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CANONICAL BASES FOR THE
BRAUER CENTRALIZER ALGEBRA

S. FISHEL AND I. GROJNOWSKI

Introduction

In this paper we construct canonical bases for the Birman-Wenzl algebra
BW,,, the g-analogue of the Brauer centralizer algebra, and so define left,
right and two-sided cells. We describe these objects combinatorially (gen-
eralizing the Robinson-Schensted algorithm for the symmetric group) and
show that each left cell carries an irreducible representation of BW,,. In
particular, we obtain canonical bases for each representation, defined over
Z.

The same technique generalizes to an arbitrary tangle algebra and R-
matrix [R]; in particular to centralizers of the quantum group action on
V®" for V a finite dimensional representation of a quantum group.

BW,, occurs for particular values of the parameters (g, r, x) as the cen-
tralizers of the action of Uysp,, or Ujox on the n-th tensor power of its
standard representation V. One may presumably transfer the bases of the
BW, modules to give a basis of representations occurring in V®" (as in
[GL]), and it is natural to conjecture that the basis so obtained coincides
with that of [L,§27].

Of the Weyl groups, only in the symmetric group are the cell repre-
sentations irreducible. In this respect BW,, is similar to S,. One would
expect this because of the relation with quantum groups, which also behave
like Hecke algebras of type A [L]. Moreover, our main new insight into the
structure of BW, is precisely of this form—we show that every represen-
tation is induced from a representation of a symmetric group in a precise
way (see §6.5).

This paper is essentially self-contained, except for an appeal to the so-
lution of the corresponding problem for S,, in [KL,1.4]. In particular, we
make no further mention of quantum groups and use no previous work on
the structure of BW, (e.g. [BW,HR,W]) except for its description as a
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16 S. FISHEL AND I. GROJNOWSKI

tangle algebra [Ka]. In a sequel to this paper we intend to derive further
properties of BW,, from these techniques.

Finally, we remark that our main interest in this problem was to ob-
tain information about a geometric description of the quantum group U,g
analogous to the Beilinson-Lusztig-MacPherson construction for G'Ly.

1. Brauer diagrams

Let F be a finite set and R a ring. We write RF for the free R-module
with basis F; so an element of RF is a map from F' to R, usually denoted
Zfanff. If n € N, write 2n!! =1-3-5---(2n — 1); and if S is a set,
write |S| for its cardinality.

1.1 A “Brauer diagram on n letters” is a partition of the set {1,...,2n}
into two element subsets. Write B = By, for the set of Brauer diagrams, so
|B| = 2n!l. If d € B, we represent d by a diagram in the plane

1 2 3 ... n

2n n+1
where there are n dots numbered 1, ... ,n in the top row; n dots numbered
2n,...,n+ 1 in the bottom row, and the vertex i is joined to the vertex j

if {7,7} € d. We can draw this picture so two edges intersect at most once,
there are no self-intersections, at most two edges intersect at any point,
the only critical points of the functions representing the edges are the max
(resp. min) of horizontal edges, etc. Call such a diagram nice.

1.2 If d € B, write £(d) for the number of pairs {7,5},{k,!} in d such
that i« < k < j < l. In our nice diagram representing d, this is just the
number of crossings of edges.

1.3 Also for d € B, write h(d) for the number of pairs {i,j} in d with
i <n and j < n. This is just the number of horizontal edges in the top
row of the diagram of d; clearly this is also the number of horizontal edges
in the bottom row.

1.4 Write S, = {d € B, | h(d) = 0}. This is canonically isomorphic to
the elements of the symmetric group on n letters.

1.5 Let A be the ring

A=2Z[r,r Y q,q7 ] /(L-2)g—g7 )+ (r=171)

and A’ = Z[z].
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2. Tangles

2.1 A “tangle on n letters” is an equivalence class of certain pictures
in the plane with 2n marked vertices 1,...,2n [Ka]. Denote 7, for the
set of n-tangles. A picture ¢ in the plane with lines between the vertices
1,...,2n (arranged as in a Brauer diagram), with over and undercrossings
indicated and with some number of closed loops, represents a tangle t. If
two such pictures differ only in the neighborhood of a crossing, where they
are respectively of the form

()

w X

(or any diagram obtained by rotating these), then they represent the same
element of 7,; and the set of such plctures mod the equivalence relation
generated by these two “Reidemeister moves” is 7;,. It is well known that
7, has an alternate description in terms of regular isotopy classes of links
[Ka,R].

