REMARK ON EXTENSIONS OF THE WATERMELON THEOREM

Johannes Sjöstrand

In a recent work [H2] L. Hörmander has given some refinements of Kashiwara's Watermelon Theorem (see [H1], [S]). The purpose of this note is to give some slight improvements of one of the results of Hörmander, by extending a proof in [S] (based on ideas of Kashiwara, communicated to the author by P. Schapira and A. Grigis).

Let u be a distribution (or a hyperfunction) on \mathbb{R}^n , $n \geq 2$, with compact support K. Let $y_0 \in K$ and let $\eta_0 \in \mathbb{R}^n$, $\|\eta_0\| = 1$, be an exterior normal vector of K at y_0 in the C^2 sense. In other words, there exists a real C^2 function, defined in a neighborhood of y_0 such that $h(y_0) = 0$, $dh(y_0) = \eta_0$, and $h(y) \leq 0$ for all y in K which are in a neighborhood of y_0 . After an analytic change of variables (a convexification) and a truncation away from y_0 , we may assume that $(y - y_0) \cdot \eta_0|_K \leq 0$. Kashiwara's Watermelon theorem then states that if $\xi_0 \in \mathbb{R}^n \setminus \{0\}$, $\lambda \in \mathbb{R}$, $(y_0, \xi_0) \notin \mathrm{WF}_a(u)$, then $(y_0, \xi_0 + \lambda \eta_0) \notin \mathrm{WF}_a$. Here WF_a is the analytic wavefront set as defined for instance in [H1] or [S]. The following result is a slight refinement of the first half of Corollary 2.7 of [H2] and we refer to Remark 3 below for the corresponding improvement of the second half. See also Theorem 2.12' of the same paper which follows from the quoted corollary by geometrical arguments.

Theorem 1. In the above situation, assume that there is a sequence $\eta_j \in \mathbb{R}^n$, $j = 1, 2, \ldots$, with $\eta_j \to \eta_0$, such that

(1)
$$\frac{\eta_j - \eta_0}{\|\eta_i - \eta_0\|} \to \nu, \qquad j \to \infty,$$

(2)
$$(y - y_0) \cdot \eta_j|_K - \delta_j \le 0, \quad \text{where } \delta_j > 0, \ \delta_j \to 0,$$

(3)
$$\frac{\delta_j}{\|\eta_j - \eta_0\|^2} \to 0, \qquad j \to \infty.$$

Received December 29, 1993.

Then if $\xi_0 \neq 0$, $(y_0, \xi_0) \notin WF_a(u)$, we have $(y_0, \xi_0 + \lambda \nu) \notin WF_a(u)$, for all $\lambda \in \mathbb{R}$.

We notice that δ_j measures the distance from the point y_0 to the hyperplane $(y - y_0)\eta_j - \delta_j = 0$.

Let $H(\eta) = \sup_{y \in K} y \cdot \eta$, $\eta \in \mathbb{R}^n$, be the support function of K. For $\tau > 0$ small, $\nu \in \mathbb{R}^n$, write the affine linear functionals corresponding to tangent planes of K:

$$(\eta_0 \pm \tau \nu) \cdot y - H(\eta_0 \pm \tau \nu) = (\eta_0 \pm \tau \nu) \cdot (y - y_0 - \delta_{\pm} \eta_0) = 0, \quad \delta_{\pm} \ge 0$$

and keep in mind that $H(\eta_0) = y_0 \cdot \eta_0$. Then,

$$\tau^{-2}(H(\eta_0 + \tau \nu) + H(\eta_0 - \tau \nu) - 2H(\eta_0))$$

= $\tau^{-2}((\delta_+ + \delta_-) + (\delta_+ - \delta_-)\tau \eta_0 \nu) = \tau^{-2}(1 + \mathcal{O}(\tau))(\delta_+ + \delta_-),$

so this quantity tends to zero for some (τ_j, ν_j) with $\tau_j \to 0$, $\nu_j \to \nu_0$, if and only if

$$\frac{\delta_{+,j} + \delta_{-,j}}{\tau_i^2} \to 0.$$

The condition (2.9) in the result of Hörmander is the one just mentioned, while the assumption in Theorem 1 amounts to requiring that $\delta_{+,j}/\tau_i^2 \to 0$.

