TRANSLATIONS AND THE HOLONOMY OF COMPLETE AFFINE FLAT MANIFOLDS

Todd A. Drumm

1. Introduction

Let $\Gamma \subset \mathbf{GL}(n) \ltimes \mathbb{V}$, where \mathbb{V} is the group of translations which may be identified with \mathbb{R}^n . A complete affine flat manifold M can be written as \mathbb{R}^n/Γ , where Γ acts freely and properly discontinuously on \mathbb{R}^n .

$$\mathbb{H}: \pi_1(M) \to \mathbf{GL}(n) \ltimes \mathbb{V}$$

is the affine holonomy of M whose image, up to conjugation, is Γ .

$$\mathbb{L} \circ \mathbb{H} : \pi_1(M) \to \mathbf{GL}(n)$$

is the *linear holonomy* of M, where $\mathbb{L} : \mathbf{GL}(n) \ltimes \mathbb{V} \to \mathbf{GL}(n)$ denotes the usual projection.

Let M be any complete flat affine manifold. Milnor [9] conjectured that $\pi_1(M)$, which is isomorphic to the image of the holonomy of M, is virtually polycyclic. Margulis [5], [6] was the first to show the existence of complete flat Lorentz space-times with fundamental group not virtually polycyclic. These 3-dimensional manifolds are called *Margulis space-times*. Using methods from [7], one can construct complete affine flat manifolds whose linear holonomy is in $\mathbf{SO}(n+1,n)$ where n is odd and whose fundamental group is free of rank ≥ 2 , i.e. not virtually polycyclic.

Margulis's counterexamples to Milnor's conjecture all have free fundamental group of rank ≥ 2 . The related counterexamples in [3], [1], and [2] also have free fundamental groups. It will be shown that:

Theorem 1. If M is a complete Lorentz space-time, then $\pi_1(M)$ is either virtually polycyclic or free. In particular, if $\pi_1(M)$ is not virtually polycyclic, then the holonomy of M contains no pure translations and the linear holonomy of M is torsion free.

In the more general setting of manifolds whose linear holonomies lie in SO(n+1,n) where n is odd, it will be shown that:

Received September 9, 1994.

Theorem 2. Let M be a 2n+1-dimensional complete affine flat manifold with linear holonomy conjugate to a subgroup of SO(n+1,n) where n is odd. If the linear holonomy of M is Zariski dense in SO(n+1,n), then the linear holonomy of M is torsion free, i.e. there are no pure translations in the holonomy of M.

2. The case of $\mathbb{R}^{n+1,n}$

 $\mathbb{R}^{n+1,n}$ is the vector space diffeomorphic to \mathbb{R}^{2n+1} and supplied with the $\mathbf{SO}(n+1,n)$ -invariant inner product

$$\mathbb{B}\left(\mathbf{u},\mathbf{v}\right) = \sum_{i=0}^{n} u_i v_i - \sum_{i=n+1}^{2n} u_i v_i,$$

where $\mathbf{u} = [u_0, u_1, \dots, u_{2n}]$ and $\mathbf{v} = [v_0, v_1, \dots, v_{2n}]$ are elements of $\mathbb{R}^{n+1,n}$ written in terms of the standard basis $\{\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{2n}\}$.

v is said to be

- $spacelike if \mathbb{B}(v, v) > 0$,
- $timelike if \mathbb{B}(v,v) < 0$, and
- lightlike or null if $\mathbb{B}(v, v) = 0$.

