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EXPONENTIAL STABILITY OF PI CONTROL
FOR SAINT-VENANT EQUATIONS WITH A FRICTION TERM∗
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Abstract. We consider open channels represented by Saint-Venant equations that are monitored
and controlled at the downstream boundary and subject to unmeasured flow disturbances at the
upstream boundary. We address the issue of feedback stabilization and disturbance rejection under
Proportional-Integral (PI) boundary control. For channels with uniform steady states, the analysis
has been carried out previously in the literature with spectral methods as well as with Lyapunov
functions in Riemann coordinates. In this article, our main contribution is to show how the analysis
can be extended to channels with non-uniform steady states with a Lyapunov function in physical
coordinates.
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Introduction. The hyperbolic Saint-Venant equations are commonly used for
the description of water flow dynamics in open channels and for the design of man-
agement and control systems in irrigation networks and navigable rivers. In particular,
the exponential stabilization of Saint-Venant equations by boundary feedback control
has been a recurring research topic in the literature for more than twenty years.

The earlier results dealt with static proportional control. In the simplest case of
horizontal channels with negligible friction, the stability analysis was carried out in [8]
with an entropy Lyapunov function, in [17, 12] with the method of characteristics, and
in [9, Section VI] with a Lyapunov function in Riemann coordinates. The stability
analysis was then extended to channels with slope and friction. In the special case of a
uniform steady state, the stability analysis was carried out with a spectral method for
linearized equations in [18, Section 6]. However the linearized system stability does
not directly imply the stability of the steady state for the nonlinear Saint-Venant
equations (see e.g. [10]). For this nonlinear case, the stability analysis is done in
[4, 14] with a Lyapunov function in Riemann coordinates. More recently, the case of
channels with friction and slope and non-uniform steady state was considered in [3]
and [16] with dedicated Lyapunov functions expressed in physical coordinates.

The boundary feedback stabilization of Saint-Venant equations by Proportional-
Integral (PI) control has received much less attention in the literature. It has been
analyzed for channels with uniform steady states in [6] with a spectral method and
in [15, Section 4], [2, Section 5.5] with Lyapunov functions in Riemann coordinates.
In the present article, our main contribution is to show how the analysis of [3] can
be extended to channels with non-uniform steady states under PI control, using a
Lyapunov function in physical coordinates.

Obviously, in principle, stabilization is also possible with more sophisticated con-
trol laws. In particular, the recent backstepping method for 2×2 hyperbolic systems,
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see e.g. [11, 1, 13], allows to design stabilizing boundary output feedbacks in observer-
controller form for Saint-Venant equations. However, it is clear that such advanced
solutions are far from being used in practice and that PI controllers are the only
regulators that are really implemented in the vast majority of field applications. The
reason is obviously that PI regulators, besides their great ease of implementation, are
the simplest solution to cancel off-set errors and attenuate load disturbances. In a PI
regulator, the parameter ki is a measure of the disturbance attenuation efficiency, but
too large values may produce instability. The analysis of the stability of a closed-loop
system under PI control, as we present in this article, is therefore an important and
relevant issue.

Saint-Venant equations. We consider a pool of a prismatic horizontal open
channel with a rectangular cross section and a unit width, as shown in Fig.1. The
dynamics of the system are described by the Saint-Venant equations

Ht + (HV )x = 0, (1a)

Vt +

(
gH +

1

2
V 2

)
x

+ Sf (H,V ) = 0, (1b)

with the state variables H(t, x) = water depth and V (t, x) = horizontal water velocity
at the time instant t and the location x along the channel. L is the length of the pool
and g is the gravity acceleration. Sf (H,V ) is the friction term for which various
empirical models are available in the engineering literature. In this article, we adopt
the simple model

Sf (H,V ) � C
V 2

H
(2)

with C a constant friction coefficient. This model is an approximation of the classical
Manning-Strickler formula (see e.g. [7, Section 5.8], [19, Section 2.1]) which is valid
when the channel is much wider than deep and the friction on the bottom is dominant.
In that case, indeed, it is quite natural to assume a viscous friction (proportional to
V 2) decreasing proportionally to the water depth H.

x
L0

H(t, x)
V (t, x)

Q0(t)

H(t, L) U(t)

Fig. 1. Pool of an open channel with an overflow gate at the downstream side.