Proof of Theorem 1. (cf. the proof of Theorem 8.3 in [S]). Put

$$Tu(x,\lambda) = \int e^{-\lambda(x-y)^2/2} u(y) \, dy, \qquad \lambda \ge 1, \ x \in \mathbb{C}^n.$$

Then for every $R \geq 1$, $\epsilon > 0$, we have

$$(4) \qquad |Tu(x,\lambda)| \leq C(\epsilon,R)e^{\lambda(\Phi_K(x)+\epsilon)}, \qquad |x| \leq R, \ \lambda \geq 1,$$

where

(5)
$$\Phi_K(x) = \sup_{y \in K} -\Re \frac{(x-y)^2}{2} = \frac{(\Im x)^2}{2} - \frac{1}{2}d(\Re x, K)^2,$$

and where d denotes the Euclidean distance in \mathbb{R}^n . In (4), (5), we can replace K by the larger set K_j : $(y-y_0)\cdot\eta_j-\delta_j\leq 0$ and we shall first assume that (η_j) is a normalized sequence. Writing $x=x_0+z\eta_j,\ z\in\mathbb{C}$, with $x_0=$ constant, $\Re x_0=y_0$, we get $\Phi_j(z)=\Phi_{K_j}(x_0+z\eta_j)$, given by:

(6)
$$\Phi_{j}(z) = \begin{cases} \frac{1}{2} (\Im x_{0} + (\Im z) \eta_{j})^{2}, & \Re z \leq \delta_{j} \\ \frac{1}{2} ((\Im x_{0} + (\Im z) \eta_{j})^{2} - (\Re z - \delta_{j})^{2}), & \Re z \geq \delta_{j}. \end{cases}$$

Notice that Φ_i is harmonic in the second region.

Now assume that for some $\xi_0 \in \mathbb{R}^n \setminus \{0\}$:

$$(7) (y_0, \xi_0) \notin \mathrm{WF}_a(u).$$

We then choose $x_0 = y_0 - i\xi_0$. By the FBI-characterization of the analytic wavefront set (see [S]), we have

(8)
$$|Tu(x,\lambda)| \le \text{Const.}e^{\lambda(\Phi_0(x)-1/C_0)}, \quad |x-x_0| \le 1/C_0,$$

for some $C_0 > 0$, where $\Phi_0(x) = \frac{1}{2}(\Im x)^2$. Consider the subharmonic function,

(9)
$$v_j(z) = \log |Tu(x_0 + z\eta_j, \lambda)| - \lambda \Psi_j(z),$$

where we define $\Psi_j(z)$ to be the harmonic function on \mathbb{C} , given by the second expression in (6). With new constants independent of j, we then obtain for $|z|_{\infty} \leq R$, where $|z|_{\infty} = \max(|\Re z|, |\Im z|)$, and for j large enough:

(10)
$$v_j(z) \le -\lambda/C_0$$
, for $|z|_{\infty} \le 1/C_0$,

(11)
$$v_j(z) \le \lambda \left(\epsilon + \frac{(\delta_j - \Re z)^2}{2}\right) + C(\epsilon, R), \text{ for } \Re z \le \delta_j,$$

(12)
$$v_i(z) \le \lambda \epsilon + C(\epsilon, R),$$
 $\Re z \ge \delta_i$

The Poisson integral,

(13)
$$I(z) = \frac{1}{C_0 \pi} \int_{-1/C_0}^{1/C_0} \frac{y}{y^2 + (x-t)^2} dt, \qquad z = x + iy,$$

is harmonic in the upper half plane with boundary value $\frac{1}{C_0}1_{[-\frac{1}{C_0},\frac{1}{C_0}]}$ on the real axis. Moreover,

