(2.8) is the Godunov (2.21) or
Engquist-Osher (2.22) and ϕ is van Leer’s flux (3.14), we have the following very
important estimate. The proof will be given at the end of this section.

Lemma 3.6. Let Γ = {vj}J+2

j=I−2
be a normal collection to a rarefying pair {L, R}.

Then the numerical solutions of the schemes (2.7)-(2.8) for convex conservation laws

satisfy, for a sufficiently small σΓ, the following inequality

∫ R

L

(f [w; L, R] − gΓ)dw ≥ SI,I+1,...,J −
J−1
∑

j=I+1

αjSj−1,j,j+1. (3.13)

Lemma 3.7 ( see Lemma 3.7 [16] ). We have

SI,I+1,...,J −
J−1
∑

j=I+1

Sj−1,j,j+1 ≥ SI,i,i+1,J − (SI,i,i+1 + Si,i+1,J )

for I < i < J − 1.

Let σ = λmaxw |f ′(w)|. For van Leer’s flux limiter [12]:

ϕV L(r) =

{

0 r ≤ 0,
2r

1 + r r > 0,
(3.14)

we have obtained the following entropy convergence result. The proof is similar to
the one given by Yang [16] for the MUSCL schemes.

Theorem 3.8. The numerical solutions of the schemes (2.7)-(2.8), for the convex

problems (1.1), converge provided that ϕ = ϕV L is van Leer’s flux limiter given by

(3.14), gE(·, ·) is either the numerical flux of the Godunov scheme given by (2.21) or

Engquist-Osher scheme given by (2.22), and σ is sufficiently small.

Proof. For each normal collection Γ = {vi}J+2

i=I−2
to a rarefying pair {L, R}, we set

d1(Γ) = max
I≤i≤J

min(vi − L, R − vi).
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Since J − I is finite, d1(Γ) = min(vj − L, R − vj) for some j between I and J . We
then let

d2(Γ) = max
I≤i≤J,i6=j

min(vi − L, R − vi).

We also have d2(Γ) = min(vk − L, R − vk) for some k 6= j between I and J . Clearly,
we can choose j and k so that |j − k| = 1.

To complete the proof, we argue by contradiction. Hence, we assume that for
certain convex f , the scheme of the form (2.7)-(2.8) does not converge. By Lemma
3.5, there is a rarefying pair {L, R} such that for each δ > 0, there is a normal
collection Γ = {vj}J+2

j=I−2
of the scheme to the pair that satisfies

∫ R

L

{f [w; L, R]− gΓ(w)}dw ≤ δ.

It follows that there is a sequence of normal collections {Γν}∞

ν=1
, where Γν =

{vν
j }

Jν+2

j=Iν
−2

such that

lim
ν→∞

∫ R

L

{f [w; L, R]− gΓν
(w)} ≤ 0. (3.15)

The following three cases exhaust all possibilities.
Case 1. lim supν→∞ d2(Γν) > 0. Set ρ = 1

2 lim supν→∞ d2(Γν). Then, there is a
subsequence of the normal collections, still denoted by {Γν}∞ν=1, and a corresponding
sequence of integers {i(ν)}∞ν=1 such that

L + ρ ≤ vν
i(ν) ≤ vν

i(ν)+1 ≤ R − ρ,

and supν σΓν
≤ σ. For simplicity, we fix a ν and drop it from the notation. Set

γ = f [L+R
2 ; L, R]− f(L+R

2 ). It is a positive constant since {L, R} is a rarefying pair.
Applying Lemmas 3.6 and 3.7, we have

∫ R

L

{f [w; L, R] − gΓν
(w)}dw ≥ SI,i,i+1,J − (SI,i,i+1 + Si,i+1,J ) (3.16)

=
1

2
{(vi − vI)(f [vi+1; L, R]− f(vi+1)) + (vJ − vi+1)(f [vi; L, R]− f(vi))}

> η,

if η = 2ρ2γ/(R − L). This contradicts (3.15).
Case 2. lim supν→∞ d1(Γν) > lim supν→∞ d2(Γν) = 0. Set ρ =

