TANGENT SPACES TO SCHUBERT VARIETIES

V. Lakshmibai

In this note, we announce a criterion for smoothness of a Schubert variety in the flag variety G/B. Let G be a semi-simple, simply connected algebraic group, which we assume for simplicity to be defined over an algebraically closed field k of characteristic 0. (The following discussion is valid in any characteristic, in fact even over \mathbf{Z} .) Let T be a maximal torus in G, and W the Weyl group. Let R be the system of roots of G relative to T. Let G be a Borel subgroup of G, where $G \supset T$. Let $G \subset G$ from $G \subset G$ be the set of simple (resp. positive) roots of $G \subset G$ relative to $G \subset G$ be the reflection. For $G \subset G$ for $G \subset G$ denote the elements of the Chevalley basis for $G \subset G$ corresponding to $G \subset G$. For $G \subset G$ be the point in G/G, and $G \subset G$ for $G \subset$

(1)
$$N_w = \{ \beta \in R^+ \mid F_\beta \in T(w, e_{id}) \}.$$

Now $T(w, e_{id})$ being a T-submodule of the T-module $\sum_{\alpha \in R^-} \mathfrak{g}_{\alpha}$ (here R^- denotes the set of negative roots in R, and \mathfrak{g}_{α} denotes the root space kF_{α}), we have

(2)
$$T(w, e_{id}) = \text{the span of } \{F_{\beta}, \beta \in N_w\}.$$

For a dominant weight λ , let $V(\lambda)$ be the irreducible G-module (over \mathbb{C}) with highest weight λ . Let us fix a highest weight vector u in $V(\lambda)$. For $w \in W$, let $u_w = w \cdot u$, and $V_w = U^+(\mathfrak{g})u_w$ (here $U^+(\mathfrak{g})$ is the subalgebra of $U(\mathfrak{g})$, the universal enveloping algebra of \mathfrak{g} , generated by $\{E_\alpha, \alpha \in S\}$). For a weight μ in $V(\lambda)$, let $m(\mu)$ (resp. $m_w(\mu)$) denote the multiplicity of μ in $V(\lambda)$ (resp. V_w).

Received December 12, 1994; revised April 19, 1995. Partially supported by NSF Grant DMS 9103129.

Theorem 1. Let $\beta \in R^+$, and $\rho = \frac{1}{2}$ the sum of positive roots. Then $\beta \in N_w$ if and only if $m_w(\rho - \beta) = m(\rho - \beta)$.

As a consequence, we obtain a criterion for the smoothness of a Schubert variety as given by the following

Corollary. Let $w \in W$, and $M_w = \{\beta \in R^+ \mid m_w(\rho - \beta) = m(\rho - \beta)\}$. Then X(w) is smooth if and only if $\#M_w = l(w)$, where l_w denotes the length of w (= dim X(w)).

The proof is immediate, since X(w) is smooth if and only if it is smooth at e_{id} .

Outline of a proof of Theorem 1

For generalities on algebraic groups, one may refer to [B].

Let us fix a dominant, regular weight λ . Let $V(\lambda)$, u, u_w , V_w be as above. We have (cf. [P])

(3)
$$T(w, e_{id}) = \text{the span of } \{F_{\beta}, \beta \in \mathbb{R}^+ \mid F_{\beta}u \in V_w\}.$$

From (2) and (3), we obtain

$$(4) N_w = \{ \beta \in R^+ \mid F_\beta u \in V_w \}.$$

In $[L]_3$, we constructed a basis $\mathcal{B}(\lambda)$ for $V(\lambda)$ which is compatible with the Bruhat order, i.e., $V_w \cap \mathcal{B}(\lambda) = \mathcal{B}_w(\lambda)$, say, is a basis for V_w . Further, this basis consists of elements of the form Du, where D is either 1 or $F_{\gamma_1}^{(n_1)} \cdots F_{\gamma_r}^{(n_r)}$, γ_i simple, $n_i > 0$ (for some suitable n_i 's), and $s_{\gamma_r} \cdots s_{\gamma_1}$ is reduced (here $F_{\gamma}^{(n)} = \frac{F_{\gamma}^n}{n!}$). To be more precise, let