(14)
$$I(z) = \mathcal{O}(\frac{1}{|z|}), \qquad |z| \to \infty,$$

and

(15)
$$I(z) \ge \frac{C_1}{C_0^2} \frac{\Im z}{|z|^2}, \qquad |z|_{\infty} \ge \frac{1}{2C_0}, \ C_1 > 0.$$

For $0 \le t \le \frac{1}{C_0}$, we let J(z) = I(i(z+t)), $\Re z \ge -t$. Then by the maximum principle for the subharmonic function $v_j(z) + \lambda J(z)$, we get

(16)
$$v_j(z) \le \lambda \left(-J(z) + \frac{(\delta_j + t)^2}{2} + \epsilon + \mathcal{O}(\frac{1}{R}) \right) + C(\epsilon, R),$$

 $\Re z \ge -t, \ |z|_{\infty} \le R.$

Combining this with (15) and taking $R \sim \frac{1}{\epsilon}$, we get with a new constant C_1 , for z = iy, $|y| \ge \frac{1}{C_0}$:

(17)
$$v_j(iy) \le \lambda \left(-\frac{1}{C_1} \frac{t}{|y|^2} + \frac{(\delta_j + t)^2}{2} + C_1 \epsilon \right) + C(\epsilon).$$

Here we write,

$$-\frac{1}{C_1}\frac{t}{|y|^2} + \frac{(\delta_j + t)^2}{2} = \frac{1}{2}(\delta_j - t)^2 - (\frac{1}{C_1|y|^2} - 2\delta_j)t,$$

which is negative for $t = \delta_j$, $|y|^2 \le \frac{1}{3C_1\delta_i}$. Hence,

(18)
$$v_j(iy) \le -\lambda \epsilon_j + C_j, \qquad |y| \le \frac{1}{C_2 \sqrt{\delta_j}}$$

for some $\epsilon_j > 0$. In this argument, we are allowed to vary x_0 slightly within some j-dependent ball, and hence we obtain (for j large enough):

(19)
$$|Tu(x - i\tau\eta_j, \lambda)| \le C_j e^{\lambda(\Phi_0(x - i\tau\eta_j) - \epsilon_j)},$$

for $|x-x_0| \leq \epsilon_j$, $|\tau| \leq \frac{1}{C_0\sqrt{\delta_j}}$, where $\epsilon_j > 0$. Here C_0 depends on u but is independent of j. (19) shows that $(y_0, \xi_0 + \tau \eta_j) \notin \mathrm{WF}_a$ for the same τ 's. In this conclusion we may replace ξ_0 by ξ if $\xi - \xi_0$ is small enough: $|\xi - \xi_0| \leq 1/C_0$. Also, if we now drop the assumption that the η_j are normalized, we get the same conclusion, since we can replace η_j by $\eta_j/|\eta_j|$. Letting $j \to \infty$ we then first recover the ordinary Watermelon theorem. In particular, if ξ_0 is a multiple of η_0 , then we get $(y_0, \eta) \notin \mathrm{WF}_a(u)$ for all small η and hence for all η . If ξ_0 is not a multiple of η_0 , we have $\xi + \tau_j \eta_j \neq 0$ for j large enough and applying the Watermelon theorem, we get

(20)
$$(y_0, \xi + \tau_j(\eta_j - \eta_0)) \notin WF_a(u)$$
, for $|\xi - \xi_0| \le \frac{1}{C_0}$, $|\tau_j| \le \frac{1}{C_0 \sqrt{\delta_j}}$,

for some sufficiently large $C_0 > 0$ depending on u, ξ_0 . Let $\sigma \in \mathbb{R}$. Using the assumptions (1), (3), we get $\sigma \nu = \lim_{j \to \infty} \tau_j (\eta_j - \eta_0)$, where $\tau_j = \frac{\sigma}{\|\eta_j - \eta_0\|}$, so that $|\tau_j| = o(1) \frac{1}{\sqrt{\delta_j}}$, $j \to \infty$. We can then apply (20) to conclude that $(y_0, \xi_0 + \sigma \nu) \notin \operatorname{WF}_a(u)$. \square