1
2 lim supν→∞ d1(Γν). Then, there is a subsequence of the normal collections, still
denoted by {Γν}

∞

ν=1
, and a corresponding sequence of integers {iν}∞

ν=1
such that

limν→∞ vν
iν−1 = L, limν→∞ vν

iν+1 = R, and limν→∞ vν
iν = v ∈ [L + ρ, R − ρ]. We

then have
∫ R

L

(f [w; L, R] − gΓν
(w))dw →

∫ R

L

(f [w; L, R] − gΓ(w))dw,

where Γ is the following normal collection: I = 0, J = 4, v−2 = v−1 = v0 = v1 =
L, v2 = v, and v3 = v4 = v5 = v6 = R. By Lemma 3.6, we have

∫ R

L

(f [w; L, R] − gΓ(w))dw ≥ S1,2,3 − α2S1,2,3 =
1

2
S1,2,3 > 0
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for α2 = 1
2 since ∆v0 = ∆v3 = 0. This contradicts (3.15).

Case 3. lim supν→∞ d1(Γν) = 0. Then, there exists a sequence of integers {iν}
with Iν + 1 ≤ iν < Jν − 1 such that limν→∞ vν

iν = L, limν→∞ vν
iν+1 = R. We then

have

∫ R

L

(f [w; L, R] − gΓν
(w))dw →

∫ R

L

(f [w; L, R] − gΓ(w))dw,

where Γ is the following normal collection: I = 0, J = 3, v−2 = v−1 = v0 = v1 =
L, v2 = v3 = v4 = v5 = R. In this case, the numerical flux gΓ(w) becomes E-flux
gE(L, R). Hence, we have

∫ R

L

(f [w; L, R] − gΓ(w))dw ≥

∫ R

L

(f [w; L, R] − f(w))dw.

The right-hand side of the inequality is a positive constant since {L, R} is a rarefying
pair. This contradicts (3.15) again. We have thus completed the proof of Theorem
3.8.

Finally, we finish this section by presenting the proof of Lemma 3.6.

Proof of Lemma 3.6. In the proof, the following inequality is helpful:

αβ

α + β
≤

α + β

4
∀α, β ∈ R with α + β > 0. (3.17)

Here, we keep the same notations (∆fj+ 1
2
)± and r±j for {vj} instead of {uj}. We

also use the following notation for the divided difference:

f ′
j+ 1

2

:=
f(vj+1) − f(vj)

vj+1 − vj

. (3.18)

To justify the inequality (3.13), it suffices to show the following inequality:

∫ R

L

g
Γ
(w)dw −

J−1
∑

j=I

∫ vj+1

vj

f [w; vj , vj+1]dw ≤
J−1
∑

j=I+1

αjSj−1,j,j+1. (3.19)

Without loss of generality, Let vs be a sonic point (f ′(vs) = 0) such that vk ≤
vs ≤ vk+1 for some integer k with I ≤ k ≤ J − 1. Then for gE(·, ·) given by (2.21) or
(2.22), we have

(∆fj+ 1
2
)+ = 0, for I ≤ j ≤ k − 1;

(∆fj+ 1
2
)+ = f ′

j+ 1
2

∆vj+ 1
2
, for J − 1 ≥ j ≥ k + 1;

(∆fj+ 1
2
)− = 0, for J − 1 ≥ j ≥ k + 1;

and

(∆fj+ 1
2
)− = f ′

j+ 1
2

∆vj+ 1
2
, for I ≤ j ≤ k − 1.
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To easy the notations, we denote fj := f(vj), fs := f(vs), vj± 1
2