The system is subject to the following boundary conditions:

H(t, 0)V (t, 0) = Q0(t), (3a)

H(t, L)V (t, L) = υG
(
H(t, L)− U(t)

)
. (3b)
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The first boundary condition (3a) imposes the value of the canal inflow rate which
is an unknown disturbance denoted Q0(t). The second boundary condition (3b) is a
simple linear model of an overshot gate with U(t) the gate elevation used as control
input and υG a constant discharge coefficient.

Proportional-Integral control. In this article we are concerned with the case
where the outflow gate is provided with a Proportional-Integral (PI) control law

U(t) � Ur + kp(Hsp −H(t, L)) + ki

∫ t

0

(Hsp −H(τ, L))dτ (4)

where Hsp denotes the set-point for the downstream level H(t, L) which is assumed
to be measured on line. The first term Ur is an arbitrary constant value for the
gate elevation. The second term is the proportional correction action with the tuning
parameter kp. The last term is the integral action with the tuning parameter ki.

With this control law, defining Z(t) � U(t)+ kpH(t, L), the boundary conditions
are written in differential form as follows:

H(t, 0)V (t, 0) = Q0(t), (5a)

H(t, L)V (t, L) = υG
[
(1 + kp)H(t, L)− Z(t)

]
, (5b)

dZ

dt
= ki(Hsp −H(t, L)), Z(0) = Ur + kpHsp. (5c)

When U(t) is the feedback command signal (4), the system (1), (5) is a closed loop
boundary control system.

In this article, our main purpose is to analyze the exponential stability of this
closed loop control system.

Fluvial steady state. In case of a constant positive disturbance Q0 > 0 and a
constant positive set point Hsp > 0, a steady state of the closed loop control system
is a time-invariant solution H∗(x), V ∗(x), Z∗, x ∈ [0, L], given by:

H∗(x) solution of (gH∗3 −Q2
0)H

∗
x + CQ2

0 = 0, H∗(L) = Hsp, (6a)

V ∗(x) =
Q0

H∗(x)
, (6b)

Z∗ = (1 + kp)Hsp − Q0

υG
. (6c)

The existence of a solution to (6a) requires that gH3
sp �= Q2

0. If gH3
sp > Q2

0, then
(6a) has a solution (note that H∗ is then decreasing) and the steady state flow is
subcritical (or fluvial). In such case, from (6a) and (6b), according to the physical
evidence, the state (H∗, V ∗) is positive :

H∗(x) > 0, V ∗(x) > 0, for all x ∈ [0, L], (7)

and satisfies the following inequality:

0 < gH∗(x)− V ∗2(x), ∀x ∈ [0, L]. (8)

The fluvial flow is the natural regime of open channels in irrigation networks and
navigable rivers for which the feedback control addressed in this paper is a relevant
and delicate task.
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In the case where gH3
sp < Q2

0, the steady state, if it exists, is supercritical (or
torrential). We do not consider that case in the present article because the control
of open channels under torrential flow, generally with hydraulic jumps, cannot be
achieved with a single controller located at the downstream side. It is a more complex
problem which is beyond the scope of this article and is not yet very studied in the
scientific literature. The interested reader is referred to the recent paper [5] and the
references therein.

