A REMARK ON THE FOURIER-MUKAI TRANSFORM

A. Polishchuk

This note arose from the attempt to understand the claim of Mukai in [4] that the group $SL_2(\mathbb{Z})$ acts on the derived category $\mathcal{D}^b(A)$ of coherent sheaves on an abelian variety A endowed with a principal symmetric polarisation modulo shifts. Namely, this action is determined in terms of the standard generators of $SL_2(\mathbb{Z})$, one of which acts by tensoring with a line bundle defining the polarisation and another by the Fourier-Mukai transform. Then one can check easily that the defining relations are satisfied, which means that there is a homomorphism from SL₂ to the quotient of the group of autoequivalences of $\mathcal{D}^b(A)$ considered up to an isomorphism modulo the subgroup \mathbb{Z} generated by shifts. With some additional work one can prove that there is an action of the central extension SL_2 of $SL_2(\mathbb{Z})$ by \mathbb{Z} on $\mathcal{D}^b(A)$ in the more strict sense due to J.-L. Verdier [7]. Namely, we say that a group G acts on a category C if C is a fibered category over Cat(G)—the category with one object corresponding to G. Explicitly this means that there is a system of functors F_g , where $g \in G$, from \mathcal{C} to itself and isomorphisms $\alpha(g,h): F_g \circ F_h \to F_{gh}$, for each $g,h \in G$, which satisfy certain cocycle condition for triples of elements of G. Though in the case of SL₂ it is not a big problem to construct such a system, this definition leads to the search for a more natural setup in which the above action occurs. In this note a variant of such a setup is suggested using quadratic modules over \mathbb{Z} .

1. Biextensions and quadratic modules

The complete proofs of the results of this section will be given elsewhere. Let Bil be the category whose objects are pairs (V,b) where V is a finitely generated free \mathbb{Z} -module, b is a bilinear form on V; a morphism $(V,b) \to (V',b')$ is a homomorphism $f:V \to V'$ such that $f^{-1}(b') = b$. There is an obvious (commutative) monoidal structure on this category given by $(V,b) \otimes (V',b') = (V \oplus V',b \oplus b')$, for which (0,0) is the neutral object. There is a natural forgetting (monoidal) functor $p: \text{Bil} \to \text{Mod}$ from Bil to the category Mod of finitely generated free \mathbb{Z} -modules, and the functor $t: \text{Mod} \to \text{Bil}: V \mapsto (V,0)$.

Received January 12, 1995

Let $\widetilde{\operatorname{Sch}}$ be the category of pairs (X,L) where X is a scheme over a base scheme S,L is a \mathbb{G}_m -torsor over X, where a morphism from (X,L) to (X',L') is a pair (ϕ,α) consisting of a morphism $\phi:X\to X'$ and an isomorphism $\alpha:L\to\phi^*L'$. This category is also monoidal: $(X,L)\otimes(X',L')=(X\times_S X',p_1^*L\otimes p_2^*L')$ where \otimes denotes the sum of \mathbb{G}_m -torsors (with the obvious neutral object). Let $p:\widetilde{\operatorname{Sch}}\to\operatorname{Sch}$ be the forgetting functor to the category of schemes over $S,t:\operatorname{Sch}\to\operatorname{Sch}$ be the functor sending a scheme X to a pair (X,\mathcal{O}_X) .

Note that the category of monoidal functors $Mod \rightarrow Sch$ is equivalent to the category of commutative group schemes over S. For a commutative group scheme G and a \mathbb{Z} -module V we denote by $V \otimes G$ the value of the corresponding functor on V. More precisely, $V \otimes G$ is defined as some universal object in the category of commutative group schemes in the same spirit as the usual tensor product of modules is defined $(V \otimes G)$ is noncanonically isomorphic to G^r where $V \simeq \mathbb{Z}^r$). Let Fun be the category of pairs F, F_0 of compatible symmetric monoidal functors from Bil to Sch and from Mod to Sch (more precisely, one should consider isomorphisms of monoidal functors $p \circ F \simeq F_0 \circ p$ and $F \circ t \simeq t \circ F_0$ as a part of the data). Such a pair is essentially defined by a commutative group scheme $G = F_0(\mathbb{Z})$ and a \mathbb{G}_m -torsor L over G^2 obtained from the standard bilinear form b_0 on \mathbb{Z}^2 : $b_0((x,y),(x',y'))=xy'$. Indeed any bilinear form b on $V\simeq\mathbb{Z}^r$ has form $b(v, v') = \langle v, \beta(v') \rangle$ for some homomorphism $\beta: V \to V^*$, so that b is induced by the homomorphism (id, β): $V \to V \oplus V^*$ and the standard form on $V \oplus V^* \simeq (\mathbb{Z}^2)^r$ which is isomorphic to $(b_0)^r$. Considering the morphisms