:= ∆vj± 1
2

=

±(vj+1 − vj), vs+ 1
2

:= vk+1 − vs, vs− 1
2

:= vs − vk, f ′
s+ 1

2

:= (fk+1 − fs)/vs+ 1
2
, f ′

s− 1
2

:=

(fs − fk)/vs− 1
2
, v̄j± 1

2
:= ∆v̄j± 1

2
, ṽj± 1

2
:= ∆ṽj± 1

2
, and f±

j± 1
2

:= (∆fj± 1
2
)±. Then we

have

(3.20)
J−1
∑

j=I

gj+ 1
2
v̄j+ 1

2
−

J−1
∑

j=I

∫ vj+1

vj

f [w; vj , vj+1]dw

=

J−1
∑

j=I

gj+ 1
2

vj+ 1
2

+ ṽj+ 1
2

2
−

J−1
∑

j=I

fj + fj+1

2
vj+ 1

2

=
1

2
(P(j≤k−2) + Pk−1 + Pk + Pk+1 + P(j≥k+2)),

and the definitions of P(j≤k−2), Pk−1, Pk, Pk+1 and P(j≥k+2) will be given shortly.

Recall,

gj+ 1
2

= gE
j+ 1

2

+ α+
j+ 1

2

ϕ(r+
j )f+

j+ 1
2

− α−

j+ 1
2

ϕ(r−j+1)f
−

j+ 1
2

,

and by (3.17), we have

α+
j+ 1

2

ϕ(r+
j )f+

j+ 1
2

= 2
α+

j− 1
2

f+
j− 1

2

α+
j+ 1

2

f+
j+ 1

2

α+
j− 1

2

f+
j− 1

2

+ α+
j+ 1

2

f+
j+ 1

2

≤
f+

j− 1
2

+ f+
j+ 1

2

4
,

and

−α−

j+ 1
2

ϕ(r−j+1)f
−

j+ 1
2

= −2
α−

j+ 1
2

f−

j+ 1
2

α−

j+ 3
2

f−

j+ 3
2

α−

j+ 1
2

f−

j+ 1
2

+ α−

j+ 3
2

f−

j+ 3
2

≤
−f−

j+ 1
2

− f−

j+ 3
2

4
;

also recall that

ṽj+ 1
2

= vj+ 1
2
− (Cj+ 1

2
+ Dj+ 1

2
)vj+ 1

2
+ Dj+ 3

2
vj+ 3

2
+ Cj− 1

2
vj− 1

2
≥ 0.

With these inequalities and the convexity of the flux, we have derived the following
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estimates.

(3.21)

P(j≤k−2) :=

k−2
∑

j=I

{gj+ 1
2
[vj+ 1

2
+ ṽj+ 1

2
] − (fj + fj+1)vj+ 1

2
}

=

k−2
∑

j=I

{[gE
j+ 1

2

+ α+
j+ 1

2

ϕ(r+
j )f+

j+ 1
2

− α−

j+ 1
2

ϕ(r−j+1)f
−

j+ 1
2

][2vj+ 1
2

−(Cj+ 1
2

+ Dj+ 1
2
)vj+ 1

2
+ Dj+ 3

2
vj+ 3

2
+ Cj− 1

2
vj− 1

2
] − (fj + fj+1)vj+ 1

2
}

=

k−2
∑

j=I

{[gE
j+ 1

2

− α−

j+ 1
2

ϕ(r−j+1)f
−

j+ 1
2

][2vj+ 1
2
− Dj+ 1

2
vj+ 1

2
+ Dj+ 3

2
vj+ 3

2
]

−(fj + fj+1)vj+ 1
2
}

≤
k−2
∑

j=I

{[gE
j+ 1

2

+
−f−

j+ 1
2

− f−

j+ 3
2

4
][2vj+ 1

2
− Dj+ 1

2
vj+ 1

2
+ Dj+ 3

2
vj+ 3

2
]