If t1,t2 € Ty, then we define t1¢; to be (the equivalence class of) the
tangle obtained by concatenating ¢; and ¢, (place t; above t; and join the
dots). With this product, 7, is a monoid.

2.2 Write E\W for the quotient of AT, by the relations generated by

NN . L N
AN \+(q—cI) - (@-q) —

Q2: d = 7l
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Here, by Q1 we mean that if ¢ is a tangle with some crossing which looks

X

and t' (resp. t”,t"") represents the same tangle with this crossing modified

to
(respectively ‘ ‘ , U >
a

thent=¢+(¢q—q¢ )" —(g—q Ht" in BW,,. (These relations really do
descend to 7,.) Similarly for Q2-Q4.
For example,

O - (@-qah

/\’7 = \/D+ (¢—q ")

whence (r —r7 1) = (¢ — ¢ ')(z — 1) by Q2, Q3, and Q4.
2.2 Define elements Ty, Ts_ll, and T,,in 7, by

vl i it i i+l
(g
Tsi=‘“'\/""7T;1="“ \/...I’Tei:'...
/ \ 7N\

Define BW = BW,, to be the submonoid of Bﬁ//n generated by Ty, , Ts‘ll,
Te,for 1 <4 < n. This is an A-algebra, the “Birman-Wenzl” algebra, and
may be defined explicitly in terms of these generators and some relations.
(See [BW].) Let us call a tangle t € 7, “reachable” if its image in BW,
actually lies in BW,,. For example, if ¢ is such that no two lines cross more
than once, then ¢ is clearly reachable.

23 If t € T,, we define its Brauer diagram ¢(t) € B, by {i,j} € ¢(t)
if vertex i is joined to vertex j in ¢. In terms of pictures, we throw away
cycles and ignore whether crossings are over or under.

Let A — A’ be the ring homomorphism defined by g — 1,7+ 1,2 — z.
Then it is immediate from Q1 that, restricting to tangles with no cycles or
self intersection, ¢ descends to a map, also denoted ¢,

¢: BW, 24 A — A'B,



CANONICAL BASES FOR THE BRAUER CENTRALIZER ALGEBRA 19

This is in fact an isomorphism of A’-modules [Ka], and the resulting algebra
structure on A’ By, is called the “Brauer centralizer algebra.” (In particular,
BW, is a free A-module of rank 2n!!.)

2.4 We define a section T : B,, — 7, of ¢ as follows. If d € B,, Ty is
the picture obtained from a nice diagram for d by requiring {7, 7} to pass
over {k,l} if i < k < j < I. If is clear that ¢(Ty) = d, and that T} is
reachable. We also denote by T' the map B,, — BW,,; so that the elements
Ty, d € By, form an A-basis of BW,,.

2.5 Let F* be the A-submodule of BW, generated by the T; with h(d) >
k. Then BW, = F° 2 F' D ... D FIn/2l+! — () is a decreasing filtration
of BW,, by two-sided ideals. Write gr = F*/Fk+1 for the kth piece of the
associated graded algebra. For example gr% = H,,, the Hecke algebra of
the symmetric group S,, or rather, the usual Hecke algebra tensored with
A over Z[g,q™ '] and grllpn/ 2} s also especially simple. In the next section
we will see how gr% for general £ is a combination of these two extremes.

3. Dangles

3.1 A “flat (n, k) dangle” is a subset of {1,...,n} of size 2k, which is
partitioned into k 2-element subsets. Write D¥ = DF for the set of flat
(n, k)-dangles, so |D¥| = (;i)kN. If d € D*, we can represent d by a
diagram in the plane

1 2 3 ... n

\T/

such that i is joined to j if {i,j} € d and there is a vertical line from i if
i € d. We can insist that two edges intersect at most once, and no vertical
edges intersect, etc. If d € DE, write £(d) for the number of crossings of
edges in the diagram of d, i.e. for the number ¢; +¥¢5 where ¢; is the number
of pairs (4,7),(k,l) in d with 4 < k < j < [ and ¢, is the number of pairs
k,(i,5) with k ¢ d, (i,j) € d, and i < k < j.