(5)
$$I = \{Lakshmibai-Seshadri paths of shape \lambda\},$$

(6)
$$I_w = \{ \pi \in I \mid w \ge \phi(\pi) \}$$

notations being as in [Li]. Then it is shown in [Li],

(7)
$$\operatorname{char} V(\lambda) = \sum_{\pi \in I} e^{\nu(\pi)}$$

(8)
$$\operatorname{char} V_w = \sum_{\pi \in I_w} e^{\nu(\pi)}$$

In particular, using (7), we obtain a formula for $m(\mu)$, $\mu \in X$, the weight lattice, namely

(9)
$$m(\mu) = \#\{\pi \in I \mid \nu(\pi) = \mu\}$$

Fixing a reduced expression $s_{i_1}s_{i_2}\cdots s_{i_r}$ for w, we have (cf. [L]₃)

(10)
$$I_w = \{ f_{i_1}^{n_1} \cdots f_{i_r}^{n_r} \pi_0, \text{ for suitable } n_i \in \mathbf{Z}^+ \},$$

(11)
$$\mathcal{B}_w(\lambda) = \{ F_{i_1}^{(n_1)} \cdots F_{i_r}^{(n_r)} u \mid f_{i_1}^{n_1} \cdots f_{i_r}^{n_r} \pi_0 \in I_w \}.$$

Here, π_0 is the Lakshmibai-Seshadri path given by the line segment in $X \otimes \mathbf{R}$ joining the origin and λ , and f_i are the operators on I as defined in [Li]).

Let us write $\mathcal{B}(\lambda) = \{Q_{\pi}, \ \pi \in I\}$. For $\lambda = \rho$, we are able to write down (cf.[L]₄) very precisely the expression for $F_{\beta}u$ as a linear combination of the elements in $\mathcal{B}(\lambda)$, namely,

(12)
$$F_{\beta}u = \sum_{I^{\rho,\beta}} c_{\pi}Q_{\pi}, \quad c_{\pi} \in k^*$$

where

(13)
$$I^{\rho,\beta} = \{ \pi \in I \mid \nu(\pi) = \rho - \beta \}$$

We have (cf.(9))

(14)
$$m(\rho - \beta) = \#I^{\rho,\beta}$$

By the Bruhat order compatibility of $\mathcal{B}(\lambda)$, we have (cf.(12))

(15)
$$F_{\beta}u \in V_w \iff Q_{\pi} \in V_w, \ \forall \pi \in I^{\rho,\beta}$$

Now (14) and (15) imply that

(16)
$$F_{\beta}u \in V_w \iff m_w(\rho - \beta) = m(\rho - \beta)$$

Hence, from (4) and (16), we obtain

$$\beta \in N_w \iff m_w(\rho - \beta) = m(\rho - \beta)$$

Further consequences

Given $\beta \in \mathbb{R}^+$, using the expression for $F_{\beta}u$ as a linear combination of the elements in $\mathcal{B}(\rho)$ as given by (12) above, we are able to describe N_w in a very elegant form for classical groups as described in Theorem 2 below. We shall follow the notation in [Bou] to denote the elements of \mathbb{R}^+ . We shall denote the Bruhat order in W by \geq .

Theorem 2. Let $\beta \in \mathbb{R}^+$.