Remark 2. Let $L \subset \mathbb{R}^n$ be a subspace and assume that $\xi \in \mathbb{R}^n \setminus \{0\}$, $\eta \in L$, $(y_0, \xi) \notin \mathrm{WF}_a(u)$ implies that $(y_0, \xi + \eta) \notin \mathrm{WF}_a(u)$. Consider a sequence

 $\eta_j \in \mathbb{R}^n$ with $0 \neq \mathrm{dist}(\eta_j, L) \to 0$, $\|\eta_j\| = 1$ such that (1'), (2), (3') hold with

(1')
$$\frac{\eta_j - \pi_L(\eta_j)}{\|\eta_j - \pi_L(\eta_j)\|} \to \nu,$$

(3')
$$\frac{\delta_j}{\|\eta_j - \pi_L(\eta_j)\|^2} \to 0,$$

where π_L is a linear projection onto L_0 . Then the proof above gives the same conclusion as in Theorem 1.

Remark 3. The proof of Theorem 1 also gives a slight improvement of the second half of Corollary 2.7 of [H2]. We now assume that there are sequences η_j , $\eta_{0,j}$ converging to $\eta_0 \neq 0$, that $\eta_{0,j}$ is an exterior normal of K at $y_{0,j}$ with $y_{0,j} \to y_0$, and that

$$\frac{\eta_j - \eta_{0,j}}{\|\eta_j - \eta_{0,j}\|} \to \nu_0, \qquad (y - y_{0,j}) \cdot \eta_j|_K - \delta_j \le 0, \qquad \delta_j \|\eta_j - \eta_{0,j}\|^{-2} \to 0,$$

where $\delta_j > 0$. Let $\xi_0 \neq 0$ be non-parallel to η_0 and assume that $(y_0, \xi_0) \notin \mathrm{WF}_a(u)$. Then for j sufficiently large, we have $(y_{0,j}, \xi_0) \notin \mathrm{WF}_a(u)$, and instead of (20) we get

$$\begin{split} \left(y_{0,j}, \xi + \sigma_j \frac{\eta_j - \eta_{0,j}}{\|\eta_j - \eta_{0,j}\|}\right) \notin \mathrm{WF}_a(u), \\ & \text{for } |\xi - \xi_0| \leq \frac{1}{C_0}, \quad |\sigma_j| \leq \frac{1}{C_0} \frac{\|\eta_j - \eta_{0,j}\|}{\sqrt{\delta_j}} \to \infty. \end{split}$$

In particular, if $\xi_0 = \pm \nu_0$, we deduce that $(y_{0,j}, \widetilde{\xi}) \notin \mathrm{WF}_a(u)$ for all small $\widetilde{\xi}$, and hence for all $\widetilde{\xi}$, in contradiction with the fact that $y_{0,j} \in \partial \mathrm{supp}(u)$. In conclusion, $(y_0, \pm \nu_0) \in \mathrm{WF}_a(u)$.

We next discuss an extension of Theorem 1, using some 2-microlocal techniques. For $\mu\in]0,\frac12]$, we put $u_\mu(y)=u(\sqrt\mu\,y)$ and compute

$$Tu_{\mu}(x,\lambda) = \int e^{-\lambda(x-y)^{2}/2} u(\sqrt{\mu}y) \, dy$$
$$= C_{n} \lambda^{n} \iint e^{-\frac{\lambda}{2}((x-y)^{2} - (\sqrt{\mu}y - z)^{2})} Tu(z,\lambda) \, dy \, dz,$$

using integration contours as in [S], chapter 3,4 (and 16). Here

$$(x-y)^2 - (\sqrt{\mu}y - z)^2 = (1-\mu)(y - \frac{x - \sqrt{\mu}z}{1 - \mu})^2 + x^2 - z^2 - \frac{(\sqrt{\mu}z - x)^2}{1 - \mu},$$

so we can eliminate the y-variable and get

(21)
$$Tu_{\mu}(x,\lambda) = \widetilde{C}_n \frac{\lambda^{n/2}}{(1-\mu)^{n/2}} \int e^{-\frac{\lambda}{2}(x^2-z^2-\frac{(\sqrt{\mu}z-x)^2}{1-\mu})} Tu(z,\lambda) dz.$$

