## CP<sup>2</sup>-STABLE THEORY

## MICHAEL H. FREEDMAN AND ZHENGHAN WANG

ABSTRACT. In the topological category, it is shown that the dimension 4 disk theorem holds without fundamental group restriction after stabilizing with many copies of complex projective space. As corollaries, a stable 4-dimensional surgery theorem and a stable 5-dimensional s-cobordism are obtained. These results contrast with the smooth category where the usefulness of adding  $\mathbb{C}P^2$ 's depends on chirality.

Surgery is the fundamental tool for constructing manifolds of dimension  $n \geq 5$  and the s-cobordism theorem (in dimension n+1) is the fundamental tool for constructing isomorphism between n-manifolds. When the category is TOP both techniques extend to the case n=4 provided the fundamental group is "good", [F2], [FQ2] ("good" is the closure of finite groups and Abelian groups under the operations: (1) subgroup, (2) quotient, (3) extension, and (4) direct limit. It was later noticed that for finitely generated groups the condition "good" is identical with the notion elementary amenable. See [St], [C].) In categories Diff or PL both theorems fail when n=4 ([D1], [D2]), even in the simply connected case. The necessity of the "good" hypothesis on  $\pi_1$  in the topological category has been the central unsolved problem in the subject for the last decade.

Because there has been progress only on special cases of this question ([F3], [F4]) it is natural to consider "easier" stable questions. It was known very early ([CS2], [FQ1], [L], [Q]) that standard versions of the 4-dimensional surgery theorem and the 5-dimensional s-cobordism are true (in all categories) after appropriate stabilization by connected sum with copies of  $S^2 \times S^2$ . (In the case of surgery one stabilizes the normal map f to  $f \sharp id \sharp_k S^2 \times S^2$ . In the case of the s-cobordism theorem one must form a

<sup>1991</sup> Mathematics Subject Classification. Primary 57N13, 57N70; Secondary 57R67, 57R80.

Received October 18, 1993.

Michael H. Freedman supported in part by NSF grant DMS-92-08054.

Zhenghan Wang supported by the Sloan Dissertation Fellowship.

"connected sum  $\times [0,1]$ " with  $[0,1] \times \sharp_k S^2 \times S^2$ .) In this paper we consider stabilization by copies of  $\mathbb{C}P^2$  all with a fixed orientation. The identity:

$$CP^2 \sharp CP^2 \sharp - CP^2 = S^2 \times S^2 \sharp CP^2$$

shows that for a stabilization which is careless of orientations the early stable results are adequate.

In the smooth category chirality plays an important role. For example, the negative definite form  $E_8 \oplus E_8$  cannot be realized even after stabilization by copies of <-1> (corresponding to  $-\sharp_k CP^2$ ) [D1] and if two manifolds are distinguished by a Donaldson invariant derived from anti-self dual connections then after blowing up points, i.e., sum with  $-CP^2$  they will continue to be distinguished by a related Donaldson invariant [DK]. On the other hand, stabilization of  $E_8 \oplus E_8$  by <+1> is realizable (as  $CP^2\sharp_{16}-CP^2$ ). Also, any algebraic surface becomes a standard smooth manifold after connected sum with  $CP^2$  [Ma].

No similar chirality is found in the topological category. We prove that any unobstructed 4-dimensional surgery problem can be solved after connected sum with copies of  $\mathbb{CP}^2$  (or with copies of  $-\mathbb{CP}^2$ ), and a stable 5-dimensional s-cobordism.

The basic result is the following disk theorem:

**Theorem 1.** Suppose  $A \longrightarrow M^4$  is an immersion of a union of disks, with algebraically transverse spheres whose algebraic intersections and self-intersections numbers are 0 in  $Z[\pi_1 M]$ , then there is a topologically embedded union of disks with the same framed boundary as A after stabilizing M with many copies of  $\mathbb{CP}^2$ .

For specificity we may take the complex orientation for  $\mathbb{C}P^2$ , but the other would work equally well.

The disk theorem is known ([F2], [FQ2]) to imply both the surgery and s-cobordism conjectures, since it allows for the construction of flat Whitney disks wherever these are needed in the proofs. So as corollaries:

**Theorem 2 (CP<sup>2</sup>-stable surgery).** Let  $f:(M,\partial M) \longrightarrow (X,\partial X)$  be a degree one normal map from a topological 4-manifold to a Poincare pair which induces a  $Z[\pi_1X]$ -homology isomorphism over  $\partial X$ . Suppose that the surgery obstruction vanishes  $\mathcal{O}(f) = 0 \in L_4^{(s)}(\pi_1X)$  in the (simple) L-group. Let X be represented as in [W] by a space whose fundamental class is carried by a top cell  $D^4$ . Define  $f_k: (M\sharp_k CP^2, \partial M) \longrightarrow$ 

 $(X\sharp_{k,alongD^4}CP^2,\partial X)$  as  $f\sharp id(\sharp_k CP^2)$  and extend the bundle map  $b:\nu_M\to \xi$  by connected sum with  $id(\nu\sharp_k CP^2)$ . For k sufficiently large,  $f_k$  is normally bordant (rel  $\partial$ ) to a (simple) homotopy equivalence.