- (a) Let G be of type \mathbf{A}_n . Then $\beta \in N_w \iff w \geq s_{\beta}$.
- (b) Let G be of type \mathbf{C}_n .
 - (1) Let $\beta = \epsilon_i \epsilon_j$, or $2\epsilon_i$. Then $\beta \in N_w \iff w \geq s_\beta$.
 - (2) Let $\beta = \epsilon_i + \epsilon_j$. Then $\beta \in N_w \iff w \ge \text{ either } s_{\epsilon_i + \epsilon_j} \text{ or } s_{2\epsilon_i}$.
- (c) Let G be of type \mathbf{B}_n .
 - (1) Let $\beta = \epsilon_i \epsilon_j$, ϵ_n , or $\epsilon_i + \epsilon_n$. Then $\beta \in N_w \iff w \geq s_\beta$.
 - (2) Let $\beta = \epsilon_i$, i < n. Then $\beta \in N_w \iff w \ge either s_{\epsilon_i}$ or $s_{\epsilon_i + \epsilon_n}$.
 - (3) Let $\beta = \epsilon_i + \epsilon_j$, j < n. Then $\beta \in N_w \iff$

$$w \geq either s_{\epsilon_i + \epsilon_j} \text{ or } s_{\epsilon_i} s_{\epsilon_j + \epsilon_n}.$$

- (d) Let G be of type \mathbf{D}_n .
 - (1) Let $\beta = \epsilon_k \epsilon_l$, or $\epsilon_i + \epsilon_j$, j = n 1, n. Then $\beta \in N_w \iff w \ge s_\beta$.
 - (2) Let $\beta = \epsilon_i + \epsilon_j$, j < n-1. Then $\beta \in N_w \iff w \ge either s_{\epsilon_i + \epsilon_j} \text{ or } s_{\epsilon_i + \epsilon_n} s_{\epsilon_i \epsilon_n} s_{\epsilon_i + \epsilon_{n-1}}$.

Remark 1. The result in Theorem 2 for type \mathbf{A}_n is contained in [L-S] also. In $[\mathbf{L}]_1$, $[\mathbf{L}]_2$, $[\mathbf{L}-\mathbf{R}]$, results were obtained towards the determination of $T(w,e_{id})$ for types \mathbf{C}_n , \mathbf{B}_n , \mathbf{D}_n , respectively. The formulation of $T(w,e_{id})$ as given in Theorem 2 is a nice refinement of the formulations in loc.cit. Moreover, the method of proof outlined above is much more simple and straightforward than the proofs in loc.cit.

Remark 2. In $[S]_2$ (see also $[S]_1$), the authour gives a criterion for smoothness of Schubert varieties in terms of the nil Hecke ring.

Acknowledgement

The authour expresses her thanks to the referee for important comments and suggestions.

References

- [B] A. Borel, Linear algebraic groups, W. A. Benjamin, New York, 1969.
- [Bou] N. Bourbaki, *Groupes et albebres de Lie*, Chapitres 4,5, et 6, Hermann, Paris, 1968.
- [L₁] V. Lakshmibai, Geometry of G/P-VII, J. Alg **108** (1987), 403–434.
- [L₂] _____, Geometry of G/P-VIII, J. Alg **108** (1987), 435–471.
- [L₃] _____, Bases for Quantum Demazure modules, to appear in CMS proceedings of the conference on Representations of groups- Finite, Algebraic, Lie, and Quantum, Banff, 1994.
- [L₄] _____, On tangent spaces to Schubert varieties (in preparation).
- [L-R] V. Lakshmibai and K. N. Rajeswari, Geometry of G/P-IX, J. Alg 130 (1990), 122–165.
- [L-S] V. Lakshmibai and C. S. Seshadri, Singular locus of a Schubert variety, Bull. A.M.S. 2 (1984), 363–366.
- [Li] P. Littelmann, Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Inv. Math. 116 (1994), 329–346.
- [P] P. Polo, On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar, Indag. Mathem., N.S. 5 (1994), 483–493.
- [S₁] S. Kumar, The nil Hecke ring and singularities of Schubert varieties, Proceedings of the conference in honor of Kostant's 60th birthday, Birkhaüser, 1994.
- [S₂] _____, The nil Hecke ring and singularities of Schubert varieties, preprint, 1995 (detailed version of the above).

M ATHEMATICS DEPARTMENT, NORTHEASTERN UNIVERSITY, BOSTON M A 02115 E-mail address: lakshmibai@neu.edu