We know that $Tu \mapsto Tu_{\mu} : H_{\Phi_0} \to H_{\Phi_0}$, where

$$H_{\Phi_0} = \{ u \in L^2(\mathbb{C}^n; e^{-2\lambda \Phi_0} L(dz)); u \text{ is holomorphic} \}, \quad \Phi_0(x) = \frac{1}{2} (\Im x)^2,$$

where L(dz) denotes the Lebesgue measure on \mathbb{C}^n , and in order to make this more explicit, we write

(22)
$$-\frac{1}{2}(\Im x)^2 + \frac{1}{2}(\Im z)^2 - \frac{1}{2}\Re\left(x^2 - z^2 - \frac{(\sqrt{\mu}z - x)^2}{1 - \mu}\right)$$
$$= \frac{1}{2}\left(\frac{(\Re z - \sqrt{\mu}\Re x)^2}{1 - \mu} - \frac{(\sqrt{\mu}\Im z - \Im x)^2}{1 - \mu}\right),$$

so the correct integration contour in (21) is given by $\Re z = \sqrt{\mu} \Re x$. Moreover, if (7) holds and $\xi_0 \neq 0$, then for every $\epsilon > 0$:

(23)
$$|Tu_{\mu}(x,\lambda)| \leq C(\epsilon,\mu)e^{\frac{\lambda}{2}((\Im x)^2 - \frac{\mu}{C} + \epsilon)},$$

for $\left|\Re x - \frac{1}{\sqrt{\mu}}y_0\right| \leq \frac{1}{C\sqrt{\mu}}, \quad |\Im x + \sqrt{\mu}\,\xi_0| \leq \frac{\sqrt{\mu}}{C},$

where C>0 is some constant depending on u, ξ_0 , but not on μ , λ . (In particular, $(\frac{1}{\sqrt{\mu}}y_0, \sqrt{\mu}\,\xi_0) \notin \mathrm{WF}_a(u_\mu)$.)

Keeping the assumption (7) we assume for simplicity that $y_0 = 0$. Let κ be an analytic diffeomorphism between two neighborhoods of 0 with $\kappa(0) = 0$, $\kappa'(0) = \text{id}$. Let $\chi \in C_0^{\infty}(\mathbb{R}^n)$ be 1 near 0 and have its support close to 0. Put $\widetilde{u}_{\mu} = \chi(u_{\mu} \circ \kappa)$ when u is a distribution and in the hyperfunction case, let \widetilde{u}_{μ} be an analytic functional with uniformly compact support, $= u_{\mu} \circ \kappa$ in some fixed neighborhood of 0. It then follows from (23) (as in [S]), that (24)

$$|T\widetilde{u}_{\mu}(x,\lambda)| \le C(\epsilon,\mu)e^{\frac{\lambda}{2}((\Im x)^2 - \frac{\mu}{C} + \epsilon)}, \quad \text{for } |\Re x| \le \frac{1}{C}, \ |\Im x + \sqrt{\mu}\,\xi_0| \le \frac{\sqrt{\mu}}{C}.$$

Assume that $0 \in \text{supp } u$, $\eta_0 \in \mathbb{R}^n$, $\|\eta_0\| = 1$, and that there is a sequence of open balls $B_j \subset \mathbb{R}^n \setminus \text{supp } u$, $j = 1, 2, \ldots$ of radius $\sqrt{\mu_j} > 0$ with

(26) The center of
$$B_j$$
 is given by $\delta_j \eta_0 + \sqrt{\mu_j} \eta_j$, so that $\|\eta_j\| = 1$,