−(fj + fj+1)vj+ 1
2
}

=
1

4
{

k−2
∑

j=I

[(2f ′
j+ 1

2

v2
j+ 1

2

− 2f ′
j+ 3

2

vj+ 1
2
vj+ 3

2
) + (−4f ′

j+ 1
2

v2
j+ 1

2

− f ′
j− 1

2

vj− 1
2
vj+ 1

2

+f ′
j+ 3

2

vj+ 1
2
vj+ 3

2
)Dj+ 1

2
+ (4fk−1 + fk−2 − fk)vk− 1

2
Dk− 1

2
]}

≤
1

4
{

k−2
∑

j=I

[f ′
j+ 3

2

(vj+ 1
2
− vj+ 3

2
)2 − f ′

k− 1
2

v2
k− 1

2

+ (4fk−1 + fk−2 − fk)vk− 1
2
Dk− 1

2

+(−4f ′
j+ 1

2

v2
j+ 1

2

− f ′
j− 1

2

vj− 1
2
vj+ 1

2
+ f ′

j+ 3
2

vj+ 1
2
vj+ 3

2
)Dj+ 1

2
]}

≤
1

4
{

k−2
∑

j=I

[(−4f ′
j+ 1

2

v2
j+ 1

2

− f ′
j− 1

2

vj− 1
2
vj+ 1

2
)Dj+ 1

2
+ k-term of P(j≤k−2)]},

where, k-term of P(j≤k−2) := −f ′
k− 1

2

v2
k− 1

2

+ (4fk−1 + fk−2 − fk)vk− 1
2
Dk− 1

2
.

Similarly, we obtain

(3.22)

P(j≥k+2) :=

J−1
∑

j=k+2

{gj+ 1
2
[vj+ 1

2
+ ṽj+ 1

2
] − (fj + fj+1)vj+ 1

2
}

=
J−1
∑

j=k+2

{[gE
j+ 1

2

+ α+
j+ 1

2

ϕ(r+
j )f+

j+ 1
2

][2vj+ 1
2
− Cj+ 1

2
vj+ 1

2
+ Cj− 1

2
vj− 1

2
]