Now define the 2*n*-linear $\mathbb{R}^{n+1,n}$ cross product

$$\boxtimes : (\mathbb{R}^{n+1,n})^{2n} \to \mathbb{R}^{n+1,n}$$

which can be symbolically represented as follows:

$$\boxtimes (\mathsf{v}_1, \mathsf{v}_2, \dots, \mathsf{v}_{2n}) \mapsto \det \left(\left[\begin{array}{cc} I_{n+1} & 0 \\ 0 & -I_n \end{array} \right] \left[\begin{array}{cc} \mathsf{e}_0 \, \mathsf{e}_1 \, \dots \, \mathsf{e}_{2n+1} \\ \mathsf{v}_1 \\ \mathsf{v}_2 \\ \vdots \\ \mathsf{v}_{2n} \end{array} \right] \right)$$

where the v_i 's are viewed as row vectors written in terms of the standard basis of $\mathbb{R}^{n+1,n}$ (see [3] for explicit $\mathbb{R}^{2,1}$ cross product). It is easy to check that

$$\mathbb{B}\left(\boxtimes(\mathsf{v}_1,\mathsf{v}_2,\ldots,\mathsf{v}_{2n}),\mathsf{v}_i\right)=0,$$

for all $1 \leq i \leq 2n$. That is, $\boxtimes (\mathsf{v}_1, \mathsf{v}_2, \ldots, \mathsf{v}_{2n})$ is $\mathbb B$ -perpendicular to all of the v_i 's.

An ordered basis $\{v_0, v_1, \dots, v_{2n}\}$ for $\mathbb{R}^{n+1,n}$ is positively oriented if

$$\mathbb{B}\left(\mathsf{v}_0,\boxtimes(\mathsf{v}_1,\ldots,\mathsf{v}_{2n})\right)>0.$$

For any vector $\mathbf{v} \in \mathbb{R}^{n+1,n}$, its \mathbb{B} -perpendicular plane is denoted

$$\mathcal{P}(\mathbf{v}) = \{ \mathbf{u} \in \mathbb{R}^{n+1,n} \mid \mathbb{B}(\mathbf{u}, \mathbf{v}) = 0 \}.$$

For $g \in \mathbf{SO}(n+1,n)$ define the following:

- $A^+(g)$ is the smallest subspace containing all eigenvectors corresponding to each eigenvalue whose absolute value is < 1;
- $A^0(g)$ is the smallest subspace containing all eigenvectors corresponding to each eigenvalue whose absolute value is = 1;
- $A^+(g)$ is the smallest subspace containing all eigenvectors corresponding to each eigenvalue whose absolute value is > 1.

We also define

$$D^{\pm}(g) = A^{\pm}(g) \oplus A^{0}(g).$$

g is called *purely hyperbolic* if $A^+(g)$, equivalently $A^-(g)$, is n-dimensional. If g is purely hyperbolic then $A^0(g)$ is 1-dimensional and it has 2n real eigenvalues, counting multiplicities, different than 1. Denote the eigenvalues of a purely hyperbolic g by $\lambda_i(g)$ for $-n \le i \le n$ so that

$$|\lambda_{-n}(g)| \le \ldots \le |\lambda_{-1}(g)| < \lambda_0(g) < |\lambda_1(g)| \le \ldots \le |\lambda_n(g)|.$$

Note that $\lambda_0(g) = 1$ and $\lambda_{-i}(g)\lambda_i(g) = 1$.

For g purely hyperbolic, choose eigenvectors $x_i(g)$ so that:

- $x_i(g)$ is an eigenvector with eigenvalue $\lambda_i(g)$;
- for $1 \leq |i| \leq n$,

$$\mathbb{B}\left(\mathsf{x}_{i}(g),\mathsf{x}_{j}(g)\right) = -\delta_{i,-j};$$

• for i = 0, $\mathbb{B}(x_0(g), x_0(g)) = 1$ and

$$\mathbb{B}(x_0(g), \boxtimes (x_{-n}(g), \dots, x_{-1}(g), x_1(g), \dots, x_n(g))) > 0;$$

• and $\mathbb{B}(x_0(g), \boxtimes (e_{2n}, \dots, e_{n+1}, x_1(g), \dots, x_n(g))) > 0.$

The choice of $x_i(g)$ for $i \neq 0$ is not well defined for any particular i. However, the choice of $x_0(g)$ is well defined. It is easy to see that $x_0(g)$ varies continuously with g. By the properties of the cross product, if n is odd, then $x_0(g) = -x_0(g^{-1})$ and if n is even, then $x_0(g) = x_0(g^{-1})$.

