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THE GENUS OF EMBEDDED SURFACES IN

THE PROJECTIVE PLANE

P. B. Kronheimer and T. S. Mrowka

A bstract . We show how the new invariants of 4-manifolds resulting from
the Seiberg-Witten monopole equation lead quickly to a proof of the ‘Thom
conjecture’.

1. Statement of the result

The genus of a smooth algebraic curve of degree d in CP
2 is given by

the formula g = (d − 1)(d − 2)/2. A conjecture sometimes attributed to
Thom states that the genus of the algebraic curve is a lower bound for the
genus of any smooth 2-manifold representing the same homology class. The
conjecture has previously been proved for d ≤ 4 and for d = 6, and less
sharp lower bounds for the genus are known for all degrees [5,6,7,10,14]. In
this note we confirm the conjecture.

Theorem 1. Let Σ be an oriented 2-manifold smoothly embedded in CP
2

so as to represent the same homology class as an algebraic curve of degree
d. Then the genus g of Σ satisfies g ≥ (d − 1)(d − 2)/2.

Very recently, Seiberg and Witten [12,13,15] introduced new invariants
of 4-manifolds, closely related to Donaldson’s polynomial invariants [2],
but in many respects much simpler to work with. The new techniques have
led to more elementary proofs of many theorems in the area. Given the
monopole equation and the vanishing theorem which holds when the scalar
curvature is positive (something which was pointed out by Witten), the rest
of the argument presented here is not hard to come by. A slightly different
proof of the Theorem, based on the same techniques, has been found by
Morgan, Szabo and Taubes.
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It is also possible to prove a version of Theorem 1 for other complex sur-
faces, without much additional work, so reproducing and extending results
of [8] and [9]. This and various other applications will be treated in a later
paper, with joint authors.

2. The monopole equation and the Seiberg-Witten invariants

Let X be an oriented, closed Riemannian 4-manifold. Let a spinc struc-
ture on X be given. We write c for the spinc structure and write W+ = W+

c

and W− = W−
c for the associated spinc bundles. Thus W+ is a U(2) bun-

dle and Clifford multiplication leads to a linear isomorphism ρ = ρc from
Λ+(X) ⊗ C to the associated PSL(2, C) bundle:

ρ : Λ+ ⊗ C → sl(W+).

The usual conventions ensure that ρ carries the real forms to su(W+) and
that if ei (i = 1, . . . , 4) are an oriented orthonormal frame at a point then
ρ(e1 ∧ e2 + e3 ∧ e4) has eigenvalues ±2i. There is a pairing

σ : W+ × W̄+ → sl(W+)

modelled on the map C
2 × C̄

2 → sl(2) given by

(v, w) 	→ i(vw̄t)o,

where the subscript means the trace-free part. Let L denote the determi-
nant of W+, a line bundle on X. The equations introduced by Seiberg and
Witten are the following pair of equations for a unitary connection A in L
and a section Φ of W+:

(∗)
DAΦ = 0

ρ(F+
A ) = iσ(Φ,Φ).

Here DA : Γ(W+) → Γ(W−) is the Dirac operator on the spinc bundle, and
F+

A is the self-dual part of the curvature of A. The gauge group Map(X, S1)
acts on the set of solutions via its action as scalar automorphisms of W+,
and we write Mc for the moduli space, the quotient of the set of solutions
by the gauge group. We call a solution irreducible if Φ is not identically
zero. Such solutions form free orbits of the gauge group, while the reducible
solutions (Φ = 0) have stabilizer S1.

If the homology of X has no 2-torsion, the spinc structure c is entirely
determined by the topological type of L, which may be any line bundle
whose first Chern class is an integral lift of w2. In general, when L is fixed,
the spinc structures with determinant L are a principal space for the 2-
torsion part of H2(X; Z). When necessary, we write Mc(g) to indicate the
dependence on the Riemannian metric g.
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Lemma 2. Any solution (A,Φ) satisfies the C0 bound

|Φ|2 ≤ max(0,−s)

at the points where |Φ| is maximum. Here s is the scalar curvature of X.

Proof. The Weitzenböck formula for the Dirac operator reads

D∗
ADAΦ = ∇∗

A∇AΦ +
s

4
Φ − 1

2
ρ(F+

A )Φ.