(27)
$$\eta_j \to \eta_0, \qquad \frac{\delta_j}{\mu_j} \to 0.$$

After a Euclidean change of coordinates, we may assume that $\eta_0 = (0, \ldots, 1)$. Let κ be the map $\widetilde{y} \mapsto (\widetilde{y}', \widetilde{y}_n + R(\widetilde{y}')^2)$ for some sufficiently large R > 0 and put $y = \sqrt{\mu_j} \widetilde{y}$. Then we have a ball \widetilde{B}_j of radius 1 in $\mathbb{R}^n \setminus \text{supp } u_{\mu_j}$ of center $\widetilde{\delta}_j \eta_0 + \eta_j$, where $\widetilde{\delta}_j = \frac{\delta_j}{\sqrt{\mu_j}}$ tends to 0 by (25), (27). For \widetilde{u}_{μ_j} we get (assuming it has its support in a small but fixed neighborhood of 0):

(28)
$$(\widetilde{y}\eta_j - \delta'_j)|_{\sup u_{\mu_j}} \le 0, \quad \text{with } \delta'_j = \widetilde{\delta}_j \eta_0 \eta_j.$$

Put

$$x_0 = -i\xi_0, \qquad \widetilde{x}_0 = \sqrt{\mu_j} \, x_0, \qquad \widetilde{v}_j(z) = \log(T\widetilde{u}_\mu(\widetilde{x}_0 + z\eta_j, \lambda)) - \lambda \widetilde{\Psi}_j(z),$$

where $\widetilde{\Psi}_j$ is defined as Ψ_j but with x_0 , δ_j replaced by \widetilde{x}_0 , δ'_j . Then \widetilde{v}_j satisfies the following estimates for $|z| \leq R$ (suppressing sometimes the parameters λ, μ):

(29)
$$\widetilde{v}_j(z) \le -\frac{\lambda \mu_j}{C_0} + C(j),$$
 $|z|_{\infty} \le \frac{\sqrt{\mu_j}}{C_0},$

(30)
$$\widetilde{v}_j(z) \le \lambda(\mu_j \epsilon + (\delta'_j - \Re z)^2) + C(\epsilon, R, j), \quad \Re z \le \delta'_j,$$

(31)
$$\widetilde{v}_j(z) \le \lambda \mu_j \epsilon + C(\epsilon, R, j),$$
 $\Re z \ge \delta'_j.$

Put
$$z = \sqrt{\mu_j} \, \widehat{z}$$
, $\delta'_j = \sqrt{\mu_j} \, \widehat{\delta}_j$, $(\widehat{\delta}_j = \frac{\delta_j}{\mu_i} \eta_0 \cdot \eta_j)$, $\widehat{v}_j(\widehat{z}) = \widetilde{v}_j(z)$. Then

(32)
$$\widehat{v}_j(\widehat{z}) \le -\frac{\lambda \mu_j}{C_0} + C(j), \qquad |\widehat{z}|_{\infty} \le \frac{1}{C_0},$$

(33)
$$\widehat{v}_j(\widehat{z}) \le \lambda \mu_j(\epsilon + (\widehat{\delta}_j - \Re \widehat{z})^2) + C(\epsilon, R, j), \quad \Re \widehat{z} \le \widehat{\delta}_j,$$

(34)
$$\widehat{v}_j(\widehat{z}) \le \lambda \mu_j \epsilon + C(\epsilon, R, j),$$
 $\Re \widehat{z} \ge \widehat{\delta}_j.$

These are just the estimates (10)–(12) with λ , δ_j , z replaced by $\lambda \mu_j$, $\widehat{\delta}_j$, \widehat{z} , so as before, we reach the conclusion that $(0, \sqrt{\mu_j} \, \xi_0 + \tau \sqrt{\mu_j} \, \eta_j) \notin \operatorname{WF}_a(u)$, if $|\tau| \leq C_2/\sqrt{\widehat{\delta}_j}$, i.e.:

(35)
$$(0, \xi_0 + \tau \eta_j) \notin \operatorname{WF}_a(u), \quad \text{if } |\tau| \le \frac{C_2 \sqrt{\mu_j}}{\sqrt{\delta_j}}.$$

In (35) we can replace ξ_0 by ξ with $|\xi - \xi_0| \leq \frac{1}{C_0}$ with $C_0 > 0$ independent of j. Since $\eta_j \to \eta_0$, $\mu_j/\delta_j \to \infty$, by (27), we obtain $(0, \xi + \tau \eta_0) \notin \operatorname{WF}_a(u)$, $\tau \in \mathbb{R}$, $|\xi - \xi_0| \leq 1/C_0$, which is the conclusion of the ordinary Watermelon theorem, in the case when η_0 is an exterior normal.

