THE SEIBERG-WITTEN EQUATIONS AND FOUR-MANIFOLDS WITH BOUNDARY

Kim A. Frøyshov

0. Introduction

Let Z be a smooth, compact, oriented 4-manifold. The intersection form of Z is a symmetric bilinear pairing

$$J_Z = H_2(Z; \mathbb{Z})/\text{Torsion} \to \mathbb{Z}.$$

An early result by Donaldson says that if Z is closed and J_Z is negative definite then J_Z is isomorphic to some diagonal form $\langle -1 \rangle \oplus \cdots \oplus \langle -1 \rangle$. More generally one may ask which negative definite forms can occur if Z is allowed to have some fixed oriented rational homology sphere Y as boundary. The main purpose of the present paper is to apply the equations recently introduced by Seiberg and Witten [W] to prove a finiteness result about the definite forms associated to an arbitrary Y.

It is useful to consider the more general situation where the boundary of Z is a disjoint union of rational homology spheres: $\partial Z = Y_1 \cup \cdots \cup Y_l$. (Of course, $\cup_j Y_j$ and $\#_j Y_j$ bound the same intersection forms, since the standard cobordism connecting them has no rational homology in dimension 2.) Let

$$J_Z = m\langle -1\rangle \oplus \tilde{J}_Z,$$

where \tilde{J}_Z has no elements of square -1. Note that

$$|\det(\tilde{J}_Z)| = |\det(J_Z)| \le \operatorname{order}(H_1(\partial Z; \mathbb{Z})),$$

with equality if $H_1(Z; \mathbb{Z})$ is free.

Let $J_Z^\# = H_2(Z, \partial Z)/\text{Torsion}$ be the lattice dual to J_Z . A characteristic vector for J_Z is an element $\xi \in J_Z^\#$ such that $\xi \cdot x \equiv x \cdot x \mod 2$ for all $x \in J_Z$. If J_Z is unimodular then $|\xi|^2 \equiv \text{rk}(J_Z) \mod 8$ for any characteristic

Received January 11, 1996.

Supported by NSF grant DMS-9304580.

vector ξ . If J_Z is unimodular and not diagonal then by a theorem of Elkies [E1] it has a characteristic vector ξ satisfying

$$rk(J_Z) - |\xi|^2 \ge 8.$$

Moreover, according to [E2] it has a characteristic vector ξ satisfying $\operatorname{rk}(J_Z) - |\xi|^2 \geq 16$ unless \tilde{J}_Z is among the finite number of forms listed in [E2].

Our main result is the following theorem:

Theorem 1. Let Z be a smooth, compact, oriented 4-manifold whose boundary is a disjoint union of rational homology spheres: $\partial Z = Y_1 \cup \cdots \cup Y_l$. Suppose the intersection form J_Z is negative definite. Then for any characteristic vector $\xi \in J_Z^\#$ we have

$$\operatorname{rk}(J_Z) - |\xi|^2 \le \sum_j \gamma(Y_j),$$

where $\gamma(\cdot) \in \mathbb{Q}$ is a certain invariant of oriented rational homology 3-spheres. In particular, if we assume \tilde{J}_Z is even then for a fixed boundary $\cup Y_i$ there are only finitely many possibilities for \tilde{J}_Z .

The author does not know whether the finiteness assertion is true in general for odd \tilde{J}_Z (compare the concluding remarks in [E2]).

We will derive Theorem 1 from a slightly stronger result involving the spin^c-structures on Z; this is given in section 3.

For a closed 4-manifold Z Theorem 1 simply says that $\mathrm{rk}(J_Z) - |\xi|^2 \leq 0$ for any characteristic vector. The proof of this inequality by means of the Seiberg-Witten equations was first found by Kronheimer. When combined with Elkies' result it provides a new proof of Donaldson's theorem.

The invariant γ is defined in section 3. For the standard 3-sphere we have $\gamma(S^3)=0$. In section 4 we use Kronheimer's construction of ALE-spaces as hyperkähler quotients to show that for the Poincaré homology sphere P, oriented as the link of the E_8 singularity, $\gamma(P)=-\gamma(\bar{P})=8$. Since E_8 is the only unimodular even positive definite form of rank ≤ 8 we deduce

Proposition 2. Let Z be a smooth, compact, oriented 4-manifold whose boundary is the Poincaré sphere oriented as above. If the intersection form J_Z is negative definite and \tilde{J}_Z is even then either $\tilde{J}_Z = 0$ or $\tilde{J}_Z = -E_8$.

In [F2] we will show that in Proposition 2, \tilde{J}_Z cannot be odd if Z is simply-connected.

1. The Seiberg-Witten equations on a cylinder

Let X be a smooth, oriented, Riemannian 4-manifold. Choose a spin^c-structure for X, and let W^+ and W^- be the associated spin^c-bundles. Clifford multiplication defines a (fibrewise) map

$$T^*X \times W^{\pm} \to W^{\mp}$$

and a linear map

$$\rho: i\Lambda^2 \to \operatorname{End}_{\mathbb{C}}(W^+),$$

whose kernel is $i\Lambda^-$. Here $\Lambda^- \subset \Lambda^2$ is the subbundle of anti-selfdual 2-forms and $i = \sqrt{-1}$. For $x \in X$ the image $\rho(i\Lambda_x^2)$ is the subspace of trace-free Hermitian endomorphisms of W^+ . We write $L = \det(W^+)$ and let $\mathcal{A}(L)$ denote the affine space of connections in L.