$$(\mathbb{Z}^3, b') \to (\mathbb{Z}^2, b_0) \oplus (\mathbb{Z}^2, b_0) : (x, y, z) \mapsto ((x, y), (x, z)),$$

 $(\mathbb{Z}^3, b') \to (\mathbb{Z}^2, b_0) : (x, y, z) \mapsto (x, y + z)$

in Bil we deduce an isomorphism of \mathbb{G}_m -torsors $p_{12}^*L \otimes p_{13}^*L$ and m_{23}^*L on G^3 where $m_{23} = (\mathrm{id} \times m) : G^3 \to G^2$, $m : G^2 \to G$ is the composition law, $p_{12}, p_{13} : G^3 \to G^2$ are the projections. Symbolically this isomorphism can be written as $L_{x,y}L_{x,y'} \simeq L_{x,y+y'}$. Analogously we have an isomorphism $L_{x,y}L_{x',y} \simeq L_{x+x',y}$. By the same method one obtains the commutativity of certain diagrams which express the fact that L defines a biextension of $G \times G$ by \mathbb{G}_m (see [6],[2],[1]). Moreover, one can prove the following theorem.

Theorem 1.1. The category Fun is equivalent to the category of biextensions L of $G \times G$ by \mathbb{G}_m where G is some commutative group scheme over S; a morphism $(G, L) \to (G', L')$ in the latter category is given by a homomorphism $\phi : G \to G'$ and an isomorphism $L \simeq (\phi \times \phi)^*L'$.

Remark. Analogously, one can characterize symmetric biextensions in the sense of [1] (which are roughly speaking the biextensions L of G^2 equipped with a symmetry isomorphism $s^*L \simeq L$) via monoidal functors from the category of even quadratic modules (that is the category of \mathbb{Z} -valued symmetric forms b on finitely generated free \mathbb{Z} -modules such that b(v,v) is even).

Let Sym be the category of quadratic modules (that is the category of \mathbb{Z} -valued symmetric forms), Fun_G be the category of monoidal functors Sym \to Sch compatible with the functor $F_0: \text{Mod} \to \text{Sch}$ associated with a commutative group scheme G over G. A cube structure on a \mathbb{G}_m -torsor G over G is a symmetric \mathbb{G}_m -biextension structure on the \mathbb{G}_m -torsor

$$\Lambda(L) = m^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1}$$

where $m:G^2\to G$ is the group law, $p_1,p_2:G^2\to G$ are the projections, satisfying some natural compatibility (see [1]). Now assume that L is a symmetric \mathbb{G}_m -torsor on G which means that an isomorphism $i^*L\simeq L$ is given where $i:G\to G$ is the inversion. Then a Σ -structure on L is a cube structure compatible with the symmetry $i^*L\simeq L$ (see [1]). With this terminology we have the following result.

Theorem 1.2. The category Fun_G is equivalent to the category of \mathbb{G}_m -torsors on G endowed with Σ -structure.

We omit the proof of this theorem. Note only that the \mathbb{G}_m -torsor L corresponding to a functor $F \in \operatorname{Fun}_G$ is defined by the formula $F(\mathbb{Z}, q_1) = (G, L)$ where q_1 is the simplest symmetric form on \mathbb{Z} : $q_1(e, e) = 1$ where e is the generator of \mathbb{Z} .