−(fj + fj+1)vj+ 1
2
}

≤
1

4
{

J−1
∑

j=k+2

[(f ′
j+ 3

2

vj+ 1
2
vj+ 3

2
+ 4f ′

j+ 1
2

v2
j+ 1

2

)Cj+ 1
2

+ k-term of P(j≥k+2)]},

where, k-term of P(j≥k+2) := f ′
k+ 3

2

v2
k+ 3

2

+ (4fk+2 − fk+1 + fk+3)vk+ 3
2
Ck+ 3

2
.
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Now,

Pk−1 := [gE
k− 1

2

+ α+
k− 1

2

ϕ(r+
k−1)f

+
k− 1

2

− α−

k− 1
2

ϕ(r−k )f−

k− 1
2

][2vk− 1
2

−(Ck− 1
2

+ Dk− 1
2
)vk− 1

2
+ Dk+ 1

2
vk+ 1

2
+ Ck− 3

2
vk− 3

2
] − (fk−1 + fk)vk− 1

2

≤ [gE
k− 1

2

+
−f−

k− 1
2

− f−

k+ 1
2

4
][2vk− 1

2
− Dk− 1

2
vk− 1

2
+ Dk+ 1

2
vk+ 1

2
] − (fk−1 + fk)vk− 1

2

=
1

4
[(4fk + fk−1 − fs)(2vk− 1

2
− Dk− 1

2
vk− 1

2
+ Dk+ 1

2
vk+ 1

2
) − 4(fk−1 + fk)vk− 1

2
],

Pk := [gE
k+ 1

2

+ α+
k+ 1

2

ϕ(r+
k )f+

k+ 1
2

− α−

k+ 1
2

ϕ(r−k+1)f
−

k− 1
2

][2vk+ 1
2

−(Ck+ 1
2

+ Dk+ 1
2
)vk+ 1

2
+ Dk+ 3

2
vk+ 3

2
+ Ck− 1

2
vk− 1

2
] − (fk + fk+1)vk+ 1

2

= gE
k+ 1

2

[2vk+ 1
2
− Ck+ 1

2
vk+ 1

2
− Dk+ 1

2
vk+ 1

2
] − (fk + fk+1)vk− 1

2

=
1

4
[4fs(2vk+ 1

2
− Ck+ 1

2
vk+ 1

2
− Dk+ 1

2
vk+ 1

2
) − 4(fk + fk+1)vk+ 1

2
],

and

Pk+1 := [gE
k+ 3

2

+ α+
k+ 3

2

ϕ(r+
k+1)f

+
k+ 3

2

− α−

k+ 3
2

ϕ(r−k+2)f
−

k+ 3
2

][2vk+ 3
2

−(Ck+ 3
2

+ Dk+ 3
2
)vk+ 3

2
+ Dk+ 5

2
vk+ 5

2
+ Ck+ 1

2
vk+ 1

2
] − (fk+1 + fk+2)vk+ 3

2

≤ [gE
k+ 3

2

+
f+

k+ 1
2

+ f+
k+ 3

2

4
][2vk+ 3

2
− Ck+ 3

2
vk+ 3

2
+ Ck+ 1

2
vk+ 1

2
] − (fk+1 + fk+2)vk+ 3

2

=
1

4
[(4fk+1 + fk+2 − fs)(2vk+ 3

2
− Ck+ 3

2
vk+ 3

2
+ Ck+ 1

2
vk+ 1

2
) − 4(fk+1 + fk+2)vk+ 3

2
].

Next, we combine the k-term of P(j≤k−2), the k-term of P(j≥k+2), Pk−1, Pk, and
Pk+1 into one estimate.