Linearization. In order to linearize the model, we define the deviations of the
states H(t, x), V (t, x) and Z(t) with respect to the steady states H∗(x), V ∗(x) and
Z∗:

h(t, x) � H(t, x)−H∗(x), v(t, x) � V (t, x)− V ∗(x), z = Z(t)− Z∗. (9)

Then the linearized Saint-Venant equations around the steady-state are

(
ht

vt

)
+

(
V ∗ H∗

g V ∗

)(
hx

vx

)
+

⎛
⎝ V ∗

x H∗
x

−C
V ∗2

H∗2 V ∗
x + 2C

V ∗

H∗

⎞
⎠(

h

v

)
= 0, (10)

and the linearized boundary conditions are

v(t, 0) = −b0h(t, 0) with b0 =
V ∗(0)
H∗(0)

, (11a)

v(t, L) = bLh(t, L)− bzz(t), bL =
υG(1 + kp)− V ∗(L)

H∗(L)
, bz =

υG
H∗(L)

, (11b)

zt = −kih(t, L). (11c)

Exponential stability of the linearized system. Let us consider the lin-
earized system (10), (11) under an initial condition

h(0, x) = ho(x), v(0, x) = vo(x), z(0) = zo, (12)

such that

(ho, vo) ∈ L2((0, L);R2), zo ∈ R. (13)

The Cauchy problem (10)-(11)-(12) is well-posed (see [2, Appendix A]).
Our concern is to analyze the exponential stability of the system (10)-(11) ac-

cording to the following definition.

Definition 1. The system (10)-(11) is exponentially stable (for the L2-norm)
if there exist ν > 0 and Co > 0 such that, for every initial condition (ho, vo) ∈
L2((0, L);R2), zo ∈ R, the solution to the Cauchy problem (10), (11), (12) satisfies

‖(h(t, ·), v(t, ·))‖L2 + |z(t)| � Coe
−νt

[
‖(ho, vo)‖L2 + |zo|

]
. (14)

We now prove that the linearized control system (10)-(11) is exponentially stable
if the steady state is subcritical and the control tuning parameters are positive: kp > 0
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and ki > 0. For this stability analysis, the following candidate Lyapunov function is
considered:

V(h, v, z) =

∫ L

0

(gh2 +H∗v2)dx+ qz2. (15)

Note that there exists c > 0 such that

1

c

(‖(h, v)‖2L2 + |z|2) ≤ V(h, v, z) ≤ c
(‖(h, v)‖2L2 + |z|2)

∀(h, v, z) ∈ L2(0, L)× L2(0, L)× R.
(16)

The time derivative of this function V along the C1 solutions of the Cauchy problem
(10), (11), (12) is

dV

dt
= 2

∫ L

0

(ghht +H∗vvt)dx+ 2qzzt. (17)

Using the system equation (10) and the boundary condition (11c),we have

dV

dt
= −2

∫ L

0

(
gh(V ∗hx +H∗vx + V ∗

x h+H∗
xv)

+H∗v
(
ghx + V ∗vx − C

V ∗2

H∗2h+ (V ∗
x + 2C

V ∗

H∗ v)
))

dx− 2qkizh(t, L). (18)

Then, using integration by parts together with (6a), we have

dV

dt
= −

[(
h v

)
M(x)

(
h

v

)]L

0

−
∫ L

0

(
h v

)
N(x)

(
h

v

)
dx− 2qkizh(t, L), (19)

with

M(x) =

(
gV ∗(x) gH∗(x)

gH∗(x) H∗(x)V ∗(x)

)
, (20)

and

N(x) =

⎛
⎜⎜⎜⎝

gCV ∗3

H∗(gH∗ − V ∗2)
−CV ∗2

H∗

−CV ∗2

H∗
2CV ∗3

(gH∗ − V ∗2)
+ 4CV ∗

⎞
⎟⎟⎟⎠ . (21)

We introduce the notations

h0 = h(t, 0), hL = h(t, L), v0 = v(t, 0), vL = v(t, L), (22)

H0 = H∗(0), V0 = V ∗(0), HL = H∗(L), VL = V ∗(L). (23)
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Then, using the boundary conditions (11a), (11b), we have[(
h v

)
M(x)

(
h

v

)]L

0

= gVLh
2
L + 2gHLhLvL +Q0v

2
L − gV0h

2
0 − 2gH0h0v0 −Q0v

2
0 (24)

= gVLh
2
L + 2gHLhL(bLhL − bzz) +Q0(bLhL − bzz)

2 − gV0h
2
0

+ 2gH0h0(b0h0)−Q0(b0h0)
2 (25)