At points where |Φ|2 is maximum we calculate

0 ≤ ∆|Φ|2

= 2〈∇∗
A∇AΦ,Φ〉 − 2〈∇AΦ,∇AΦ〉

≤ 2〈∇∗
A∇AΦ,Φ〉

= −s

2
|Φ|2 + 〈iσ(Φ,Φ)Φ,Φ〉

= −s

2
|Φ|2 − 1

2
|Φ|4.

The identity used in the last line can be verified from the model of σ given
above. If |Φ|2 is non-zero at the maximum, we may divide by |Φ|2 to obtain
the bound |Φ|2 ≤ −s. �
Corollary 3. If (Ai,Φi) is a sequence of solutions on X, then there is a
subsequence {i′} ⊂ {i} and gauge transformations gi′ such that the sequence
gi′(Ai′ ,Φi′) converges in C∞. Thus Mc is compact.

Proof. The C0 bound on Φ makes this entirely straightforward. Choose
any smooth connection B in L. We can find gauge transformations go

i in
the identity component of Map(X, S1) so that the 1-form go

i (Ai)−B is co-
closed. The component group of Map(X, S1) is isomorphic to H1(X; Z),
and by choosing a gauge transformation gi from an appropriate component,
we can arrange further that the harmonic part of gi(Ai) − B is bounded,
independent of i, because H1(X; R)/H1(X; Z) is compact. The equations
and the C0 bound on Φ then give an Lp

1 bound on gi(Ai) − B as well as
on gi(Φi) for any p. By a bootstrapping argument, one obtains bounds on
all higher derivatives (depending on B). There is therefore a convergent
subsequence. �

On a manifold with boundary, a suitable gauge-fixing condition for a
1-form go(A)−B is that it be co-closed and annihilate the normal vectors
at the boundary. The argument above then proves:
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Lemma 4. If Z is a compact, oriented Riemannian 4-manifold with bound-
ary, equipped with a spinc structure, and if (Ai,Φi) is a sequence of so-
lutions on Z with |Φi| uniformly bounded, then there is a subsequence
{i′} ⊂ {i} and gauge transformations gi′ such that the sequence gi′(Ai′ ,Φi′)
converges in C∞. �

The monopole equations (∗) can be perturbed in a gauge-invariant fash-
ion by adding a form to the right-hand side of the second equation: if
δ ∈ Ω+(X), we consider the equations

(∗δ)
DAΦ = 0

ρ(F+
A + iδ) = iσ(Φ, Φ).

Let Mc,δ denote the moduli space of solutions. A C0 bound on |Φ|2 can
be obtained from the equations as before (one only has to replace −s in
Lemma 2 by −s+2|ρ(δ)|). Let Mc denote the parametrized moduli space,
that is:

Mc =
⋃

δ∈Ω+

Mc,δ × {δ}

⊂
(
A× Γ(W+) × Ω+

)/
Map(X, S1),

where A is the space of unitary connections in L. It is also convenient to
allow A and Φ to be of class L2

k, the form δ to be of class L2
k−1 and the

gauge transformations to be of class L2
k+1 for some large k, so that M∗

c is
a subset of a Banach manifold. Here we are writing M∗

c and M∗
c for the

moduli space and parametrized moduli space of irreducible solutions. We
omit mention of k from our notation.

Lemma 5. The irreducible part of the parametrized moduli space M∗
c is a

smooth manifold. The projection π : M∗
c → Ω+ is Fredholm of index

d(L) =
1
4
(
c1(L)2 − (2χ + 3σ)

)
,

where χ and σ are the Euler number and signature of X. The projection
of the whole space Mc to Ω+ is proper.

Proof. Let (A,Φ, δ) be a solution of the equations with Φ non-zero. The
linearization of the equations at this point is the operator

P : Ω1(iR) × Γ(W+) × Ω+ → Γ(W−) × isu(W+)

given by

P (a, φ, ε) =
(
DAφ + aΦ, ρ(d+a + iε) + 2Imσ(φ,Φ)

)
.
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To establish surjectivity, it is sufficient to show that no element (ψ, κ) in the
range can be L2-orthogonal to the image of P . But if (ψ, κ) is orthogonal,
then by varying ε alone one can first see that κ is zero. Then by varying
a alone and using the fact that Φ, being a solution of the Dirac equation,
cannot vanish on an open set, one sees that ψ is zero also. So the set of
irreducible solutions is a manifold, by the implicit function theorem. The
gauge group acts freely, and the quotient M∗

c is a manifold also, as slices
for the gauge group action can be constructed using the Coulomb gauge
fixing condition.

