GENERAL HYPERPLANE SECTIONS OF NONSINGULAR FLOPS IN DIMENSION 3

Yujiro Kawamata

Let X be a 3-dimensional complex manifold, and $f: X \to Y$ a proper bimeromorphic morphism to a normal complex space which contracts an irreducible curve $C \subset X$ to a singular point $Q \in Y$ while inducing an isomorphism $X \setminus C \simeq Y \setminus \{Q\}$. We assume that the intersection number with the canonical divisor $(K_X \cdot C)$ is zero. In this case, it is known that the singularity of Y is Gorenstein terminal, and there exists a flop $f^{\#}$: $X^{\#} \to Y$ ([R]), which we call a nonsingular flop because X is nonsingular.

In order to investigate f analytically, we replace Y by its germ at Q and consider a general hyperplane section H of Y through Q. Then H has only a rational double point, its pull-back $L \subset X$ by f is normal, and the induced morphism $f_H: L \to H$ factors the minimal resolution $g: M \to H$ ([R]). The dual graph Γ of the exceptional curves of g is a Dynkin diagram of type A_n , D_n or E_n . Let $F = \sum_{k=1}^n m_k C_k$ be the fundamental cycle for g on M. The natural morphism $h: M \to L$ is obtained by contracting all the exceptional curves of g except the strict transform C_{k_0} of C.

Kollár defined an invariant of f called the *length* as the length of the scheme theoretic fiber $f^{-1}(Q)$ at the generic point of C. It coincides with the multiplicity m_{k_0} of the fundamental cycle at C_{k_0} .

Katz and Morrison proved the following theorem ([KM, Main Theorem]). The purpose of this paper is to give its simple geometric proof.

Theorem. Let $f: X \to Y$ be as above. Then the singularity of the general hyperplane section H and the partial resolution $f_H: L \to H$ are determined by the length ℓ of f. More precisely, H has a rational double point of type A_1, D_4, E_6, E_7, E_8 , or E_8 , if $\ell = 1, 2, 3, 4, 5$ or 6, respectively.

We note that there is only one irreducible component of $g^{-1}(Q)$ whose multiplicity in F coincides with ℓ in the above cases.

Proof. Let H' be another general hyperplane section of Y through Q, and $f_{H'}: L' \to H'$ the induced morphism. H and H' have the same type of

Received October 6, 1993.

singularities and so do L and L'. Let P_i and P'_i be the singular points of L of L', respectively.

Let D be the effective Cartier divisor on L given by $L' \cap L$. Then D is a general member of the linear system of effective Cartier divisors on L which contain C and such that $(D \cdot C) = 0$. In fact, if s_0 is the global section of $\mathcal{O}_L(-C) \subset \mathcal{O}_L$ corresponding to D, then from an exact sequence

$$0 \to \mathcal{O}_X(-L) \to \mathcal{O}_X \to \mathcal{O}_L \to 0$$

there exists a lifting $s \in H^0(X, \mathcal{O}_X)$ of s_0 which defines L', because $H^1(X, \mathcal{O}_X(-L)) = 0$.

Let \tilde{D} be the total transform of D on M. Then we can write $\tilde{D} = F + D'$ for some D' which is reduced, nonsingular and has no common irreducible components with F. If Γ is of type A_n , then D' has 2 irreducible components each of which intersects transversally one of the end components of F. Otherwise, D' is irreducible, and intersects transversally a uniquely determined component C_{k_1} of F, for which $m_{k_1} = 2$ holds $(k_1$ may be equal to k_0).

Let t be the global section of \mathcal{O}_X corresponding to L. Then s+ct is also a lifting of s_0 for any $c \in \mathbb{C}$. Let L'(c) be the corresponding divisor on X.

Let P be a point on C which is different from the P_i . For local analytic coordinates $\{x,y,t\}$, we can write s+ct=F(x,y)+t(G(x,y,t)+c). For a general choice of c, $(G(x,y,t)+c)|_C$ does not vanish at the singular points P'_i of L'=L'(0) other than the P_i , and has only simple zeroes at some points P''_j . Then L''=L'(c) has singularities only at the P''_j , besides possibly at the P_i , with equations of the type $x^\ell+ty=0$.

If we replace L' by L'', we conclude that L' has only singularities of type $A_{\ell-1}$ outside the P_i . We shall investigate the singularities of L' at the P_i case by case.

Let Γ_i be the dual graph of the exceptional curves of h over P_i , and F_i the corresponding fundamental cycle. From the description of \tilde{D} above, we can calculate the multiplicity d_i of D at the point P_i by $d_i = ((m_{k_0}C_{k_0} + D') \cdot F_i)$.

If $\ell = 1$ or 2, then we can check that $d_i \leq 3$. If 2 singular surfaces meet at a common singular point, then the intersection curve has multiplicity at least 4 there. Hence L' is nonsingular at the P_i . Then it follows that $\Gamma = A_1$ or D_4 , respectively.

But if $\ell \geq 3$, then d_i can be bigger, and we should look at the singularity of L' more closely.