Let $\mu \in \Omega_X^2$ be a parameter. We will study the perturbed Seiberg-Witten equations for a pair $(A, \phi) \in \mathcal{A}(L) \times \Gamma(W^+)$ given by the following pair of equations:

$$D_A \phi = 0$$

$$\rho(F_A + i\mu) = \frac{1}{2} \phi \otimes \phi^* - \frac{1}{4} |\phi|^2 \cdot \mathbf{1}$$

where $D_A : \Gamma(W^+) \to \Gamma(W^-)$ is the Dirac operator associated to A. The group $\mathcal{G} = \operatorname{Map}(X, U(1))$ acts on $\mathcal{A}(L) \times \Gamma(W^+)$ by

$$u(A,\phi) = (u^2(A), u\phi).$$

This action preserves the set of solutions to (1.1).

Now consider the special case where $X = \mathbb{R} \times Y$ for some oriented, closed Riemannian 3-manifold Y, and assume μ is the pull-back of a closed form on Y, also denoted μ . Given a connection A in L we can use holonomy in the \mathbb{R} -direction to identify $L = \mathbb{R} \times L_0$, where L_0 is a complex line bundle over Y. Similarly, $W^+ = \mathbb{R} \times W_0$, where W_0 is the spin^c-bundle over Y with respect to the spin^c-structure inherited from $\mathbb{R} \times Y$. Clifford multiplication with dt gives an isomorphism $W^+ \approx W^-$ and an action of the Clifford bundle of Y on W_0 . As noted in [KM] the equations (1.1) now become the downward gradient flow equation for the functional $C: \mathcal{A}(L_0) \times \Gamma(W_0) \to \mathbb{R}$ determined up to a constant by the formula

$$C(A + a, \phi) = C(A, 0) - \int_{Y} (F_{\mu}(A) + \frac{1}{2}da) \wedge a - \frac{1}{2} \int_{Y} \langle D_{A+a}(\phi), \phi \rangle,$$

where $a \in i\Omega^1_Y$ and $F_{\mu}(A) = F(A) + i\mu$. Explicitly,

$$grad(C)_{(A,\phi)} = (*F_{\mu}(A) - \frac{1}{4}\sigma(\phi,\phi), -D_A\phi),$$

where $\sigma: W_0 \times W_0 \to iT^*Y$ is the symmetric bilinear pairing satisfying

$$\langle a, \sigma(\phi, \psi) \rangle = \langle a\phi, \psi \rangle$$

for all $a \in i\Omega^1_Y$, $\phi, \psi \in \Gamma(W_0)$. In general we write $\langle \ , \ \rangle$ for Euclidean inner products and $\langle \ , \ \rangle_{\mathbb C}$ for Hermitian inner products. If $u:Y\to U(1)$ is a map and $z=u^*[U(1)]\in H^1(Y;\mathbb Z)$ then we find

$$C(u(A, \phi)) - C(A, \phi) = -(2\pi c_1(L_0) + [\mu]) \cup 4\pi z.$$

In the remainder of this section let Y be a rational homology sphere. In this case C descends to a map $\mathcal{B} = (\mathcal{A}(L_0) \times \Gamma(W_0))/\mathcal{G} \to \mathbb{R}$. Also, we can take $\mu = d\nu$ for some $\nu \in \Omega^1$ and we write C_{ν} for the corresponding functional on \mathcal{B} . Let $\mathcal{R} \in \mathcal{B}$ be the set of (equivalence classes of) critical points of C, which is a compact set (this follows for instance from Corollary 3 in [KM]). Let $\theta \in \mathcal{R}$ be the unique critical point with zero spinor field, and set $\mathcal{R}^* = \mathcal{R} \setminus \{\theta\}$. When convenient we will consider the completions of $\mathcal{A}(L_0) \times \Gamma(W_0)$ and \mathcal{G} in the L_1^2 and L_2^2 -metrics, respectively. Then $\mathcal{B}^* \subset \mathcal{B}$, the subset of elements with spinor field not identically zero, is a Hilbert manifold.

For any critical point (A, ϕ) of C let $H_{(A,\phi)}: i\Omega^1 \times \Gamma(W_0) \to i\Omega^1 \times \Gamma(W_0)$ be the derivative of grad(C) at (A, ϕ) , i.e.

$$H_{(A,\phi)}(a,\psi) = (*da - \frac{1}{2}\sigma(\phi,\psi), -\frac{1}{2}a\phi - D_A\psi).$$

Also, let $\lambda_{\phi}: i\Omega^0 \to i\Omega^1 \times \Gamma(W_0)$ be the infinitesimal action of \mathcal{G} on (A, ϕ) , namely

$$\lambda_{\phi}(\zeta) = (-2d\zeta, \zeta\phi).$$

We say (A, ϕ) is a non-degenerate critical point if the middle cohomology group of the following complex is zero:

(1.2)
$$i\Omega^0 \xrightarrow{\lambda_\phi} i\Omega^1 \times \Gamma(W_0) \xrightarrow{H_{(A,\phi)}} i\Omega^1 \times \Gamma(W_0).$$

A standard elliptic argument shows that a non-degenerate critical point is isolated in \mathcal{R} .