 $\{\mathsf{x}_0(g),\mathsf{x}_1(g),\ldots,\mathsf{x}_n(g)\}$ is a well defined orientation on $D^+(g)$. In particular, if $D^+(g_1) = D^+(g_2)$, then the defined orientations on the subspace are the same. The orientation on a spacelike line $\ell \subset D^+(g)$ induced by g is defined to be $\{\mathsf{w}\}$, where w is parallel to ℓ and $\mathbb{B}(\mathsf{w},\mathsf{x}_0(g)) > 0$.

Two purely hyperbolic elements g_1 and g_2 are called transversal if

$$\mathbb{R}^{n+1,n} = A^+(g_1) \oplus D^+(g_2) = D^+(g_1) \oplus A^+(g_2),$$

and ultra-transversal if g_1 , g_2 , g_1^{-1} and g_2^{-1} are mutually transversal. Of course, any purely hyperbolic element and its inverse are transversal.

For g_1 and g_2 transversal, $\ell = D^+(g_1) \cap D^+(g_2)$ is a spacelike line. It can be shown that for n odd the orientation induced on ℓ by g_1 is opposite

that induced by g_2 . If n is even, then the orientations induced on ℓ by g_1 and g_2 are the same.

Now consider affine transformations whose linear part lies in $\mathbf{SO}(n+1,n)$. $h \in \mathbf{SO}(n+1,n) \ltimes \mathbb{V}$ can be written $h(\mathsf{w}) = g(\mathsf{w}) + \mathsf{v}$, where $\mathbb{L}(h) = g \in \mathbf{SO}(n+1,n)$ and $\mathsf{v} \in \mathbb{V}$. g is the *linear part of* h and v is the *translational part of* h.

h is said to be purely hyperbolic if its linear part is purely hyperbolic. Purely hyperbolic h_1 and h_2 are said to be transversal (ultra-transversal) if their linear parts are transversal (resp. ultra-transversal). If h is purely hyperbolic, then there exists a unique h-invariant 1-dimensional subspace C(h) parallel to $x_0(g)$. Let $E^{\pm}(h)$ be the subspaces containing C(h) and parallel to and of the same dimension as $D^{\pm}(g)$.

If h is purely hyperbolic and has no fixed points, then $M = \mathbb{R}^{n+1,n}/\langle h \rangle$ is a manifold with $\pi_1(M) = \mathbb{Z}$ whose unique closed geodesic is the image of C(h) under the identification. The \mathbb{B} -length of the unique closed geodesic is defined to be

$$\alpha(h) = \mathbb{B}\left(h(\mathsf{x}) - \mathsf{x}, \mathsf{x}_0(g)\right),\,$$

for $x \in C(h)$. It is easy to see that the above expression is the same for any $x \in \mathbb{R}^{n+1,n}$. In particular, if h(x) = g(x) + v, then

$$\alpha(h) = \mathbb{B}\left(\mathsf{v}, \mathsf{x}_0(g)\right).$$

The sign of h is the sign of $\alpha(h)$. It is interesting to note that if n is odd, then the signs of h and h^{-1} are the same, but if n is even, then the signs of h and h^{-1} are opposite.

3. Nonproper actions

For purely hyperbolic $h \in \Gamma \subset \mathbf{SO}(n+1,n) \ltimes \mathbb{R}^{n+1,n}$, $\alpha(h)$ is a simple and powerful tool which can be used to determine if Γ does not act properly on $\mathbb{R}^{n+1,n}$.

For instance, assume $\alpha(h) = 0$. If h(w) = g(w) + v, then $v \in \mathcal{P}(x_0(g))$. Since $x_i(g)$, $i \neq 0$, are the eigenvectors for g which form a basis for $\mathcal{P}(x_0(g))$, there exist real numbers m_i such that

$$\mathsf{v} = \sum_{i \neq 0} m_i \mathsf{x}_i(g).$$

It can be shown by direct computation that

$$\sum_{i \neq 0} \frac{m_i}{1 - \lambda_i(g)} \, \mathsf{x}_i(g)$$

is fixed by h. Thus, $\langle h \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$.