2. Correspondences

For any smooth projective variety X over a field k we denote by $\mathcal{D}^b(X)$ the (bounded) derived category of coherent sheaves on X. Let Cor(X) denotes the category $\mathcal{D}^b(X \times X)$ with the following monoidal structure:

$$\mathcal{G} * \mathcal{F} = p_{13*}(p_{12}^* \mathcal{F} \otimes p_{23}^* \mathcal{G})$$

where $p_{ij}: X^3 \to X^2$ are the projections; all functors are the derived ones. The neutral object of Cor(X) is $\Delta_* \mathcal{O}_X$ where $\Delta: X \to X^2$ is the diagonal embedding. There is a natural action of Cor(X) on the category $\mathcal{D}^b(X)$: each object $\mathcal{F} \in Cor(X)$ gives rise to a functor

$$\Phi(\mathcal{F}) = p_{2*}(p_1^*(\cdot) \otimes \mathcal{F}) : \mathcal{D}^b(X) \to \mathcal{D}^b(X)$$

where $p_1, p_2: X^2 \to X$ are the natural projections. A morphism $\mathcal{F} \to \mathcal{F}'$ induces a morphism of functors $\Phi(\mathcal{F}') \to \Phi(\mathcal{F})$, and for a pair of

morphisms the usual compatibility holds showing that we have a functor from Cor(X) to the category of functors from $\mathcal{D}^b(X)$ to itself. One can easily show that this functor is monoidal which justifies the phrase "Cor(X) acts on $\mathcal{D}^b(X)$ " (see [4] for more general setup).

Let Cor(V) be the category whose objects are triples: a quadratic module (W,q), a homomorphism of \mathbb{Z} -modules $h:W\to V^2$ and an integer number n, such that p_1h is surjective where $p_1:V^2\to V$ is the projection on the first factor. A morphism $\mathcal{W} = (W, q, h, n) \to \mathcal{W}' = (W', q', h', n')$ in Cor(V) is a quadruple $((U, q_U), i, f, \mu)$ where $(U, q_U) \in Sym$ is a quadratic module, $i:U\to W$ and $f:U\to W'$ are homomorphisms such that $i^{-1}(q) = f^{-1}(q') = q_U$ (that is i and f are morphisms in Sym), $h \circ i = h' \circ f$, i is an embedding such that W/i(U) is a free \mathbb{Z} -module of rank (n-n'), $\mu: \mathbb{Z} \rightarrow \det(W/i(U))$ is an isomorphism (where for a free \mathbb{Z} -module P of rank r we denote by $\det(P) = \bigwedge^r(P)$ the top degree wedge power of P). One can easily define the composition of such things. There is a monoidal structure on this category: W' * W = (W * W', q * q', h * h', n + n') where $W * W' = W \times_V W'$ is the fibered product with respect to the morphisms $p_2h: W \to V$ and $p_1h': W' \to V$, $q*q' = p_W^{-1}(q) + p_{W'}^{-1}(q')$ where p_W and $p_{W'}$ are the projections of W*W' on W and W', the morphism $h * h' : W * W' \to V^2$ has components $p_1 h p_W : W * W' \to V$ and $p_2h'p_{W'}: W*W' \to V$. The neutral object is $(V,0,\Delta_V,0)$ where Δ_V is the diagonal embedding $V \to V^2$.

From now on let A be a connected abelian variety of dimension g over a field k, $F \in \operatorname{Fun}_A$ be a monoidal functor from Sym to Sch as above, corresponding to a line bundle L on A with a Σ -structure (which in this case is equivalent to the trivialization of the fiber of L at $0 \in A$ compatible with the symmetry $(-1)^*L \simeq L$).

Theorem 2.1. Fix a trivialization $\mathcal{O}_A \simeq \omega_A = \bigwedge^g(\Omega_A)$. Then there is a natural monoidal contravariant functor $\operatorname{Cor}_F : \operatorname{Cor}(V) \to \operatorname{Cor}(V \otimes A)$ such that for an object $\mathcal{W} = (W, q, h, n) \in \operatorname{Cor}(V)$ we have

$$\operatorname{Cor}_F(\mathcal{W}) = (Fh)_*(\mathcal{L}_W)[ng]$$

where $F(W,q) = (W \otimes A, \mathcal{L}_W) \in \widetilde{Sch}$, $Fh : W \otimes A \to V \otimes A$ is the morphism induced by h. Thus, there is an action of Cor(V) on $\mathcal{D}^b(V \otimes A)$.