T (k) := k-term of P(j≤k−2) + k-term of P(j≥k+2) + 4Pk−1 + 4Pk + 4Pk+1

≤ −f ′
k− 1

2

v2
k− 1

2

+ (4fk−1 + fk−2 − fk)vk− 1
2
Dk− 1

2

+f ′
k+ 3

2

v2
k+ 3

2

+ (4fk+2 − fk+1 + fk+3)vk+ 3
2
Ck+ 3

2

+(4fk + fk−1 − fs)(2vk− 1
2
− Dk− 1

2
vk− 1

2
+ Dk+ 1

2
vk+ 1

2
) − 4(fk−1 + fk)vk− 1

2

+4fs(2vk+ 1
2
− Ck+ 1

2
vk+ 1

2
− Dk+ 1

2
vk+ 1

2
) − 4(fk + fk+1)vk+ 1

2

+(4fk+1 − fs + fk+2)(2vk+ 3
2
− Ck+ 3

2
vk+ 3

2
+ Ck+ 1

2
vk+ 1

2
) − 4(fk+1 + fk+2)vk+ 3

2

= T1(k) + T2(k),

where, using f ′
s− 1

2

vs− 1
2
vk+ 1

2
− f ′

s− 1
2

v2
s− 1

2

= f ′
s− 1

2

vs− 1
2
vs+ 1

2
and −f ′

s+ 1
2

vs+ 1
2
vk+ 1

2
+

f ′
s+ 1

2

v2
s+ 1

2

= −f ′
s+ 1

2

vs− 1
2
vs+ 1

2
, we have

T1(k) := (3fk − fk−1 − 2fs)vk− 1
2

+ (8fs − 4fk − 4fk+1)vk+ 1
2

+(3fk+1 − fk+2 − 2fs)vk+ 3
2

≤ f ′
s− 1

2

(vs− 1
2
− vk− 1

2
)2 + f ′

s− 1
2

vs− 1
2
vs+ 1

2
+ 3f ′

s− 1
2

vs− 1
2
vk+ 1

2

−3f ′
s+ 1

2

vs+ 1
2
vk+ 1

2
− f ′

s+ 1
2

vs− 1
2
vs+ 1

2
− f ′

s+ 1
2

(vs+ 1
2
− vk+ 3

2
)2

≤ 3f ′
s− 1

2

vs− 1
2
vk+ 1

2
− 3f ′

s+ 1
2

vs+ 1
2
vk+ 1

2
,
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and

T2(k) := (−5fk + 3fk−1 + fk−2 + fs)Dk− 1
2
vk− 1

2
+ (fk−1 + 4fk − 5fs)Dk+ 1

2
vk+ 1

2

+(4fk+1 + fk+2 − 5fs)Ck+ 1
2
vk+ 1

2
+ (−5fk+1 + 3fk+2 + fk+3 + fs)Ck+ 3

2
vk+ 3

2

= [−f ′
k− 3

2

vk− 3
2
vk− 1

2
− 4f ′

k− 1
2

v2
k− 1

2

+ f ′
s− 1

2

vs− 1
2
vk− 1

2
]Dk− 1

2

+[−5f ′
s−1

2

vs− 1
2
vk+ 1

2
− f ′

k− 1
2

vk− 1
2
vk+ 1

2
]Dk+ 1

2

+[5f ′
s+ 1

2

vs+ 1
2
vk+ 1

2
+ f ′

k+ 3
2

vk+ 1
2
vk+ 3

2
]Ck+ 1

2

+[f ′
k+ 5

2

vk+ 5
2
vk+ 3

2
+ 4f ′

k+ 3
2

v2
k+ 3

2

− f ′
s+ 1

2

vs+ 1
2
vk+ 3

2
]Ck+ 3

2
.

Thus,

(3.23)

T (k) ≤ 3f ′
s− 1

2

vs− 1
2
vk+ 1

2
(1 −

5

3
Dk+ 1

2
) − 3f ′

s+ 1
2

vs+ 1
2
vk+ 1

2
(1 −

5

3
Ck+ 1

2
)

+[−f ′
k− 3

2

vk− 3
2
vk− 1

2
− 4f ′

k− 1
2

v2
k− 1

2

]Dk− 1
2
− f ′

k− 1
2

vk− 1
2
vk+ 1

2
Dk+ 1

2

+f ′
k+ 3

2

vk+ 1
2
vk+ 3

2
Ck+ 1

2
+ [f ′

k+ 5
2

vk+ 5
2
vk+ 3

2
+ 4f ′

k+ 3
2

v2
k+ 3

2

]Ck+ 3
2
.

Finally, using (3.20), (3.21), (3.22) and (3.23), we have

LHS of (3.19) =

J−1
∑

j=I

gj+ 1
2
v̄j+ 1

2
−

J−1
∑

j=I

∫ vj+1

vj

f [w; vj , vj+1]dw

=
1

2
(P(j≤k−2) + Pk−1 + Pk + Pk+1 + P(j≥k+2))

≤
1

8
{

k−2
∑

j=I

[(−4f ′
j+ 1

2

v2
j+ 1

2

− f ′
j− 1

2

vj− 1
2
vj+ 1

2
)Dj+ 1

2

+

J−1
∑

j=k+2

[(f ′
j+ 3

2

vj+ 1
2
vj+ 3

2
+ 4f ′

j+ 1
2

v2
j+ 1

2

)Cj+ 1
2

+3f ′
s− 1

2

vs− 1
2
vk+ 1

2
(1 −

5

3
Dk+ 1

2
) − 3f ′

s+ 1
2

vs+ 1
2
vk+ 1

2
(1 −

5

3
Ck+ 1

2
)

−[f ′
k− 3

2

vk− 3
2
vk− 1

2
+ 4f ′

k− 1
2

v2
k− 1

2

]Dk− 1
2
− f ′

k− 1
2

vk− 1
2
vk+ 1

2
Dk+ 1

2

+f ′
k+ 3

2

vk+ 1
2
vk+ 3

2
Ck+ 1

2
+ [f ′

k+ 5
2

vk+ 5
2
vk+ 3

2
+ 4f ′

k+ 3
2

v2
k+ 3

2

]Ck+ 3
2
}.

Clearly, it is feasible that

LHS of (3.19) ≤
1

2

J−1
∑

j=I+1

Sj−1,j,j+1 ≤
J−1
∑

j=I+1

αjSj−1,j,j+1,

provided that σΓ is sufficiently small. Thus, we have completed the proof of Lemma
3.6.
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