A CHARACTERIZATION OF THE \mathbb{Z}^n LATTICE

NOAM D. ELKIES

1. Introduction

In this note we prove that \mathbb{Z}^n is the only integral unimodular lattice $L \subset \mathbb{R}^n$ which does not contain a vector w such that $|w|^2 < n$ and $(v, v + w) \equiv 0 \mod 2$ for all $v \in L$. By the work of Kronheimer and others on the Seiberg-Witten equation, this yields an alternative proof of a theorem of Donaldson [D1,D2] on the geometry of 4-manifolds.

The proof uses the theory of theta series and modular forms; since this technique is not yet in the standard-issue arsenal of the 4-manifold community, I begin with an abbreviated exposition of this theory to make this note reasonably self-contained. This develops only the barest minimum, even to the point of never using the phrase "modular form"; for a more substantial exposition, refer to [Se, Ch.VII], and note the concluding remarks (6.7, "Complements").

Knowing that any $L \not\cong \mathbb{Z}^n$ has characteristic vectors of norm $\leq n-8$, one might ask for which lattices is n-8 the minimum. It turns out that the same technique also yields a complete answer to this question. Since the answer may be of some interest (for instance there are 14 such lattices in each dimension $n \leq 23$), but its proof requires a somewhat more extensive use of modular forms, we announce the result at the end of this note but defer its proof and further discussion to a later paper.

2. Fractional linear transformations and theta series

Let H be the Poincaré upper half-plane $\{t = x + iy : y > 0\}$, and let Γ be the group $\mathrm{PSL}_2(\mathbb{Z}) = \mathrm{SL}_2(\mathbb{Z})/\{\pm 1\}$, acting on H by the fractional linear transformations:

(1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : t \mapsto \frac{at+b}{ct+d} .$$

Received February 14, 1995.

Partially supported by the NSF and the Packard Foundation.

It is known that Γ is generated by $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, acting on H by

(2)
$$S(t) = -\frac{1}{t}, \quad T(t) = t + 1.$$

Let $\Gamma(2) = \{\binom{a\ b}{c\ d}\} \in \Gamma : b, c \text{ even}\}$; this is a normal subgroup of Γ , and reduction mod 2 yields the quotient map $\Gamma \to \Gamma/\Gamma(2) = \mathrm{PSL}_2(\mathbb{Z}/2) \cong \mathrm{S}_3$. Finally, let $\Gamma_+ \subset \Gamma$ be the subgroup generated by S and T^2 . Then Γ_+ has index 3 in Γ , contains $\Gamma(2)$ with index 2, and consists of the matrices congruent mod 2 to either 1 or S. Indeed, it is clear that Γ_+ consists of matrices of this form; that all such matrices are in Γ_+ is perhaps most readily seen by proving as in [Se, Ch.VII, Thm.1,2] that

(3)
$$D_{+} := \{ t = x + iy \in H : |x| \le 1, |t| \ge 1 \}$$

(the ideal hyperbolic triangle in H with vertices $-1, 1, i\infty$) is a fundamental domain for the action of Γ_+ on H, and noting that D_+ is 3 times as large as the standard fundamental domain for Γ .

Now let L be a unimodular integral lattice in \mathbb{R}^n , i.e., a lattice of discriminant 1 such that $(v, v') \in \mathbb{Z}$ for all $v, v' \in L$. The theta series θ_L of L is a generating function encoding the norms $|v|^2 = (v, v)$ of lattice vectors:

(4)
$$\theta_L(t) := \sum_{v \in L} e^{\pi i |v|^2 t} \quad (t \in H).$$

For instance, for n = 1, we have

(5)
$$\theta_{\mathbf{Z}}(t) := 1 + 2\left(e^{\pi i t} + e^{4\pi i t} + e^{9\pi i t} + \cdots\right) .$$

This sum converges uniformly in compact subsets of H (if t = x + iy then $|e^{\pi i|v|^2t}| = e^{-\pi|v|^2y}$) and thus defines a holomorphic function on H. If L_1, L_2 are unimodular integral lattices in $\mathbb{R}^{n_1}, \mathbb{R}^{n_2}$, then $L_1 \oplus L_2$ is a unimodular integral lattice in $\mathbb{R}^{n_1+n_2}$ whose theta series is given by

(6)
$$\theta_{L_1 \oplus L_2}(t) = \theta_{L_1}(t) \cdot \theta_{L_2}(t).$$

Since each $|v|^2$ is an integer, we have

(7)
$$\theta_L(t) = \theta_L(t+2) = \theta_L(T^2(t)).$$

Since L is its own dual lattice, we obtain a more interesting functional equation by applying Poisson inversion to (4):

(8)
$$(t/i)^{n/2}\theta_L(t) = \theta_L(-1/t) = \theta_L(S(t)),$$

where $(t/i)^{n/2}$ is the *n*th power of the principal branch of $\sqrt{t/i}$. By iterating (7,8) we find that for every $g=\binom{a\ b}{c\ d}$ in $\langle S,T^2\rangle=\Gamma_+$ there is a functional equation