Proof. Let $(U, q_U, i, f, \mu) : \mathcal{W} \to \mathcal{W}'$ be a morphism in $\operatorname{Cor}(V)$. Let $W_0 = (W \oplus W')/U$ be the coproduct of W and W' over U in the category of \mathbb{Z} -modules (here the embedding $U \to W \oplus W'$ is given by $u \mapsto (-i(u), f(u))$), so that W_0 is a free \mathbb{Z} -module (as an extension of W/U by W') equipped with the natural maps $f_0 : W \to W_0$ and $i_0 : W' \to W_0$ such that $i_0 f = f_0 i$. Also there is a morphism $h_0 : W_0 \to V^2$ such

that $h_0i_0 = h'$, $h_0f_0 = h$. As above for each quadratic module (W,q) we denote by \mathcal{L}_W the line bundle on $W \otimes A$ given by the functor F. Note that $\mu : \mathbb{Z} \simeq \det(W/i(U))$ together with the fixed trivialization $\mathcal{O}_A \simeq \omega_A$ induces an isomorphism $\mathcal{O}_{U\otimes A} \simeq \omega_{U\otimes A/W\otimes A}$ where for an embedding of locally complete intersection $Y \subset X$ of codimension r we denote following [3] $\omega_{Y/X} = \bigwedge^r (J_Y/J_Y^2)^\vee$ where J_Y is the ideal sheaf of Y. Thus we have an isomorphism of functors $(Fi)! \simeq (Fi)^*[-r]$ where $Fi : U \otimes A \to W \otimes A$ is the embedding induced by i, r = (n - n')g is the codimension of $U \otimes A$ in $W \otimes A$ (see [3], Cor.7.3). The composition of this isomorphism with the trace morphism $(Fi)_*(Fi)! \to \mathrm{id}$ induces a morphism $(Fi)_*(Fi)^*\mathcal{L}_W \to \mathcal{L}_W[r]$. Now we compose this morphism with the natural morphism

$$(Ff_0)^*(Fi_0)_*\mathcal{L}_{W'} \to (Fi)_*(Ff)^*\mathcal{L}_{W'} \simeq (Fi)_*\mathcal{L}_{U} \simeq (Fi)_*(Fi)^*\mathcal{L}_{W}$$

to obtain a morphism $(Ff_0)^*(Fi_0)_*\mathcal{L}_{W'} \to \mathcal{L}_W[r]$ which by adjunction induces a morphism $(Fi_0)_*\mathcal{L}_{W'} \to (Ff_0)_*\mathcal{L}_W[r]$ and therefore a morphism

$$\operatorname{Cor}_F(\mathcal{W}') = (Fh')_*(\mathcal{L}_{W'})[n'g] \simeq (Fh_0)_*(Fi_0)_*\mathcal{L}_{W'}[n'g] \to (Fh_0)_*(Ff_0)_*\mathcal{L}_W[n'g+r] \simeq (Fh)_*(\mathcal{L}_W)[ng] = \operatorname{Cor}_F(\mathcal{W}).$$

If we apply the functor Cor_F to the product $\mathcal{W}' * \mathcal{W}$ then we get

$$\operatorname{Cor}_{F}(\mathcal{W}' * \mathcal{W}) = (F(h * h'))_{*}(p_{W}^{*}\mathcal{L} \otimes p_{W'}^{*}\mathcal{L}')[(n + n')g]$$

where we put $\mathcal{L} = \mathcal{L}_W$, $\mathcal{L}' = \mathcal{L}_{W'}$. On the other hand

$$\operatorname{Cor}_F(\mathcal{W}') * \operatorname{Cor}_F(\mathcal{W}) = p_{13*}(p_{12}^*((Fh)_*\mathcal{L}) \otimes p_{23}^*((Fh')_*\mathcal{L}'))[ng + n'g]$$

where $p_{ij}: (V \otimes A)^3 \to V \otimes A$ are the projections. Now by the flat base change ([3]) we have an isomorphism $p_{23}^*((Fh')_*\mathcal{L}') \simeq (\operatorname{id} \times (Fh'))_* p_2^*\mathcal{L}'$ where $\operatorname{id} \times (Fh'): (V \otimes A) \times (W' \otimes A) \to (V \otimes A)^3$ is induced by the morphism $Fh': W' \otimes A \to (V \otimes A)^2$, $p_2: (V \otimes A) \times (W' \otimes A) \to W' \otimes A$ is the projection. So