= (gVL + 2gbLHL +Q0b
2
L)h

2
L + (−gV0 + 2gb0H0 −Q0b

2
0)h

2
0 +Q0b

2
zz

2

+ (−2gbzHL − 2Q0bLbz)hLz. (26)

Consequently

dV

dt
= −m0h

2
0 −

(
hL z

)M
(
hL

z

)
−

∫ L

0

(
h v

)
N(x)

(
h

v

)
dx− 2aqkiz

2, (27)

with

m0 = −gV0 + 2gb0H0 −Q0b
2
0, (28)

M =

(
gVL + 2gbLHL +Q0b

2
L −gbzHL −Q0bLbz + qki

−gbzHL −Q0bLbz + qki Q0b
2
z − 2aqki

)
, (29)

and a is a real positive constant to be determined.
Under the subcritical flow condition (8), using the definition of b0 (11a), we have

that

m0 = −gV0 + 2gb0H0 −H0V0b
2
0 = b0(gH0 − V 2

0 ) > 0 (30)

and that the matrix N(x) is positive definite for all x ∈ [0, L] since

det[N(x)] =

(
CV ∗2

H∗

)2 (
2gH∗V ∗2

(gH∗ − V ∗2)2
+

4gH∗

(gH∗ − V ∗2)
− 1

)
> 0. (31)

On the other hand, M is positive definite if

(a) gVL + 2gbLHL +Q0b
2
L > 0, (32)

(b) det(M) = (gVL + 2gbLHL +Q0b
2
L)(Q0b

2
z − 2aqki)

− (gbzHL +Q0bLbz − qki)
2 > 0. (33)

It follows from (3b) that υG > VL. Hence, since kp > 0, we have from (11b)

bL =
(υG − VL) + υGkp

H∗(L)
> 0 (34)

and Condition (a) is satisfied.

Regarding condition (b), using the definition of bL, we have

det(M) = −α+ 2βkiq − k2i q
2 = P(q), (35)
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with

α = gb2zHL(gHL − V 2
L ) (36)

and

β = gbzHL +Q0bLbz − a(gVL + 2gbLHL +Q0b
2
L). (37)

P(q) is a degree-2 polynomial in q with discriminant

Δ = 4k2i (β
2 − α). (38)

We observe that α > 0 under the subcritical flow condition (8). Moreover, it is easy
to check that the positive parameter a can be selected sufficiently small so that β > 0
and β2 − α > 0. Hence, if ki > 0, P(q) has two positive real roots and there exists
a positive value of q (depending on ki) such that det(M) > 0 and condition (b) is
satisfied. Then, it follows directly from the definition (15) of V and from (27) that
there exists a positive real constant μ such that

dV

dt
� −μV (39)

along the C1-solutions of the system. However, since the C1-solutions are dense in
the set of L2-solutions, inequality (39) is also satisfied in the sense of distributions
for L2-solutions (see [2] for details). Consequently, V is an exponentially decaying
Lyapunov function for the L2-norm and the system (10)-(11) is exponentially stable
in the sense of Definition 1.

Exponential stability of the steady state of the Saint-Venant equa-
tions. In the previous section, we have shown that the PI controller (4) stabilizes the
linearized Saint-Venant equations if the steady state is subcritical and the control
tuning parameters are positive: kp > 0 and ki > 0. In this section, we briefly explain
how it can be shown that the same PI controller is also sufficient to guarantee the
local exponential stability for the H2-norm of the steady state H∗(x), V ∗(x) of the
nonlinear system of Saint-Venant equations (1), (2) under the nonlinear boundary
conditions (5).