Theorem 3 (CP<sup>2</sup>-stable s-cobordism theorem). Suppose  $(W^5; M_0, M_1)$  is a compact s-cobordism which is a product over  $\partial M_0$ . Define  $W\sharp_I(CP^2\times I)$  to be the s-cobordism obtained by deleting a regular neighbourhood of an arc from  $M_0$  to  $M_1$ , and substituting  $(CP^2 - ball) \times I$ . Note that it changes  $M_0$  and  $M_1$  by connected sum with  $CP^2$ . Then there is a topological product structure on  $W\sharp_I k(CP^2\times I)$ , for some k extending the product structure over  $\partial M_0$ . In particular, it implies that  $M_0\sharp kCP^2$  is homeomorphic to  $M_1\sharp kCP^2$ .

The key to the proof of Theorem 1 is the following observation: inside  $CP^2$ , there is a pair of 2-spheres which intersect transversely at exactly one point. Let  $A = \{A_i\} \longrightarrow M$  be a framed immersion of a union of disks, and  $p_{ij}$  be an intersection point of  $A_i$  and  $A_j$ . After stabilizing M with  $CP^2$ , we sum one embedded 2-sphere to  $A_i$  in  $M \not\equiv CP^2$ , then the other embedded 2-sphere is a dual (not framed) 2-sphere to  $A_i \not\equiv S^2$ . By summing the dual to  $A_j$ ,  $p_{ij}$  is removed. We can remove all intersection points among A in this way and have an embedded union of disks with the same boundary as A. But these embedded disks are not directly useful for Whitney moves because the relative framings have not been controlled. Actually, the framing changes as follows: if  $i \neq j$ , then the framing of both  $A_i$  and  $A_j$  change by  $\pm 1$ , if i = j, then the disk changes framing by 0 or 4 depending on the sign of  $p_{ii}$ .

Proof of Theorem 1. By Lemma 3.3 of [FQ2], it is sufficient to get a  $\pi_1$ -null 3-stage capped grope. Raise the grope to height 4 as in 2.7 [FQ2] and use the preceding observation to remove all double points of the caps. Twist if necessary to correct the framing. Then contract the top stage to obtain a 3-staged capped grope which satisfies:

- (1) all new double points are  $\pi_1$ -trivial and
- (2) framing is 0.

This completes the proof of Theorem 1.  $\square$ 

Addendum. In theorems 1, 2, and 3,  $CP^2$  may be replaced by any oriented closed 1-connected topological four manifold  $M \ncong S^4$ .

*Proof.* Let  $\alpha: S^2 \hookrightarrow M$  be an immersion representing an indivisible homology class. After complicating the immersion by "finger moves"  $\alpha$  will

have an immersed geometric dual  $\beta: S^2 \hookrightarrow M$ . Now follow the preceding argument with  $\alpha$ ,  $\beta$  in M replacing the two copies of  $\mathbb{C}P^1$  in  $\mathbb{C}P^2$ .

## References

- [C] C. Chow, Elementary amenable group, Ill. J. Math. 24 (1980), 396–407.
- [CS1] S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Annals of Math. 99 (1974), 277–348.
- [CS2] \_\_\_\_\_, On four-dimensional surgery and its applications, Comment. Math. Helv. 46 (1971), 500–528.
- [D1] S. Donaldson, An application of gauge theory to the topology of 4-manifolds, J. Diff. Geom. 18 (1983), 296–316.
- [D2] \_\_\_\_\_, Irrationality and the h-cobordism conjecture, J. Diff. Geom. 26 (1987), 141–168.
- [DK] S. Donaldson and P. Kronheimer, *The geometry of four-manifolds*, Oxford Mathematical Monographs, Clarendon Press, 1990.
- [F1] M. H. Freedman, The topology of 4-dimensional manifolds, J. Diff. Geom. 17 (1982), 357–453.
- [F2] \_\_\_\_\_, The disk theorem for four-dimensional manifolds, Proc. Int'l Congress Math., Warsaw, Poland, 1982.
- [F3] \_\_\_\_\_, A new technique for the link slice problem, Invent. Math. 80 (1982), 453–465.
- [F4] \_\_\_\_\_, Whitehead<sub>3</sub> is a slice link, Invent. Math. **94** (1988), 175–182.
- [FQ1] M. H. Freedman and F. Quinn, A quick proof of the 4-dimensional stable surgery theorem, Comment. Math. Helv. 55 (1980), 668-671.
- [FQ2] \_\_\_\_\_, The topology of 4-manifolds, Princeton Math. Series, vol. 39, 1990.
- [L] T. Lawson, Trivializing h-cobordism by stabilization, Math. Z. 156 (1977), 211– 215.
- [Ma] R. Mandelbaum, On irrational connected sums, Trans. Am. Math. Soc. 247 (1979), 137–156.
- [Q] F. Quinn, The stable topology of 4-manifolds, Topology and its Applications 15 (1983), 71–77.
- [St] R. Strong, Four manifold topology and groups of polynomial growth, preprint.
- [W] C. T. C. Wall, Poincare complexes I, Annals of Math. 86 (1967), 213–245.

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112

E-mail address: freedman@euclid.ucsd.edu

 $Current\ address:$  Zhenghan Wang, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109

 $E ext{-}mail\ address: zwang@math.lsa.umich.edu}$