$$p_{13*}(p_{12}^*((Fh)_*\mathcal{L}) \otimes p_{23}^*((Fh')_*\mathcal{L}'))$$

$$\simeq p_{13*}(p_{12}^*((Fh)_*\mathcal{L}) \otimes (\mathrm{id} \times (Fh'))_*(p_2^*\mathcal{L}'))$$

$$\simeq p_{13*}(\mathrm{id} \times (Fh'))_*((\mathrm{id} \times F(p_1h'))^*((Fh)_*\mathcal{L}) \otimes p_2^*\mathcal{L}')$$

$$\simeq (\mathrm{id} \times F(p_2h'))_*((\mathrm{id} \times F(p_1h'))^*((Fh)_*\mathcal{L}) \otimes p_2^*\mathcal{L}').$$

Here we used the projection formula and the equalities

$$p_{12}(\operatorname{id} \times F(h')) = (\operatorname{id} \times F(p_1 h')) : V \otimes A \times W' \otimes A \to (V \otimes A)^2,$$

$$p_{13}(\operatorname{id} \times F(h')) = (\operatorname{id} \times F(p_2 h')).$$

Now apply the base change formula to the morphism $\phi = Fh : W \otimes A \to (V \otimes A)^2$ and the flat (due to surjectivity of p_1h') base change $u = \mathrm{id} \times F(p_1h') : (V \otimes A) \times (W' \times A) \to (V \otimes A)^2$. Then the corresponding fiber product is $(W * W') \otimes A$ with the structural morphisms $\phi' = (F(p_1hp_W), F(p_{W'})) : (W * W') \otimes A \to (V \times W') \otimes A$ and $u' = F(p_W) : (W * W') \otimes A \to W \otimes A$. Thus we get an isomorphism

$$(\operatorname{id} \times F(p_2 h'))_* (u^*(\phi_* \mathcal{L}) \otimes p_2^* \mathcal{L}') \simeq (\operatorname{id} \times F(p_2 h'))_* (\phi'_*(u')^* \mathcal{L} \otimes p_2^* \mathcal{L}')$$

$$\simeq (\operatorname{id} \times F(p_2 h'))_* \phi'_* ((u')^* \mathcal{L} \otimes F(p_{W'})^* \mathcal{L}')$$

$$\simeq F(h * h')_* (F(p_W)^* \mathcal{L} \otimes F(p_{W'})^* \mathcal{L}').$$

Here we used the projection formula and the equalities

$$p_2\phi' = F(p_{W'}), \ (\mathrm{id} \times F(p_2h'))\phi' = F(h*h') : (W*W') \otimes A \to (V \otimes A)^2.$$

Finally we obtain an isomorphism

$$\operatorname{Cor}_F(\mathcal{W}') * \operatorname{Cor}_F(\mathcal{W}) \simeq (F(h * h'))_* (p_W^* \mathcal{L} \otimes p_{W'}^* \mathcal{L}')[(n + n')g]$$

which shows that Cor_F respects monoidal structures (we omit the proof of all the remaining compatibilities). \square

Let $F(\mathbb{Z}^2, q_0) = (A^2, \mathcal{L}_0)$, where q_0 is the standard quadratic form on \mathbb{Z}^2 (the symmetrization of b_0), then \mathcal{L}_0 gives a homomorphism $\lambda : A \to A'$ where A' is the dual abelian variety to A. Assume that λ is an isomorphism and L is ample (in other words L gives a principal polarisation of A). With this assumption we are going to show that certain morphisms in Cor(V) become isomorphisms in $Cor(V \otimes A)$.

Proposition 2.2. Let (W,q) be a quadratic module and $U \subset W$ be an isotropic submodule (that is $q|_U = 0$) such that the map $W/U \to U^* = \text{Hom}(U,\mathbb{Z})$ induced by q is an isomorphism. Let $p: W \otimes A \to W/U \otimes A$ be the natural projection, $i: S = \text{Spec}(k) \to W/U \otimes A$ be the embedding corresponding to the neutral element of $W/U \otimes A$. Then under the assumption above we have $p_*\mathcal{L}_W \simeq i_*\mathcal{O}_S[-mg]$ where m is the rank of W/U.