3.2 An “(n, k)-dangle” is an equivalence class of certain pictures in the
plane, with n marked vertices 1,...,n. A picture p in the plane with & lines
between the vertices {1,... ,n}, each line incident to precisely two vertices,
with n — 2k vertical lines, and with some number of cycles such that over
and under crossings are indicated, represents a dangle if the vertical lines
do not cross. The set of such pictures, modulo the equivalence relation
generated by the Reidemeister moves RII and RIII is isomorphic to the set
of (n, k)-dangles. We denote this DF. One may also describe this set in
terms of isotopy classes of framed links.

Write ]\7,’: for the quotient of ADF by the relations generated by Q1-Q4;
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and M* for the .A-submodule of ]T/f,’f spanned by the image of pictures in
DE such that two edges cross at most once and there are no cycles.

If d € DE, write ¢(d) € DF for the flat diagram obtained by forgetting
over and under crossings, and cycles; i.e. {i,7} € ¢(d) if i is joined to j
in d. If d € DE, write Ty for the dangle obtained from a nice diagram by
requiring {i,5} to pass over {k,!} if i < k < j <[, and requiring horizontal
lines to pass over vertical lines. It is clear that ¢(T;) = d, and that the
image of Ty in M,,‘f lies in MF. Again, it is immediate that ¢ descends to
¢: MF®4 A" — A'DE and that this is an isomorphism of A’-algebras. In
particular, {T; | d € D} is a basis of M}.

Define °D¥ to be DE, but draw the pictures dangling upward rather than
down, and label the vertices 2n,...,n+ 1. (So these represent the bottom
part of tangles.) Define the section T': DE — °D¥ by requiring horizontal
lines to pass under vertical lines, and as always {i,j} to pass over {k,l} if
i <k <j <l Alsodefine °MF.

3.3 We define maps DF x S,_ox x °D¥ — B,,, DF x B,_ox x °DE — T,
(where B,,_o is the braid group on n — 2k letters; i.e. those tangles with
no cycles, no self intersection or critical points, and no horizontal edges)
by concatenation, e.g.

Wio
T Al X

It is clear that these maps descend to
. k oask k
M) @4 Hy—ok ®4 "M, — grE

as the relations Q1-Q4 in M* are the same as those in BW,, and the
relation Q1 in gr% becomes

if these two strands are vertical (i.e.

U € Fi1), the defining relation in
N

H,_ok. Further D* x S, _q1 x °D¥ bijects to {d € By, | h(d) = k}. Write
d— (7(d), m(d), b(d)) for its inverse. Then & is an isomorphism and

(3.3.1) (T (a) ® Trr(ay ® To(ay) = Tu
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Note that the section T : Sp—ok — Hp_or defined in 2.4 agrees with
g ! T, where T, is the usual basis of H,_5. Further, if (d;,7,ds) —
d € B,, observe

(3.3.2) £(dy) + £(m) + £(d2) = £(d)
with the length functions defined in 3.3, 1.2.

4. Verdier duality

4.1 If t is a picture representing a tangle or dangle, write ¢ for the
picture obtained from ¢ by interchanging every over and under crossing.
It is clear that ~ respects Reidemeister moves, and so this operation on
pictures descends to tangles.

Also write = : A — A for the Z-linear ring homomorphism defined by

r:—-—»?ﬂ"l, qu_l, T +— x.

This is an involution.

It is clear from Q1-Q4 that the A-antilinear involution ~ : A7, — AT,,
2. net = > Mt descends to an involution ~ : BW,, — BW,,; similarly we
have = : M¥ — M¥ — : H, — H,. Further, £;#; = #,f, whenever we can
concatenate tangles or dangles t; and ¢5; i.e. ~ is an algebra homomorphism
whenever this makes sense. In particular,

®(h) = ®(h)

where ® : MF ® H,,_o, ® °iji>gr§, we define a ®b®c=a® bR ¢, and
~igrk — grk is induced from that of BW,, as it follows from Q1-Q4 that
Fy C F.

4.2 Observe that if d is a Brauer diagram or flat dangle,

T,=Ty+ Z Tard Ly
d:6(d’)<(d)

for certain rqq € Z[(q — ¢~ ')]. This follows from Q1 by a straightforward
induction.