Using the signs of affine transformations, Margulis proved the following in [7].

Theorem 3 (Margulis). For n even, if Γ is a discrete group of $GL(2n+1) \ltimes \mathbb{V}$ such that the Zariski closure of $\mathbb{L}(\Gamma)$ is conjugate to $\mathbf{SO}(n+1,n)$, then Γ does not act properly on $\mathbb{R}^{n+1,n}$.

Because of Theorem 3, we now restrict our attention to the cases where n is odd.

The following lemma was stated and proved in [7] for all n. The statement and proof shall be given here for only n odd. (see also [5] and [6] for n = 1)

Lemma 4 (Margulis). If $h_1, h_2 \in SO(n+1, n) \ltimes \mathbb{V}$ are transversal and have opposite signs, then $\langle h_1, h_2 \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$.

Proof. Let h_1 and h_2 be transversal. Assume that $\alpha(h_1) > 0 > \alpha(h_2)$ and $g_i = \mathbb{L}(h_i)$. Choose w parallel to the spacelike line $\ell = E^+(h_1) \cap E^+(h_2)$ so that $\mathbb{B}(\mathsf{w}, \mathsf{x}_0(g_1)) > 0$ (and $\mathbb{B}(\mathsf{w}, \mathsf{x}_0(g_2)) < 0$).

Choose $u_i \in C(h_i)$ and the closed (n+1)-dimensional parallelpiped neighborhoods $U_i \subset E^+(h_i)$ with vertices

$$u_i \pm \frac{1}{2}\alpha(h_i)x_0(g_i) + \sum_{i=1}^n \pm x_j(g_i).$$

 $h_i(U_i)$ is also an (n+1)-dimensional parallelpiped in $E^+(h_i)$, and $h_i(U_i) \cap U_i$ is a face of U_i . The Euclidean distance between $C(h_i)$ and the faces of $h_i^n(U_i)$ parallel to $C(h_i)$ increases exponentially with n. h_i^n acts on $C(h_i)$ by the translation $n[\alpha(h_i) \times_0(g_i)]$, i.e. linearly with n. Thus, the Euclidean distance between $C(h_i)$ and the faces of $h_i^n(U_i)$ parallel to $C(h_i)$ varies exponentially with the translation along $C(h_i)$ so that there exists an integer N_i such that

$$R_i = \left(\cup_{k=N_i}^{\infty} h_i^k(U_i) \right) \cap \ell$$

is a ray.

Since $\alpha(h_1) > 0$ and $\mathbb{B}(\mathsf{w}, \mathsf{x}_0(g_1)) > 0$, R_1 is in the same direction as w . But $\alpha(h_2) < 0$ and $\mathbb{B}(\mathsf{w}, \mathsf{x}_0(g_2)) < 0$ so that R_2 is also in the direction of w . Thus, $R_1 \cap R_2$ is a ray.

 \exists an infinite number of ordered pairs of positive numbers $\{m_{1,i}\,,m_{2,i}\}$ for which

$$h_1^{m_{1,i}}(U_1) \cap h_2^{m_{2,i}}(U_2) \neq \emptyset.$$

Let K be a compact set containing $U_1 \cup U_2$ and

$$h_2^{-m_{2,i}}h_1^{m_{1,i}}(K)\cap K\neq\emptyset.$$

Since h_1 and h_2 are transversal there are no positive integers k_1 and k_2 such that $h_2^{-k_2}h_1^{k_1}$ is the identity. There are an infinite number of elements $h \in G$ such that $h(K) \cap K \neq \emptyset$ and $\langle h_1, h_2 \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$. \square

For $\Gamma \subset \mathbf{SO}(n+1,n) \ltimes \mathbb{V}$ such that $\mathbb{L}(\Gamma)$ is Zariski dense in $\mathbf{SO}(n+1,n)$, $\mathbb{L}(\Gamma)$ contains at least one pair of purely hyperbolic elements which are ultra-transversal. It will be shown that if Γ acts freely and properly discontinuously on $\mathbb{R}^{n+1,n}$, then it cannot contain any *pure translations*, i.e. the linear part is the identity of $\mathbf{SO}(n+1,n)$ and the translational part is nonzero.