Proof. One can easily check that there exists an isomorphism $\alpha: W \to U \oplus U^*$ of the quadratic modules (where the symmetric form on $U \oplus U^*$ is the standard one) such that $\alpha(U) = (U,0) \subset U \oplus U^*$. So it is sufficient to prove the statement in the case of the standard quadratic module $(W,q) = (\mathbb{Z}^2, q_0)$ which amounts to the well-known computation of $p_{2*}(\mathcal{L}_0)$ where $p_2: A^2 \to A$ is the projection (see [5]). \square

Corollary 2.3. Let (W,q) be a quadratic module, $U \subset W$ be an isotropic submodule, such that W/U has no torsion and the map $W \to U^*$ induced by q is surjective. Let $p: W \otimes A \to (W/U) \otimes A$ be the natural projection, $i: W' \otimes A \to (W/U) \otimes A$ be the natural embedding where $W' = U^{\perp}/U$, $U^{\perp} = \{w \in W | q(w,U) = 0\}$. Then $p_*\mathcal{L}_W \simeq i_*\mathcal{L}_{W'}[-mg]$ where m is the rank of U, the line bundle $\mathcal{L}_{W'}$ comes from the quadratic form q' on W' induced by q.

Proof. Choose a decomposition of \mathbb{Z} -modules $W = U \oplus P$, then $W/U \simeq P$ and by the projection formula we may assume that $q|_P = 0$ (since the contribution of $q|_P$ to \mathcal{L}_W and $\mathcal{L}_{W'}$ is a pull-back from $(W/U) \otimes A$). Then $U^{\perp} = U \oplus K$ where $K \subset P$ is the kernel of the (surjective) map $P \to U^*$ induced by q. Now all the picture is obtained by the base change $P \otimes A \to (P/U) \otimes A$ from the one considered in the previous proposition. \square

Proposition 2.4. Let (W,q) be a quadratic module, $(W',q') = (W,q) \oplus (\mathbb{Z}^n, q_n)$ be a direct sum of quadratic modules where $q'|_{\mathbb{Z}^n} = q_n$ is the standard symmetric form on \mathbb{Z}^n , that is $(\mathbb{Z}^n, q_n) = (\mathbb{Z}, q_1)^n$. Let $p: W' \to W$ be the projection. Then $(Fp)_*\mathcal{L}_{W'} \simeq \mathcal{L}_W$.

Proof. Obviously we may assume that n=1. Then the assertion follows from the isomorphism $H^0(A,L) \simeq k$ together with the vanishing $H^{>0}(A,L) = 0$. \square

Let S_1 be the class of morphisms $W \to W'$ in Cor(V) which are given by the quadruples $((U^{\perp}, q|_{U^{\perp}}), i, f, \mu)$ where $U \subset W$ is an isotropic submodule such that the map $W \to U^*$ induced by q is surjective, $i: U^{\perp} \to W$ is the natural embedding, a map $f: U^{\perp} \to W'$ vanishes on U and induces an isomorphism $U^{\perp}/U \simeq W'$. Let S_2 be the class of morphisms $W \to W'$ in Cor(V) such that $i = \mathrm{id}$, $f: (W,q) \to (W',q')$ is an embedding and there exists a quadratic submodule $(P,q_P) \subset (W',q')$ such that h'(P) = 0, $(P,q_P) \simeq (\mathbb{Z}^n,q_n)$ and $(W',q') = (W,q) \oplus (P,q_P)$. Then one can see easily that S_1 and S_2 are compatible with the monoidal structure on Cor(V) and the functor Cor_F sends morphisms from S_1 and S_2 to isomorphisms in $Cor(V \otimes A)$. Therefore if we consider the multiplicative class of morphisms S generated by S_1 and S_2 then the localized category $Cor(V) = Cor(V)[S^{-1}]$ is monoidal and we have a monoidal functor $Cor_F : Cor(V) \to Cor(V \otimes A)$.

3. Comparison with Mukai's picture

Recall that the group $SL_2(\mathbb{Z})$ can be defined as the group with two generators S and T and the following defining relations:

$$S^2 = T^3$$
, $S^4 = T^6 = 1$.