To calculate the Fredholm index taking account of the Coulomb condi-
tion, one must calculate the index of a linear operator P + d∗ which is a
compact perturbation of the sum of the two operators

DA : Γ(W+) → Γ(W−)
d∗ + d+ : Ω1 → Ω0 ⊕ Ω+.

The real index of the first is 1
4c1(L)2 − 1

4σ, and the index of the second is
− 1

2 (χ + σ). The sum of these two indices is d(L). The last clause of the
Lemma is, like Corollary 3, a consequence of Lemma 2. �

We can now define a simple mod 2 version of the invariants of Seiberg and
Witten. Suppose we have a spinc structure c such that the determinant
bundle L satisfies d(L) = 0. (Such a spinc structure may or may not
exist: the condition is the same as that for X to have an almost complex
structure). Call a Riemannian metric g ‘good’ if the image of c1(L) in real
cohomology is not represented by an anti-self-dual form. If g is good, then
there exists a positive ε such that the equation F+

A +iδ = 0 has no solutions
when |δ| < ε (we may take the C0 norm). Let δ be a regular point of the
projection π in the Lemma above with |δ| < ε, so that the fibre M∗

c,δ = Mc,δ

is a compact zero-manifold. Define nc(g) to be the number of points in this
moduli space, counted mod 2:

nc(g) = #Mc,δ(g) (mod 2).

If δ1 and δ2 are both regular values with C0 norm less than ε, we can join
them by a path which is transverse to π; the inverse image of this path is
a compact 1-manifold, with boundary the union of the two moduli spaces,
so nc(g) is independent of δ. Similarly, if g1 and g2 are two good metrics
which can be joined by a path of good metrics, then nc(g1) = nc(g2).

As shown in [1], if b+ is bigger than 1 and L is non-trivial, the space of
good metrics is path-connected. In this case, nc is an invariant of the pair
(X, c) alone, independent of the metric. Our application of the invariants,
however, deals with a manifold with b+ = 1.
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3. The invariants of CP
2#nC̄P

2

Let CP
2 be the complex projective plane with its standard orientation,

and let X be the manifold CP
2#nC̄P

2. As a basis for the second cohomol-
ogy, we take in CP

2 the Poincaré dual H of the class represented by the
projective line with its complex orientation, and in the ith copy of C̄P

2 a
similar class which we call Ei. The quadratic form on H2(X; R) has signa-
ture (1, n), and we write C+ for the component of the open positive cone in
H2(X; R) which contains H. For each Riemannian metric on g, there is a
self-dual harmonic form ωg whose cohomology class lies in C+. This form
is unique up to positive scaling. The condition that a metric g be good can
be rephrased as the condition c1(L) � [ωg] �= 0.

The manifold X is a complex manifold in a standard way, as the blow-
up of the projective plane at n points. There is therefore a preferred spinc

structure c. The corresponding line bundle L has c1(L) = c1(X) and
d(L) = 0. In terms of the basis introduced above, and writing E =

∑
Ei,

we have
c1(L) = 3H − E.

Note that since [ωg] is a class of positive square, we cannot have c1(L) �
[ωg] = 0 unless c1(L) has negative square; that is, unless n > 9.

Proposition 6. For this standard spinc structure, the invariant nc(g) for
a good metric g is 0 mod 2 if c1(L) � [ωg] is positive, and 1 mod 2 if
c1(L) � [ωg] is negative.

Proof. Let gt (t ∈ [−1, 1 ]) be a smooth path of Riemannian metrics whose
endpoints are good. By the argument of [1], we can perturb the path so
that the path [ωgt ] in C+ is transverse to the hyperplane c1(L)⊥. Let k
be the number of times [ωgt ] meets the hyperplane (which is the number
of times that c1(L) � [ωgt ] changes sign). We first show that nc(g−1) and
nc(g1) differ by the parity of k.