(9)
$$\theta_L(g(t)) = \epsilon_n(c,d) \cdot (ct+d)^{n/2} \theta_L(t),$$

where again $(ct+d)^{n/2}$ is the *n*th power of the principal branch of $\sqrt{ct+d}$, and $\epsilon_n(c,d)$ is an eighth root of unity which does not depend on the choice of unimodular integral lattice L. (It does not depend on a,b, because c,d determine g up to a power of T^2 .) By choosing $L = \mathbb{Z}^n$ and using (6) we find

(10)
$$\epsilon_n(c,d) = (\epsilon_1(c,d))^n.$$

Note that [Se, Ch.VII] assumes that L is an even lattice, i.e., $|v|^2 \in 2\mathbb{Z}$ for all $v \in L$. Such L have theta series invariant under T, and thus satisfy (9) for all $g \in \langle S, T \rangle = \Gamma$. It is known from the arithmetic theory [Se, Ch.V] that $n \equiv 0 \mod 8$ for such lattices, whence the ϵ_n factors all equal 1 in that case; this could also be proved analytically using (8) and the identity $(ST)^3 = 1$. We shall soon observe, en route to our estimate on the norm of characteristic vectors of odd lattices, that this method also yields an analytic proof of the fact [Se, Ch.V, Thm.2] that these vectors all have norm $\equiv n \mod 8$.

How do fractional linear transformations $g \in \Gamma - \Gamma_+$ act on θ_L ? We need only consider one representative of each of the two nontrivial cosets of Γ_+ in Γ , for instance g = T and g = TS. For the first we find simply

(11)
$$\theta_L(T(t)) = \theta_L(t+1) = \sum_{v \in L} e^{\pi i |v|^2 (t+1)} = \sum_{v \in L} (-1)^{|v|^2} e^{\pi i |v|^2 t}.$$

Now recall that the sign $v \mapsto (-1)^{|v|^2}$ is a group homomorphism from L to $\{\pm 1\}$ (because

(12)
$$|v + v'|^2 = |v|^2 + |v'|^2 + 2(v, v') \equiv |v|^2 + |v'|^2 \mod 2$$

for all $v, v' \in L$). Since L is unimodular, there is a bijection between characters $L \to \{\pm 1\}$ and cosets of 2L in L which associates to the coset of any $w \in L$ the character $v \mapsto (-1)^{(v,w)}$. In particular, there is a coset associated with $v \mapsto (-1)^{|v|^2}$; vectors in that coset, characterized by

(13)
$$|v|^2 \equiv (v, w) \bmod 2 \text{ for all } v \in L,$$

are known as *characteristic vectors* of L. (In [Se, Ch.V] this coset is called the "canonical class" in L/2L; in [CS2] this coset, scaled by 1/2 to obtain a translate of L by w/2, is called the "shadow" of L, and our key formula

(17) below is also a key ingredient of [CS2].) Choose some characteristic vector w, and rewrite (11) as

(14)
$$\theta_L(t+1) = \sum_{v \in L} e^{\pi i (|v|^2 t + (v,w))}.$$

Applying Poisson inversion to this sum, we find

(15)
$$(t/i)^{n/2}\theta_L(t+1) = \sum_{v \in L} e^{\pi i|v + \frac{w}{2}|^2(\frac{-1}{t})} = \theta'_L(S(t)),$$

where

(16)
$$\theta'_{L}(t) := \sum_{v \in L + \frac{w}{2}} e^{\pi i |v|^{2} t}$$

is a generating function encoding the norms of characteristic vectors. Replacing t by St = -1/t in (16), we conclude that

(17)
$$\theta_L(TS(t)) = \theta_L(\frac{-1}{t} + 1) = (t/i)^{n/2}\theta_L'(t).$$

To recover the result

$$(18) |w|^2 \equiv n \bmod 8,$$

we may now regard (17) as a formula for $\theta'_L(t)$ and compare it with

(19)
$$\left(\frac{t+1}{i}\right)^{n/2} \theta_L'(t+1) = \theta_L(TST(t)) = \theta_L(ST^{-1}S(t))$$

$$= (T^{-1}S(t)/i)^{n/2} \theta_L(T^{-1}S(t)) = \left(\frac{i(t+1)}{t}\right)^{n/2} \theta_L(TS(t))$$

(in which we used $S^2 = (ST)^3 = 1$ and the invariance of θ_L under T^2 , and again use n/2 power to mean the *n*th power of the principal square root). This yields

(20)
$$\theta'_L(t+1) = e^{\pi i n/4} \theta'_L(t).$$

Thus $\theta'_L(t)$ is a linear combination of terms $e^{\pi i m t/4}$ with $m \equiv n \mod 8$, from which it follows that all the characteristic vectors have norm congruent to $n \mod 8$ as claimed.