Let us rewrite the Saint-Venant equations in the (h, v) coordinates (see (9)),(
ht

vt

)
+

(
V ∗(x) + v H∗(x) + h

g V ∗(x) + v

)(
hx

vx

)

+

⎛
⎜⎝

V ∗
x (x) H∗

x(x)

−C
V ∗2(x)

H∗(x)(H∗(x) + h)
V ∗
x (x) + C

2V ∗(x) + v

H∗(x) + h

⎞
⎟⎠

(
h

v

)
= 0, (40)

with the boundary conditions (using the notations (22) and (23))

v0 = −b0h0 +
V0

H0(H0 + h0)
h2
0, (41a)

vL = bLhL − bzz +
(VL − υG(1 + kP ))h

2
L + υGhLz

HL(HL + hL)
, (41b)

zt = −kihL. (41c)
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Then, we transform the system into Riemann coordinates which are defined as follows:

R =

(
R+

R−

)
=

(
v + 2η(h)

v − 2η(h)

)
with η(h) =

√
g(H∗ + h)−

√
gH∗. (42)

With these coordinates, the system (40) is written in the following characteristic form:

Rt + Λ(R, x)Rx +B(R, x) = 0, (43)

with the diagonal matrix

Λ(R, x) =

(
λ+(R, x) 0

0 λ−(R, x)

)
with λ±(R, x) = V ∗ ±

√
gH∗ + v ± η(h), (44)

and an appropriate definition of B(R, x).
The goal is to prove the H2 exponential stability of the zero steady state for the

system (44) under the boundary conditions (41) and under an initial condition

R(0, x) = Ro(x), z(0) = zo. (45)

according to the following definition.

Definition 2. The steady state R(t, x) ≡ 0 of the system (41), (43), and (45)
is exponentially stable (for the H2-norm) if there exist δ > 0, ν > 0 and C0 > 0 such
that, for every initial condition Ro ∈ H2((0, L);Rn) satisfying ‖Ro‖H2((0,L);Rn) � δ
and compatibility1 conditions of order 1 , the solution R of the Cauchy problem (44),
(41), (45) is defined on [0,+∞)× [0, L] and satisfies

‖R(t, .)‖H2((0,L);Rn) + |z(t)| ≤ C0e
−νt

[
‖Ro‖H2((0,L);Rn) + |zo|

]
. (46)

The proof can be build in a way very similar to the proof given in [2, Chapter 6]
for a general class of quasi-linear hyperbolic systems with static boundary conditions.
Here we limit ourselves to the key points of the proof and we refer the reader to [2,
Section 6.2] for a comprehensive development.

First, we consider an augmented system with state (R,Rt,Rtt) where the dy-
namics of Rt and Rtt are simply obtained by taking partial time derivatives of the
system equation (44) and the boundary conditions (41).

Then the candidate Lyapunov function is defined as

VNL = V1(R, z) +V2(Rt, zt) +V3(Rtt, ztt), (47)

with

V1(R, z) =

∫ L

0

1
2H

∗RTRdx+ qz2, (48)

V2(Rt, zt) =

∫ L

0

1
2H

∗RT
t Rtdx+ qz2t , (49)

V3(Rtt, ztt) =

∫ L

0

1
2H

∗RT
ttRttdx+ qz2tt. (50)

1For an explanation of the concept of compatibility of initial conditions, see [2, Section 4.5.2]
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For a vector ξ = (ξ1, . . . , ξn)
T∈ R

n, we denote |ξ|∞ = max{|ξj |; j ∈ {1, . . . , n}}. For a
map f ∈ C0([0, L];Rn), we denote |f |0 = max{|f(x)|∞; x ∈ [0, L]}. We remark that,
for small |h|0, the function V1(R, z) can be viewed as a perturbation of the Lyapunov
function V(h, v, z) of the linearized system (see equation (15)). More precisely, for
|h|0 small enough,

V1(R, z) =

∫ L

0

1
2H

∗RTRdx+ qz2 (51)

=

∫ L

0

(4H∗η2(h) +H∗v2)dx+ qz2

=

∫ L

0

(gh2 +H∗v2 +O(h3))dx+ qz2

= V(h, v, z) +

∫ L

0

O(|h|3)dx. (52)

Similar expressions of V2 and V3 are obtained as follows: for |h|0 small enough

V2(Rt, zt) = V(ht, vt, zt) +

∫ L

0

O(|hh2
t |)dx, (53)

V3(Rtt, ztt) = V(htt, vtt, ztt) +

∫ L

0

O(|h2
thtt|+ |hh2

tt|)dx. (54)

Let us now introduce a notation to deal with “higher order terms” in the time deriva-
tive of the Lyapunov function. We denote by O(X1;X2), with X1 � 0 and X2 � 0,
quantities for which there exist C0 > 0 and ε > 0 independent of R, Rt and Rtt, such
that

(X2 � ε) =⇒ (|O(X1;X2)| � C0X1).