Namely, these generators correspond to the following matrices:

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.$$

Now the central extension $\widetilde{\operatorname{SL}}_2$ of $\operatorname{SL}_2(\mathbb{Z})$ by \mathbb{Z} can be defined as the group with generators S and T and with the defining relation $S^2 = T^3$. The central element $C = S^2$ generates the subgroup isomorphic to \mathbb{Z} in $\widetilde{\operatorname{SL}}_2$ and the quotient by C^2 is isomorphic to $\operatorname{SL}_2(\mathbb{Z})$. So we can realize $\widetilde{\operatorname{SL}}_2$ as the group of sequences $(\varepsilon_1, \ldots, \varepsilon_k)[n]$ where ε_i is either 0 or 1, n is an integer, and the sequence $(\varepsilon_1, \ldots, \varepsilon_k)$ satisfies the following property: there can be at most two 1's and at most one 0 in a row. For example, (1101) is allowed while (001) is forbidden. The group law is described as follows:

$$(\varepsilon_1,\ldots,\varepsilon_k)[n]\cdot(\varepsilon_1',\ldots,\varepsilon_l')[m]=(\varepsilon_1,\ldots,\varepsilon_k,\varepsilon_1',\ldots,\varepsilon_l')[n+m]$$

if the combined sequence is allowed. If $\varepsilon_k = \varepsilon_1' = 0$ then one should throw out this pair and replace n+m by n+m+1. Analogously if the combined sequence contains (111) as a subsequence one should throw it out and replace n+m by n+m+1. The neutral element is given by the empty sequence ()[0]. The relation with the previous description is the following: one should replace $\varepsilon_i = 0$ by S, $\varepsilon_i = 1$ by T, [n] by C^n and take the corresponding product. Let \widetilde{SL}_2 be the category whose objects are elements of the group \widetilde{SL}_2 with only identity morphisms and the monoidal structure given by the opposite group law, that is $g_1 * g_2 = g_2g_1$.

Theorem 3.1. There exists a monoidal functor $\Psi : \widetilde{\mathcal{SL}}_2 \to \widetilde{\mathrm{Cor}}(\mathbb{Z})$. Thus the group $\widetilde{\mathrm{SL}}_2$ acts on the category $\mathcal{D}^b(A)$ of an abelian variety A endowed with a principal symmetric polarisation.

Proof. Let $\varepsilon[n] = (\varepsilon_1, \dots, \varepsilon_k)[n]$ be an element of $\widetilde{\operatorname{SL}}_2$. Define an object $\Psi(\varepsilon[n]) \in \operatorname{Cor}(\mathbb{Z})$ as follows:

$$\Psi(\varepsilon[n]) = (\mathbb{Z}^{k+1}, q_{\varepsilon}, p_{0k}^{\epsilon}, -n)$$

where the symmetric form on \mathbb{Z}^{k+1} is given by

$$q_{\varepsilon}(e_0, e_0) = 0, \ q_{\varepsilon}(e_i, e_i) = \varepsilon_i \ (i = 1, \dots, k),$$

 $q_{\varepsilon}(e_{i-1}, e_i) = 1 \ (i = 1, \dots, k),$
 $q_{\varepsilon}(e_i, e_j) = 0 \ (|i - j| > 1)$

where e_0, e_1, \ldots, e_k is the basis of \mathbb{Z}^{k+1} . The map $p_{0k}^{\epsilon} : \mathbb{Z}^{k+1} \to \mathbb{Z}^2$ where $\epsilon = (-1)^{\sum_i \epsilon_i}$ is defined by the formulas

$$p_{0k}^{\epsilon}(e_0) = (1,0), \ p_{0k}^{\epsilon}(e_k) = (0,\epsilon), \ p_{0k}^{\epsilon}(e_i) = 0 \ (i=1,\ldots,k-1)$$

if k > 0 and by $p_{00}^{\epsilon}(e_0) = (1, \epsilon)$ if k = 0 (note that $p_{0k}^1 = p_{0k}$ is the usual projection).