Assuming ξ_0 , η_0 to be linearly independent (which we may, as in the proof of Theorem 1), we then get from (35)

(36)
$$(0, \xi + \tau(\eta_j - \eta_0)) \notin WF_a(u), \quad \text{if } |\tau| \le \frac{C_2 \sqrt{\mu_j}}{\sqrt{\delta_j}}, \ |\xi - \xi_0| \le \frac{1}{C_0}.$$

As for Theorem 1, we get,

Theorem 4. Let $0 \in \text{supp } u$, $\eta_0 \in \mathbb{R}^n$, $\|\eta_0\| = 1$, and let $B_j \subset \mathbb{R}^n \setminus \text{supp } u$, $j = 1, 2, \ldots$ be a sequence of open balls of radius $\sqrt{\mu_j}$ satisfying (25)–(27). Then if $\xi_0 \neq 0$, $(0, \xi_0) \notin WF_a(u)$, we have $(0, \xi_0 + \lambda \eta_0) \notin WF_a(u)$ for every $\lambda \in \mathbb{R}$. In particular (by a standard argument), $(0, \pm \eta_0) \in WF_a(u)$.

Assume further that

(37)
$$\frac{\eta_j - \eta_0}{\|\eta_j - \eta_0\|} \to \nu_0, \qquad \frac{\sqrt{\mu_j}}{\sqrt{\delta_j}} \|\eta_j - \eta_0\| \to \infty.$$

Then if $(0,\xi_0) \notin WF_a(u)$, we have $(0,\xi_0 + \lambda \nu_0) \notin WF_a(u)$ for every $\lambda \in \mathbb{R}$.

It is easy to construct examples where Theorem 2 applies and where Theorem 1 cannot be applied. If we assume however that η_0 is an exterior normal of supp u at 0 in the C^2 sense, then the following discussion shows that Theorem 2 gives nothing more than Theorem 1. For simplicity, we assume that n=2 and that $0 \in \text{supp } u \subset \{(x,y); y \leq 0\}, \ \eta_0=(0,1)$. Instead of balls, we can consider parabolic regions of the form $B_j\colon y>\frac{1}{2\sqrt{\mu_j}}(x-x_+)(x-x_-)\stackrel{\text{def}}{=} f_j(x)$, where $x_\pm=x_\pm(j)$, and $0 < x_- < x_+ \to 0$, $\mu_j \to 0$, in a ball of radius $\sqrt{\mu_j}$. Then $\delta_j=x_+x_-/2\sqrt{\mu_j}$ and $\|\eta_j-\eta_0\|$ is of the order of magnitude $-f_j'(0)=(x_++x_-)/2\sqrt{\mu_j}\sim x_+/\sqrt{\mu_j}$. In order to apply Theorem 2, we need

$$\frac{x_{+}x_{-}}{\mu_{j}^{3/2}} \to 0, \qquad \frac{x_{+}\sqrt{\mu_{j}}}{\sqrt{\mu_{j}}\sqrt{\frac{x_{+}x_{-}}{\sqrt{\mu_{j}}}}} = \sqrt{\frac{x_{+}}{x_{-}}}\mu_{j}^{1/4} \to \infty.$$

These conditions remain valid if we replace μ_j by 1, so whenever Theorem 2 applies (in this case), Theorem 1 applies also.

Acknowledgement

Numerous remarks by L. Hörmander have helped us to improve the precision in the presentation of this note.

References

- [H1] L. Hörmander, The analysis of linear partial differential operators I-IV, Springer Verlag, 1983, 1985.
- [H2] ______, Remarks on Holmgren's uniqueness theorem, Preprint (1993).
- [S] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982).

DÉPT. DE MATHÉMATIQUES, UNIVERSITÉ DE PARIS SUD, F-91405 ORSAY, FRANCE *E-mail address*: sjostran@matups.matups.fr