Without loss of generality, we assume that c1(L) � [ωgt
] changes sign

just once, at t = 0. The parametrized moduli space

Mc =
⋃
t

Mc(gt) × {t}

then contains a single reducible point, in the fibre over 0. Choose a δ ∈ Ω+

so as to perturb the equations, and make it sufficiently small that the
expression

f(t) = c1(L) � [ωgt ] + 2π

∫
δ ∧ ωgt
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changes sign once, transversely. We may assume this happens still at t = 0.
There is then a single reducible solution of the perturbed equations at t = 0,
and at all other points the perturbed space Mc,δ is a smooth 1-manifold,
with boundary the union of Mc,δ(g1) and Mc,δ(g−1). We must show that
an odd number of arcs emerge from the reducible point.

Let us examine the Kuranishi model of Mc,δ in the neighbourhood of
the reducible solution (A0, 0). The model is ψ−1(0)/S1, where ψ is (the
germ of) an S1-equivariant map

ψ : R ⊕ Ker(DA0) → Coker(d+) ⊕ Coker(DA0)

and the S1 action is the standard scalar multiplication on the kernel and
cokernel of DA0 . The R on the left-hand side represents the t coordinate.
On the right-hand side, Coker(d+) is 1-dimensional, and if Coker(DA0)
has complex dimension r then Ker(DA0) has dimension r + 1 by the index
theorem. If we identify Coker(d+) with R via the map θ 	→

∫
θ ∧ ωg0 , then

we can calculate
∂ψ

∂t
|(0,0) =

i

2π
(f ′(0), 0),

following [1]. We have arranged that f ′(0) is non-zero, so the local model
can be reduced to ψ−1

1 (0)/S1, for some ψ1 : C
r+1 → C

r. Removing the
singular point, we obtain a model for a deleted neighbourhood of the re-
ducible in Mc,δ as the zero set of a section ψ̄1 of the bundle C

r ⊗O(1) on
CP

r ×R
+. Here O(1) is the line bundle of degree 1 on CP

r, pulled back to
the punctured cone

CP
r × R

+ = (Cr+1 \ {0})/S1.

The zero set of ψ̄1 is transverse, by our assumption on the smoothness
of M∗

c,δ. For an open dense set of numbers ε, ψ̄−1
1 (0) meets CP

r ×{ε} in an
odd number of points, because the Euler number of the bundle C

r ⊗O(1)
on CP

r is 1. This completes the proof that nc(g−1) and nc(g1) differ in
parity as claimed.

To complete the proof of Proposition 6, it is sufficient to exhibit a metric
g+ for which c1(L) � [ωg+ ] is positive and for which Mc(g+) is empty.
In [4] it is shown that CP

2#nC̄P
2 admits Kähler metrics g+ of positive

scalar curvature. In the Kähler situation, ωg is a positive multiple of the
Kähler form, and its cup-product with c1(L) has the same sign as the scalar
curvature. The moduli space for this metric is empty by Lemma 2, so both
of our requirements are satisfied. An alternative way to obtain a metric g+

with the required properties is to use the constructions of [11] and [3]. �
Corollary 7. If g is a Riemannian metric on X = CP

2#nC̄P
2 with

c1(L) � [ωg] negative, then the moduli space Mc(g) for the line bundle
L with c1(L) = c1(X) is non-empty. �
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4. Solutions on tubes

We return to a general oriented Riemannian 4-manifold having a spinc

structure c of determinant L. Suppose X contains an oriented 3-manifold Y
which separates X into two components X− and X+ with common bound-
ary, and suppose that the Riemannian metric is a product [−ε, ε] × Y in a
collar of Y . Let (XR, gR) be the Riemannian manifold obtained from X by
cutting open along Y and inserting a cylinder [−R, R] × Y . (So g0 is the
original metric.) We identify XR with X and write Mc(gR) for the moduli
space.

Proposition 8. Suppose the moduli space Mc(gR) is non-empty for all
sufficiently large R. Then there exists a solution of the equations on the
cylinder R × Y which is translation-invariant in a temporal gauge. (The
spinc structure on the cylinder is the restriction of the spinc structure on
X.)

(After identifying the line bundle L on R × Y with the pull-back of a line
bundle on Y , we say that a solution (A,Φ) is in temporal gauge if the dt
component of A vanishes.)