To show the monoidal structure of the functor Ψ we consider two examples (expressing the relations $S^2 = C$ and $T^3 = C$). First, as $\Psi((0)[0]) = (\mathbb{Z}^2, q_0, p_{01}, 0)$ one computes easily that

$$\mathcal{W}_0 = \Psi((0)[0]) * \Psi((0)[0]) \simeq (\mathbb{Z}^3, q_{(00)}, p_{02}, 0)$$

where the form $q_{(00)}$ is given by the formulas above (though the sequence (00) is forbidden). Now $e_1 \in \mathbb{Z}^3$ is an isotropic vector such that $p_{02}(e_1) = 0$ so we may apply the reduction of the corollary 2.3. Namely, we have a morphism of the class S_1 from W_0 to

$$\mathcal{W}_0' = ((e_1)^{\perp}/(e_1), q', h', -1) \simeq (\mathbb{Z}, 0, p_{00}^{-1}, -1) = \Psi(()[1])$$

where the latter isomorphism corresponds to an element $e_0 - e_2 \in (e_1)^{\perp}$. Second, $\Psi((1)[0]) = (\mathbb{Z}^2, q_{(1)}, p_{01}^{-1}, 0)$ so one can easily compute its cube with respect to the monoidal structure * on $Cor(\mathbb{Z})$:

$$\mathcal{W}_1 = \Psi((1)[0])^{*3} \simeq (\mathbb{Z}^4, q_{(111)}, p_{03}^{-1}, 0).$$

Now we can apply 2.3 to the isotropic vector $e_1 - e_2 \in \mathbb{Z}^4$ to get a morphism of the class S_1 :

$$\mathcal{W}_1 \to \mathcal{W}_1' = ((e_1 - e_2)^{\perp}/(e_1 - e_2), q', h', -1) \simeq (\mathbb{Z}^2, q', h', -1)$$

where the isomorphism $\mathbb{Z}^2 \simeq (e_1 - e_2)^{\perp}/(e_1 - e_2)$ is given by the vectors $f_0 = e_0 + e_3 - e_1$, $f_1 = e_1 \in \mathbb{Z}^2$, so that $q'(f_0, f_i) = 0$ (i = 0, 1), $q'(f_1, f_1) = 1$, $h'(f_0) = (1, -1)$, $h'(f_1) = 0$. Thus we can apply the second reduction (see 2.4) to the decomposition $(\mathbb{Z}^2, q') \simeq (\mathbb{Z}, 0) \oplus (\mathbb{Z}, q_1)$. Namely, the embedding of \mathbb{Z} in \mathbb{Z}^2 given by f_0 induces a morphism $\Psi(()[1]) \to \mathcal{W}'_1$ of the class \mathcal{S}_2 .

One can check that the isomorphisms in $Cor(\mathbb{Z})$ constructed above extend to the monoidal structure on the functor Ψ . \square

Remark. Notice that the twisting functor $\otimes L$ is obtained in our picture as $\operatorname{Cor}_F(\Psi(01)[-1])$. Also for any symmetric form q on \mathbb{Z}^{k+1} with the properties $|q(e_i,e_{i+1})|=1$ for any $i,q(e_i,e_j)=0$ for |i-j|>1, the corresponding object of $\operatorname{Cor}(\mathbb{Z})$ (where we consider \mathbb{Z}^{k+1} as a correspondence via the projection p_{0k} as above) belongs to the monoidal subcategory generated by the essential image of Ψ and by the object $(\mathbb{Z},0,p_{00}^{-1},0)$.

Acknowledgement

I am grateful to A. Beilinson for introducing me to the subject and giving me encouragement while I pursued the problem.

References

- L. Breen, Functions theta et théorème du cube, Lecture Notes in Math., vol. 980, Springer-Verlag, 1983.
- 2. A. Grothendieck, SGA7I, Lecture Notes in Math., vol. 288, Springer-Verlag, 1972.
- 3. R. Hartshorne, *Residues and duality*, Lecture Notes in Math., vol. 20, Springer-Verlag, 1966.
- 4. S. Mukai, Duality between $\mathcal{D}(X)$ and $\mathcal{D}(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175.
- D. Mumford, Abelian varieties, Tata Institute Studies in Math., no. 5, Oxford University Press, 1970.
- D. Mumford, Biextensions of formal groups, Tata Institute Studies in Math., no. 4, Oxford University Press, 1968.
- 7. J.-L. Verdier, Categories derivees, preprint IHES, 1994.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138 $E\text{-}mail\ address:}$ apolish@zariski.harvard.edu