We assume first that $\ell=3$. If $\Gamma=E_6$, then there is nothing to prove. We have to prove that $\Gamma\neq E_7, E_8$. If $\Gamma=E_7$, then L has two singular points P_1 and P_2 , where F_1 meets D'. We have 2 cases; $\Gamma_1=A_1$ and

 $\Gamma_2 = A_5$, or $\Gamma_1 = A_4$ and $\Gamma_2 = A_2$. In the former case, L' has at most A_1 singularity at P_1 because of the symmetry of L and L', while being nonsingular at P_2 , since $d_2 = 3$. Therefore, L' has simpler singularities than L, a contradiction. In the latter case, it has at most A_2 at P_2 . We shall prove that L' has A_1 at P_1 .

Let $\mu: X^{(1)} \to X$ be the blowing-up at P_1 , $E \simeq \mathbb{P}^2$ the exceptional divisor, and $L^{(1)}$ (resp. $L^{(1)'}$) the strict transform of L (resp. L'). $B = L^{(1)} \cap E$ consists of 2 lines B_1 and B_2 which correspond to the 2 end components of F_1 . Their multiplicities in $\mu^*L'\cap L^{(1)}$ are equal to those in F, which are 2. If L' has multiplicity n at P_1 , then we have $\mu^*L' = L^{(1)'} + nE$ and $L^{(1)'}\cap E$ is a plane curve of degree n. Since $L^{(1)}\cdot E = B$, we deduce that $\mu^*L' = L^{(1)'} + 2E$, and neither of the B_i are contained in $B' = L^{(1)'}\cap E$. Thus the intersection of 2 conics B and B' is equal to $(L^{(1)}\cap L^{(1)'})\cap E$. We see from the description of \tilde{D} that it consists of 2 points, one at $B_1 \cap B_2$ and the other on one component B_1 . Then B' must be a nonsingular conic, and L' has A_1 singularity at P_1 .

If $\Gamma = E_8$, then we have again 2 cases; $\Gamma_1 = A_1$ and $\Gamma_2 = E_6$, or $\Gamma_1 = A_7$. In the former case, L' has at most A_1 singularity at P_1 , while being nonsingular at P_2 , since $d_2 = 3$. In the latter case, it has A_1 at P_1 as in the case of E_7 .

Next we assume that $\ell=4$. If $\Gamma=E_7$, then there is nothing to prove. If $\Gamma=E_8$, then we have 2 cases: $\Gamma_1=D_5$ and $\Gamma_2=A_2$, or $\Gamma_1=A_6$ and $\Gamma_2=A_1$.

In the former case, L' has at most A_2 singularity at P_2 . By the symmetry of L and L', L' has D_5 at P_1 . Let $\mu: X^{(1)} \to X$, E, $L^{(1)}$ and $L^{(1)'}$ as before. $B = L^{(1)} \cap E$ is a line, and $L^{(1)} \cdot E = 2B$. Since the corresponding curve has multiplicity 4 in F, we have $\mu^*L' = L^{(1)'} + 2E$, and B is not contained in $B' = L^{(1)'} \cap E$. $L^{(1)}$ has 2 singular points $P_1^{(1)}$ and $P_2^{(1)}$ on B which are of types A_3 and A_1 , respectively. We have $B \cap B' = P_1^{(1)}$ by the description of \tilde{D}

Let $\nu: X^{(2)} \to X^{(1)}$ be the blowing-up at $P_1^{(1)}, E^{(1)} \simeq \mathbb{P}^2$ the exceptional divisor, and $L^{(2)}$ (resp. $L^{(2)\prime}$) the strict transform of $L^{(1)}$ (resp. $L^{(1)\prime}$). $B^{(1)} = L^{(2)} \cap E^{(1)}$ consists of 2 lines, and one of the corresponding curves on M has multiplicity 3 in F, hence $\nu^*L^{(1)\prime} = L^{(2)\prime} + E^{(1)}$, and $L^{(1)\prime}$ is nonsingular at $P_1^{(1)}$. But this contradicts the symmetry of L and L'.

In the latter case, L' has at most A_1 singularity at P_2 . Let $\mu: X^{(1)} \to X$, etc., as before. $B = L^{(1)} \cap E$ consists of 2 lines B_1 and B_2 , which correspond to the 2 end components of F_1 . Since their multiplicities in F are 3 and 2, B_1 is contained in $B' = L^{(1)'} \cap E$, while B_2 is not. Thus we have $B' = B_1 + B'_2$ with $B_2 \neq B'_2$. Since C is nonsingular, its strict transform

on $X^{(1)}$ intersects E at only one point. It is also the image of C_{k_0} on $X^{(1)}$, so it passes through the point $B_1 \cap B_2$, hence not $B_1 \cap B_2'$, a contradiction to the symmetry.

Finally, if $\ell \geq 5$, the assertion of the theorem is clear. Q.E.D.

References

- [KM] S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory of Weyl groups, J. Alg. Geom. 1, 449–530.
- [R] M. Reid, Minimal models of canonical 3-folds, Adv. St. Pure Math. 1 (1983), 131–180.

Department of Mathematical Sciences, University of Tokyo, Hongo, Bunkyo, Tokyo, 113, Japan

 $\hbox{\it E-mail address: } kawamata@math.s.u-tokyo.ac.jp$