Proof. On the cylinder R × Y , the two spinc bundles W+ and W− can be
identified using Clifford multiplication by dt, and both can be identified
with the pull-back of the U(2) bundle W3 → Y associated to the spinc

structure which Y obtains. Let A(t) be the path of connections in L → Y
obtained by restricting A to the slices {t}× Y , and let Φ(t) be the path in
Γ(W3) obtained similarly via the above identifications. Let ∂A : Γ(W3) →
Γ(W3) be the self-adjoint Dirac operator on the 3-manifold. If A is in
temporal gauge, it can be recovered from the path A(t) in the space A3 of
connections on Y .

In temporal gauge, the equations (∗) become the following equations for
A(t) and Φ(t):

dA/dt = − ∗ FA + iτ(Φ,Φ)

dΦ/dt = −∂AΦ.

Here τ is a pairing from W3 × W̄3 to Λ1(Y ), obtained from Clifford mul-
tiplication by using the hermitian metric on W3. These are the downward
gradient flow equations for the functional 1

2C on A3 × Γ(W3) given by

C(A,Φ) =
∫

(A − B) ∧ FA +
∫
〈Φ, ∂AΦ〉.

Here B is any chosen connection on L → Y , made necessary by the fact
that A3 has no preferred base-point in general.



EMBEDDED SURFACES IN C P
2 805

This function is invariant under gauge transformations h belonging to
the identity component of the gauge group Map(Y, S1), but if h has a
non-trivial class [h] ∈ H1(X; Z) then

C(h(A), h(Φ)) = C(A,Φ) + 8π2c1(L) � [h].

Let γ be a 1-dimensional cycle in Y dual to c1(L). As Y sits in X, this
cycle is the intersection with Y of a 2-cycle Γ in X dual to c1(L) on X.
Thus γ bounds relative cycles Γ+ and Γ− in X+ and X−.

Now suppose that (AR,ΦR) is a solution of the equations on (XR, gR),
defined for all sufficiently large R. Take a reference connection BR on L →
XR obtained from fixed connections B± over the pieces X± (independent
of R) and a connection [−R, R] × B on the cylinder (after again choosing
an identification of L on the cylinder with the pull-back of a bundle on Y ).
Without loss of generality, AR is in temporal gauge with respect to the
chosen product structure over the cylinder.

Let l(R) be the change in C along the cylinder:

l(R) = C
(
AR(R),ΦR(R)

)
− C

(
AR(−R),ΦR(−R)

)
.

This quantity is negative and independent of all choices. We claim that
l(R) satisfies a uniform bound, independent of R. To see this, note first
that the argument of Corollary 3 and Lemma 4 means that we can choose
gauge transformations h+

R and h−
R over X+ and X− so that h±

R(AR) − B±
and its first derivatives are uniformly bounded. We therefore have uniform
bounds on each of the two quantities

C
(
h±

R(AR)(±R), h±
R(ΦR)(±R)

)
.

However, since γ is the boundary of a chain Γ± in X±, the degree of h±
R

on γ ⊂ Y is zero. From the formula above for how C changes under gauge
transformation, it follows that

C
(
h±

R(AR)(±R), h±
R(ΦR)(±R)

)
= C

(
AR(±R),ΦR(±R)

)
.

This gives the desired bound on l(R).
Since the equations are of a gradient flow, the value of C changes mono-

tonically along the cylinder. Taking R to be an integer N , we see that
there must be, for each N , a solution of the equations on [0, 1] × Y for
which the change in C along the interval is at most 1/N . Furthermore,
since the infimum of the scalar curvature of XR is independent of R, these
solutions satisfy a uniform C0 bound, by Lemma 2. Taking a sequence
of such solutions with N tending to ∞, we deduce from Lemma 4 that
there is a solution on [0, 1] × Y for which C is constant. Such a solution
is translation-invariant in a temporal gauge, and can be extended to a
translation-invariant solution on R × Y . �
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5. A vanishing argument

We continue to consider a cylinder R × Y , but we now take Y to be a
Riemannian product S1 × Σ, where Σ is a 2-manifold of constant scalar
curvature. We choose to make Σ of unit area, so that its scalar curvature is
−2π(4g − 4). (The scalar curvature is twice the Gaussian curvature). We
assume the genus g is at least 1.