5. Canonical Bases

5.1 We recall the following lemma of [KL].
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Lemma. Let M be a free Z[q,q ']-module, with a given basis (e;)icy, I
some index set. Suppose also given a semilinear involution = : M — M
such that gm = ¢~ 'm, m+m’' = m +m', and a partial order < on I such
that {j | j < i} is finite and

€; = eriej, Tji € Z[q,q"l] and r; = 1.
J<i

Then there is a unique basis (b;)ic; of M such that i) b; = b;, and

i) b; = ZPjiej, with Py = 1, and Pj; € ¢ 'Z[q7"] if j <.
J<i

This basis is called the “canonical” (or Kazhdan-Lusztig) basis of M.

5.2 We apply the lemma to BW,,, (respectively M¥, H,, gr%) and to the
involution ~, the standard basis T, and the partial order d’ < dif d = d’ or
¢(d") < €(d). We may do this by 4.2. We denote the new basis by C, (resp.
Cy, C}, CJ). Note that the basis C; of H, we’ve just defined is precisely the
basis of [KL], and that if d € By, h(d) = k, then C)] = Cy + Fy41 € grk.
(In particular, if k = 0, C] = C} = C4+ F; € H,, in an orgy of silly
notation.)

Also observe that the polynomial Py 4 are in Z[g™}], that is they do not
depend on r and z. For example, Ce, = T,,, C; = 1, Cs, = Ty, + ¢~ —
¢ 'T.,,1<i<n.

Lemma 5.3. Let d € By, h(d) = k. Then in grk we have

®(Cra) ® Cr(gy © Co(ay) = Cf

Proof. As ®(h) = ®(h), it is clear that the left hand side is fixed by ~.
On the other hand, by 3.3.1 and 3.3.2 it is also clear that the left hand
side is of the form >, 4 7d,7d, ®(T4, ® Tr ® Ty,), where £(dy) + £(m) +
£(dz) < £(d) and that either (di,w,dy) = (7(d),n(d), b(d)) and v4,7a, = 1
or £(dy) + £(m) + £(d2) < €(d) and Y4, ra, € ¢~ *Z[g™]. As the basis C7 is
the unique element of gr’} with these two properties, the lemma follows.

Note that ¢(Cy), d € By, gives a basis in the Brauer algebra A'B,
which is independent of the section T : B, — BW,. We remark that
Lusztig has informed us that in [L,27.3.10] a basis of BW,, for particular
values of (g, r,x) is defined. We will compare this to our basis in a future
article.
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6. Cells

6.1 Let hgy. be the structure constants for multiplication in BW,, with
respect to the canonical bases; i.e.

C.Cy = Z hzy:C, for xz,y € B,,.

z€B,

Let <y, (resp. <g) be the preorder on B, generated by the relations z <p, y
(resp. z <p ) if there exists an ¢ € B, (resp. y € B,) such that hayz # 0.
Let <pr be the preorder generated by the relation z <pp y if z <, y or
z <py. Writex ~p yif ¢ <; y and y <, x; similarly for ~p, ~1 5. The
equivalence classes for ~, ~g, ~pg are called respectively left, right or
two-sided cells. Observe that if z ~ y, then h(z) = h(y).

If T is a left cell in B, then if we set

F'= A{C, |z < T},

FU is a left ideal in BW,,. Write F<T for the sum of the FT  such that
I <y I, T #I; and write gr' = FU/F<TU. This is a left BW,, module.
Similarly, for I' a right or two-sided cell, the analogously defined FT are
right (resp. two-sided ideals), and gr'' is a right module (resp. BW,, x BW?
module).

Observe that these filtrations FT refine the filtration F* of 2.6. They
are analogues of the definitions for Hecke algebras in [KL].

6.2 Our main result is an explicit description of the equivalence classes
~L, and hence an explicit construction of bases in the irreducible modules
for BW,, with structure constants in .A. The proof will be given in 6.4.

Theorem 6.3. We have d ~1, d' if and only if h(d) = h(d'), b(d) = b(d'),
and 7(d) ~r m(d") in Sy_onq). Further, if T' and T’ are two left cells in
the same two-sided cell, then gr' is isomorphic to grrl as a BW,-module
with basis. Finally, let F be a field, o : A — F a homomorphism of TiNngs,
and suppose BW,, ® 4 F is semisimple. Then each representation grl @4 F
1s trreducible.