It follows that the time derivatives of V1, V2 and V3 along the system solutions can
be expressed in the following form

dV1

dt
= −

[(
h v

)
M(x)

(
h

v

)]L

0

−
∫ L

0

(
h v

)
N(x)

(
h

v

)
dx− 2qzzt

+O(|R(t, 0)|3 + |R(t, L)|3; |R(t, 0)|+ |R(t, L)|)
+O

(∫ L

0

(|R|3 + |Rt||R|2)dx; |R(t, .)|0
)
, (55)

dV2

dt
= −

[(
ht vt

)
M(x)

(
ht

vt

)]L

0

−
∫ L

0

(
ht vt

)
N(x)

(
ht

vt

)
dx− 2qztztt

+O(|Rt(t, 0)|2|R(t, 0)|+ |Rt(t, L)|2|R(t, L)|; |R(t, 0)|+ |R(t, L)|)
+O

(∫ L

0

|Rt|2(|Rt|+ |R|)dx; |R(t, .)|0)
)
, (56)
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dV3

dt
= −

[(
ht vt

)
M(x)

(
ht

vt

)]L

0

−
∫ L

0

(
ht vt

)
N(x)

(
ht

vt

)
dx− 2qzttzttt

+O(|Rtt(t, 0)|2|Rt(t, 0)|+ |Rtt(t, 0)||Rt(t, 0)|2 + |Rt(t, 0)|4
+ |Rtt(t, L)|2|Rt(t, L)|+ |Rtt(t, L)||Rt(t, L)|2 + |Rt(t, L)|4; |R(t, 0)|+ |R(t, L)|)

+O
(∫ L

0

(|Rtt|2(|Rt|+ |R|) + |Rtt||Rt|2
)
dx; |R(t, .)|0 + |Rt(t, .)|0

)
. (57)

We observe that, in each case, we recover the quadratic formula of the linear case aug-
mented with (at least) cubic terms that are negligible for small |R(t, .)|0 + |Rt(t, .)|0.
It is therefore not surprising that the local H2 stability of the nonlinear steady state
can be deduced from the global L2 stability of the linear system. By proceeding anal-
ogously to [2, Chapter 6], it can be shown that there exist positive constants α and δ
such that, for every R such that |R(t, .)|0 + |Rt(t, .)|0 < δ, we have

dVNL

dt
� −αVNL (58)

along the system solutions (compared to [2, Chapter 6], note that, by (41b), vL can
be expressed in terms of hL and z). It follows that the system steady-state is locally
exponentially stable for the H2-norm in the sense of Definition 2.

Numerical simulation. We consider a pool with the following parameters:

length: L = 1000 (meters),

friction coefficient: C = 0.03,

discharge coefficient: υg = 3 m/sec

constant input flow rate: Q0(t) = 2 m3/sec ∀t,
reference gate elevation: Ur = 4 m,

initial state: H(0, x) = 5.05 m, V (0, x) = 0.4 m/sec, ∀x ∈ [0, L],

control set point: Hsp = 5 m,

control tuning: kp = 2, ki = 0.02 sec−1.

The simulation is done with the ‘hpde’ solver [20]. The simulation results are
illustrated with Figures 2 and 3. The convergence of the water level H(t, L) from the
initial state towards the set point Hsp is shown in Figure 2. The exponential decay
of the Lyapunov function is shown in Figure 3.

Conclusion. In this article, our main contribution was to exhibit a Lyapunov
function which allows to study the exponential stability of Saint-Venant equations
with nonuniform steady-states under boundary feedback PI control.
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