First, examine the case in which a pure translation is not \mathbb{B} -perpendicular to the fixed eigenvector of some $\mathbb{L}(h) \in \mathbf{SO}(n+1,n)$.

Lemma 5. For n odd, let t(w) = w + t and h(w) = g(w) + v, where $g \in \mathbf{SO}(n+1,n)$ is a purely hyperbolic transformation. If $\mathbb{B}(t,x_0(g)) \neq 0$, then $\langle t,h \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$.

Proof. We can assume that $\alpha(h) > 0$.

$$(t^n h)(\mathbf{w}) = t^n (g(\mathbf{w}) + \mathbf{v}) = g(\mathbf{w}) + (\mathbf{v} + n\mathbf{t})$$

for any integer n, and

$$\alpha(t^n h) = \mathbb{B}\left(\mathsf{v} + n\mathsf{t}, \mathsf{x}_0(g)\right) = \alpha(h) + n\mathbb{B}\left(\mathsf{t}, \mathsf{x}_0(g)\right).$$

If $\mathbb{B}(\mathsf{t},\mathsf{x}_0(g))<0$, then there is some positive integer N such that $\alpha(t^Nh)<0$. If $\mathbb{B}(\mathsf{t},\mathsf{x}_0(g))>0$, then there is some negative integer N such that $\alpha(t^Nh)<0$. In either case, h and t^Nh have different signs but the same linear part g. But the signs of h^{-1} and h are the same. h^{-1} and t^Nh are transversal so $\langle h,t\rangle$ does not act properly on $\mathbb{R}^{n+1,n}$ by Lemma 4. \square

Second is the case in which the pure translation is parallel to an expanding or contraction eigendirection of some $\mathbb{L}(h) \in \mathbf{SO}(n+1,n)$.

Lemma 6. Let t(w) = w + t and h(w) = g(w) + v, where $g \in SO(n+1, n)$ is a purely hyperbolic transformation. If t is parallel to $x_i(g)$ for any $i \neq 0$, then $\langle t, h \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$.

Proof. Write t as $kx_i(g)$.

$$(hth^{-1})(w) = (ht) (g^{-1}(w) - g^{-1}(v))$$

$$= h (g^{-1}(w) - g^{-1}(v) + kx_i(g))$$

$$= g (g^{-1}(w) - g^{-1}(v) + kx_i(g)) + v$$

$$= w + k\lambda_i(q)x_i(q)$$

is a pure translation. For any integer n, $h^n t h^{-n}$ is also a pure translation which is parallel to $x_i(g)$. If $x_i(g)$ is an expanding eigenvector, i.e. $|\lambda_i(g)| > 1$, then $h^n t h^{-n} \to 0$ as $n \to -\infty$. If $x_i(g)$ is a contracting eigenvector, i.e. $|\lambda_i(g)| > 1$, then $h^n t h^{-n} \to 0$ as $n \to \infty$. In either case, the group generated by t and h does not act properly on $\mathbb{R}^{n+1,n}$. \square

Finally, consider the case in which the pure translation is \mathbb{B} -perpendicular to a fixed eigenvector of $\mathbb{L}(h_1)$ and $\mathbb{L}(h_2)$, which are ultra-transversal.

Lemma 7. Let t(w) = w + t and $h_i(w) = g_i(w) + v_i$ for $i \in \{1, 2\}$. If h_1 and h_2 are ultra-transversal and $t \in \mathcal{P}(\mathsf{x}_0(g_1)) \cap \mathcal{P}(\mathsf{x}_0(g_2))$, then $\langle t, h_1, h_2 \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$.