Note that in light of the description of ~y in the symmetric group in
[KL], we may describe ~, as follows. There is a bijection from the set {d e
B, | h(d) = k} to the set of tuples (dy,dy, P, Q) where d; € DE and P,Q
are pairs of standard tableaux of the same shape and size n—2k. Under this
bijection, d; = 7(d),d> = b(d) and (P, Q) is the pair of tableaux associated
by the Robinson-Schensted algorithm to the permutation m(d) € Sp_ox.
Then (dy,da, P,Q), (d},d), P',Q’) are in the same left cell if dy = dy and
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Q = Q'; in the same right cell if d; = d] and P = P’, and in the same
two-sided cell if P and P’ are of the same shape.

There is an alternate Robinson-Schensted algorithm, due to Sundaram
[S], which bijects B, onto pairs (p,q) of paths of length n in the Young
lattice which end in partitions of the same shape. In this language, (p, q)
and (p/, ¢') are in the same left cell if ¢ = ¢/, and are in the same two-sided
cell if p,p’ end at the same partition.

6.4 The action of BW, on gr? defines via ® an action of BW, on
MF® H, o ® °MF again by composition of tangles. This action has the
following property: If h € BW,, a®b®c € MF @ Hy_2x ® °ME, then

(6.4.1) h-(a®b®c) = > yhec,eClbec
deDE, n€Sn_ak
where the coefficients 3% depend only on h,a (and d,r), and the multi-
plication C.b is the usual one in Hy_gk. It follows that if d’ <r d and if
h(d") = h(d), then n(d") <, 7(d) and b(d') = b(d).
Now suppose d € DF, a®b®c € M¥®H,,_ 2, ®°MF, f&g € H, 01 @°MF.
Then (6.4.1) can be refined to

(Td®f®g)'(a®b®c):Td®h(a7fvg)'b®c
where h(a, f,g) € Hp—2k depends only on (a, f,g). Hence
(Ca®f®Rg) (a®b®c)=Cqg®h(a,f,g9) bRc

Now let a = T, for some d’ € DX. Then we can pick a g € °MF such
that ag = A\.1 € H,_ok, where A € A and 1 is the tangle consisting of
n — 2k vertical lines. So h(a, f,g) = f for this g. As the elements Ty,
d' € DF form a basis of MF, it follows that for arbitrary a € M} there
exists g € °MPF and XN € A, N # 0 with h(a, f,g) = fN.

It is immediate that if (dy,71,d"), (d2, m2,d") € DE x S,,_ox x DE satisfy
71 < 7 then (dy,m1,d") <p (d2,m2,d") and so, in particular, the left cells
are as claimed.

Now let I' be a left cell in B,,. It is clear from the above that the
representation gr! does not depend on b(I') and only depends on the rep-
resentation in H, ok carried by the left cell #(I"). As this representation
is the same for any «([') in a fixed two-sided cell in S, 2 [KL,1.4], the
second statement of the theorem follows.

Finally, as there are as many left cells I' in a two-sided cell as elements
in ', we have produced a decomposition of the regular representation of
the form > (dim p)p. It follows that each summand gr' is irreducible.
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6.5 In the course of the proof of 6.3 we have shown that if V' is an irre-
ducible representation of H, o, then we can give M* ® V the structure of
an irreducible representation of BW,,, and that all irreducible representa-
tions of BW,, occur in this way for a unique k, V.

7. Extending the regular representation

7.1 Given a tangle t € 7, one may represent it as a picture in which the
dots 1,...,2n are placed in a line (by rotating the bottom line to the top).

1 2 3 ... n 1 2 3 ... n n+l ... 2n

N N — e
—>

I

2n n+1

As the relations Q1-Q4 are defined for tangles—they are rotation invariant,
for example—concatenation defines an action of BW,,, on BW,,. By 6.4,
this action makes BW,, an irreducible BW5,-module; this action “extends”

the regular representation as we have an algebra homomorphism v : BW,,®
B W,? — B Wzn

1 n 1 n 1 __w«ﬁ»nifl - 2n
(e © [ 1 — [a | b
2n n+1 2n n+1 2n n+ln 1

by taking a ® b to the tangle obtained by rotating b 180° and placing it
next to a.

Note that, on the level of Brauer diagrams, the same procedure also gives
an action of Sy, on B,. Then Sy, acts transitively on B,,, the stabilizer of
the identity being the hyperoctahedral Weyl group of rank n. So |B,| =
(2n)!/2™n! = 2nl!.
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