The characteristic vectors of \mathbb{Z} are the odd integers, so

(21)

$$\theta_{\mathbf{Z}}'(t) = 2\sum_{m=0}^{\infty} e^{\pi i(m+\frac{1}{2})^2 t} = 2e^{\pi i t/4} \left(1 + e^{2\pi i t} + e^{6\pi i t} + e^{12\pi i t} + \cdots\right) .$$

Thus $\theta'_{\mathbf{Z}}(t) \sim 2e^{\pi it/4} \to 0$ as $t \to i\infty$. From (17) it follows that $\theta_{\mathbf{Z}}$ tends to zero as $t \in D_+$ approaches the "cusp" ± 1 . It will be crucial to us that $\theta_{\mathbf{Z}}$ has no zeros in H. This can be seen either from explicit product formulas such as

(22)
$$\sum_{m=0}^{\infty} q^{(m+\frac{1}{2})^2} = q^{1/4} \prod_{j=1}^{\infty} (1+q^{2j})(1-q^{4j})$$

(a special case of the Jacobi triple product), or by using contour integrals as in [Se, Ch.VII, Thm.3] to show that ± 1 is the only zero of $\theta_{\mathbf{Z}}$ in $D_+ \cup \{$ cusps $\}$. Also $\theta_{\mathbf{Z}}(i\infty) = 1$ so $\theta_{\mathbf{Z}}$ is bounded away from zero as $t \to i\infty$.

3. The shortest characteristic vector

We are now ready to prove:

Theorem 1. Let L be a unimodular integral lattice in \mathbb{R}^n with no characteristic vector w such that $|w|^2 < n$. Then $L \cong \mathbb{Z}^n$.

Proof. We first show that L and \mathbb{Z}^n have the same theta function. To that end consider

(23)
$$R(t) := \theta_L(t)/\theta_{\mathbf{Z}^n}(t) = \theta_L(t)/\theta_{\mathbf{Z}}^n(t).$$

This is a holomorphic function because $\theta_{\mathbf{Z}}$ does not vanish in H. Since θ_L and $\theta_{\mathbf{Z}^n}$ both transform according to (9) under Γ_+ , their quotient R(t) is invariant under Γ_+ . By the hypothesis on L we have $\theta'_L \ll e^{\pi i n t/4}$ as $t \to i\infty$. Thus $\theta'_L/\theta'_{\mathbf{Z}^n}$ is bounded as $t \to i\infty$, whence by (17), R(t) is bounded as $t \in D_+$ approaches ± 1 . Finally, $R(i\infty) = 1$. By the maximum principle we deduce that R is the constant function 1, i.e. $\theta_L = \theta_{\mathbf{Z}}^n$.

Thus for each m the lattices L and \mathbb{Z}^n have the same number of vectors of norm m. Taking m=1 we find that L has n pairs of unit vectors. Since L is integral these must be orthogonal to each other, and thus generate a copy of \mathbb{Z}^n inside L. Using integrality again, we conclude that this copy is all of L. \square

Since the hypothesis is automatically satisfied if n < 8, we also recover the fact that \mathbb{Z}^n is the only unimodular integral lattice for those n. With some more work, we can also use the relation between θ_L and θ'_L and the theory of modular forms to completely describe those $L \subset \mathbb{R}^n$ whose shortest characteristic vector has norm n-8; these are precisely the lattices of the form $\mathbb{Z}^{n-r} \oplus L_0$, where $L_0 \subseteq \mathbb{R}^r$ is a unimodular integral lattice with no vectors of norm 1 and exactly 2n(23-n) vectors of norm 2. In particular, $n \leq 23$, and there are only finitely many choices for L_0 . Fortunately, the table of unimodular lattices in [CS1, pp.416–7] extends just far enough that we can list all possible L_0 . These are tabulated below, indexed as in the table of [CS1] by the root system of norm-2 vectors:

Of these, the first is the E_8 lattice, and the last is the "shorter Leech lattice"—the unimodular integral lattices of minimal dimension having minimal norm 2 and 3, respectively. It also follows from the analysis that each of these lattices has exactly $2^{n-11}r$ characteristic vectors of norm n-8. We defer the proof of the $\mathbb{Z}^{n-r} \oplus L_0$ criterion, and an analogous condition for self-dual binary codes, to a subsequent paper.

4. Acknowledgements

Thanks to Tom Mrowka for bringing this problem to my attention and to John H. Conway for enlightening correspondence.

References

- [Do1] S.K. Donaldson, An application of gauge theory to the topology of 4-manifolds, J. Diff. Geom. 18 (1983), 279–315.
- [Do2] _____, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geom. 26 (1987), 397–428.
- [CS1] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer, New York, 1993.
- [CS2] _____, ____, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), 1319–1333.
- [Se] J. P. Serre, A Course in Arithmetic, Springer, New York, 1973.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138 $E\text{-}mail\ address:}$ elkies@zariski.harvard.edu