Proof. We can assume that t is not parallel to any eigenvector for either g_1 or g_2 , otherwise $\langle t, h_1, h_2 \rangle$ does not act properly by Lemma 6.

Note that

$$\left(h_1^n t h_1^{-n}\right)(\mathsf{w}) = \mathsf{w} + g_1^n(\mathsf{t})$$

is a pure translation with translational part $t_n = g_1^n(t)$. As $n \to \infty$ the direction of t_n approaches some expanding eigendirection of g_1 .

Since h_1 and h_2 are ultra-transversal, $\mathcal{P}(\mathsf{x}_0(g_1)) \cap \mathcal{P}(\mathsf{x}_0(g_2))$ does not intersect the null cone except at the origin. There is some n for which t_n is not contained in $\mathcal{P}(\mathsf{x}_0(g_2))$. By Lemma 5, $\langle t, h_1, h_2 \rangle$ does not act properly on $\mathbb{R}^{n+1,n}$. \square

If the linear holonomy of M is Zariski dense in $\mathbf{SO}(n+1,n)$, then there exist ultra-transversal h_1 and h_2 in the holonomy of M. Lemma 5, Lemma 6, and Lemma 7 imply that if the linear holonomy of M is Zariski dense in $\mathbf{SO}(n+1,n)$, then the holonomy cannot contain a pure translation.

Suppose that the linear holonomy of M, Γ , has torsion. That is, there exists an $h \in \Gamma$ such that $g = \mathbb{L}(h)$ and $g^n = I$. h^n is a pure translation, which contradicts the previous discussion. Thus, the linear holonomy of M must be torsion free and Theorem 2 is proven.

4. Lorentz space-times

For n = 1, i.e. Lorentz space-times, we have the following [8]:

Theorem 8 (Mess). A complete Lorentz space-time cannot have a fundamental group isomorphic to the fundamental group of a closed surface of genus ≥ 2 .

Suppose a torsion free $G \subset \mathbf{SO}(2,1)$ is discrete and has 2 noncommuting elements. Then G is free of rank ≥ 2 or is a surface group.

Suppose $\Gamma \subset \mathbb{R}^{2,1} \ltimes \mathbb{V}$ acts freely and properly discontinuously on $\mathbb{R}^{2,1}$. Γ must be discrete by [4] and cannot contain a surface group by Theorem 8.

Thus, the linear holonomy of a complete Lorentz space-time is either cyclic or free of rank ≥ 2 . Theorem 1 is proven.

G. Margulis has pointed out to the author that Theorem 1 is also an immediate consequence of the following theorem [4]:

Theorem 9 (Fried-Goldman). If M is a compact complete flat 3-manifold, then $\pi_1(M)$ is virtually polycyclic.

One can show that if the holonomy of M contains a translational element which is not parallel to any eigenvector of an element of the linear holonomy, then M must be compact and $\pi_1(M)$ must be virtually polycyclic.

References

- T. Drumm, Fundamental polyhedra for Margulis space-times, Topology 31 (4) (1992), 677–683.
- 2. _____, Linear holonomy of Margulis space-times, J.Diff.Geo. 38 (1993), 679–691.
- 3. T. Drumm and W. Goldman, Complete flat Lorentz 3-manifolds with free fundamental group, Int. J. Math.1 (1990), 149–161.
- D. Fried and W. Goldman, Three-dimensional affine crystallographic groups, Adv. Math. 47 (1983), 1–49.
- G. Margulis, Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1983), 937–940.
- Complete affine locally flat manifolds with a free fundamental group, J. Soviet Math. 134 (1987), 129–134.
- 7. _____, On the Zariski closure of the linear part of a properly discontinuos group of affine transformations, Preprint (1987).
- 8. G. Mess, Lorentz spacetimes of constant curvature, (preprint).
- J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), 178–187.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA 19104

 $\hbox{$E$-mail address: $tad@math.upenn.edu}$