Lemma 9. If there exists a solution to the equations (∗) on R × Y which
is translation-invariant in a temporal gauge, then c1(L)[Σ] is not greater
than 2g − 2 in absolute value.

Proof. Suppose that (A,Φ) is a solution which is translation-invariant in
a temporal gauge. Because Y is compact, |Φ| achieves its supremum, so
from Lemma 2 we obtain the C0 bound |Φ|2 ≤ 2π(4g − 4). This translates
into the bound |σ(Φ,Φ)| ≤

√
2π(4g− 4), where the norm on su(W+) is the

one coming from the inner product tr(a∗b) (see the model for σ in section
2.) From the first equation of (∗) we then obtain

|F+
A | ≤

√
2π(2g − 2),

because ρ increases lengths by a factor of 2. Because A is translation-
invariant in a temporal gauge, the curvature FA is a 2-form pulled back
from Y . From this it follows that F+

A and F−
A have the same magnitude,

and we therefore have
|FA| ≤ 2π(2g − 2),

and hence ∣∣c1(L)[Σ]
∣∣ =

∣∣∣ i

2π

∫
Σ

FA

∣∣∣
≤ 1

2π
sup |FA|Area(Σ)

≤ 2g − 2. �

6. Proof of the Theorem

We now turn to the proof of Theorem 1. Let Σ be a smoothly embedded
oriented surface, dual to the class dH in CP

2. If d is 1 or 2, the inequality
of the Theorem is trivial, while if d is 3 the result was known to Kervaire
and Milnor [5]. We therefore assume that d is greater than 3. In this range
we may suppose, without loss of generality, that Σ is not a sphere.

Regard Σ now as living in the connected sum X = CP
2#d2

C̄P
2. Let Si

be a sphere in the i th copy of C̄P
2, dual to the class −E, and let Σ̃ ⊂ X be
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the surface formed by taking an internal connected sum of Σ with all the
Si. This surface is dual to the class dH − E, where E =

∑
Ei as before.

It has the same genus as Σ and has trivial normal bundle. We take the
canonical spinc structure c on X, so that c1(L) = 3H − E as in section 3.

Put a Riemannian metric g0 on X so that the boundary Y of a tubular
neighbourhood of Σ̃ has a product metric. Arrange so that the metric on
the factor Y ∼= S1 × Σ is of the sort considered above. Let X− and X+

be respectively the closed tubular neighbourhood and the closure of its
complement, and let gR be the Riemannian metric obtained by inserting a
cylinder [−R, R] × Y between X− and X+.

Lemma 10. For R sufficiently large, c1(L) � [ωgR
] is negative.

Proof. Let Ri be a sequence increasing to infinity, and normalize the forms
ωi = ωgRi

so that H � [ωi] = 1. The forms ωi then have ‖ωi‖L2 ≤ 1 and
there is a subsequence converging on compact sets to an L2 form ω on the
disjoint union of the two manifolds with cylindrical ends, X−∪([ 0,∞) × Y )
and ((−∞, 0 ] × Y ) ∪ X+. (The convergence is understood by identifying
a compact subset of the cylindrical-end manifold with a compact subset of
(XR, gR) once R is large enough.) However, the space of closed and co-
closed L2 2-forms on X− ∪ ([ 0,∞) × Y ) is empty, being the image of the
compactly-supported cohomology in the ordinary cohomology. So [ωi] · [Σ̃]
goes to zero as i → ∞. Because of our normalization, we have

[ωi] � c1(L) = [ωi] · [Σ̃] − (d − 3)[ωi] � H

= [ωi] · [Σ̃] − (d − 3).

Since d is greater than 3, this quantity is eventually negative as claimed. �
Corollary 7 now tells us that the moduli space Mc(gR) is non-empty for

all sufficiently large R, and from Proposition 8 it follows that there is a
solution on the cylinder R×Y which is translation-invariant in a temporal
gauge. Using Lemma 9 then, we obtain

c1(L)[Σ̃] ≥ −(2g − 2).

The left-hand side is (3H−E)(dH−E), which is 3d−d2. This inequality is
therefore equivalent to 2g−2 ≥ d2−3d, which is equivalent to the inequality
we wished to prove. �
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