Proposition 3. There is a Baire set of forms $\nu \in \Omega^1_{C^{k+1}}$ for which all critical points of C_{ν} are non-degenerate.

Proof. Let

$$\tilde{E} = \{ (A, \phi, a, \psi) \in \mathcal{A}(L_0) \times \Gamma(W_0) \setminus 0 \times i\Omega^1 \times \Gamma(W_0) \mid \lambda_{\phi}^*(a, \psi) = 0 \}.$$

Then $E = \tilde{E}/\mathcal{G}$ is a vector-bundle over \mathcal{B}^* and grad C_{ν} defines a smooth section s_{ν} . As we will see in a moment, a critical point of C_{ν} is non-degenerate precisely when it is a regular zero of s_{ν} .

We can regard the family of sections $s = \{s_{\nu}\}$ as a section in the bundle $\Omega^1 \times E \to \Omega^1 \times \mathcal{B}^*$. Writing $V = \ker(\lambda_{\phi}^*) \subset i\Omega^1 \times \Gamma(W_0)$ the intrinsic derivative of s at a zero-point $[\nu, A, \phi]$ can be identified with

$$Ds: \Omega^1 \times V \to V, \quad (\nu, a, \psi) \mapsto (i * d\nu, 0) + H_{(A, \phi)}(a, \psi).$$

We will show that Ds is surjective. Suppose $(a, \psi) \in V$ is orthogonal to $\operatorname{im}(Ds)$. This means the following four equations are satisfied:

$$(i) da = 0; \quad (ii) \ \sigma(\phi, \psi) = 0$$
$$(iii) -2d^*a + \langle i\phi, \psi \rangle i = 0; \quad (iv) \frac{1}{2}a\phi + D_A\psi = 0.$$

Note first that these equations imply that a and ψ are smooth. From (ii) we see that on the comlement of $\phi^{-1}(0)$ we have

$$(1.3) \psi = ir\phi$$

for some smooth function $r: Y \setminus \phi^{-1}(0) \to \mathbb{R}$. Combining this with (iv) we deduce

$$-\frac{1}{2}a\phi = D_A(\psi) = idr \cdot \phi,$$

which implies $-\frac{1}{2}a = idr$ where $\phi \neq 0$. Now, since ϕ satisfies the Dirac equation we can argue as in [FU, pp. 57-58] to show that $Y \setminus \phi^{-1}(0)$ is connected. By (i) and the assumption $H^1(Y;\mathbb{R}) = 0$ it then follows that r can be smoothly extended to all of Y. Inserting (1.3) into (iii) we get

(1.4)
$$4d^*dr + r|\phi|^2 = 0,$$

so

$$0 \geq \int_Y \langle d^* dr, r \rangle = \int_Y |dr|^2,$$

whence a = -2idr = 0. (1.4) and (1.3) then gives $\psi = 0$. Therefore the intrinsic derivative Ds is surjective at any zero.

Since Ds_{ν} is Fredholm at every zero of s_{ν} it follows from the Sard-Smale theorem that for a Baire set of parameters $\nu \in \Omega^1_{C^{k+1}}$, the zero-set of s_{ν} is regular.

Finally, we must show that the critical point with zero spinor field is generically non-degenerate. Let A be a smooth flat connection in L_0 . Then $(A-i\nu,0)$ is a critical point of C_{ν} which is non-degenerate if and only if $\ker(D_{A-i\nu})=0$. Consider the vector bundle $E\to\Omega^1\times\Gamma(W_0)\setminus 0$ whose fibre over (ν,ϕ) is the (real) L^2 -orthogonal complement $(i\phi)^{\perp}\subset\Gamma(W_0)$. Then $s(\nu,\phi)=D_{A-i\nu}(\phi)$ is a smooth section $C^{k+1}\times L_1^2\to L^2$. Arguing as above one finds that the the zero-set of s is regular. Hence for a Baire set of parameters ν the real dimension of $\ker(D_{A-i\nu})\setminus 0$ is equal to

$$\operatorname{ind}_{\mathbb{R}}(p_{\phi} \circ D_{A-i\nu}) = 1,$$

where $p_{\phi}: L^2(W_0) \to L^2(W_0)$ is projection onto $(i\phi)^{\perp}$. Since $D_{A-i\nu}$ is complex linear we must have $\ker(D_{A-i\nu}) = 0$ for such ν .

For any pair (A, ϕ) consider the self-adjoint elliptic operator

$$P_{(A,\phi)} = \begin{pmatrix} 0 & \frac{1}{2}\lambda_{\phi}^* \\ \frac{1}{2}\lambda_{\phi} & H_{(A,\phi)} \end{pmatrix}$$

acting on sections of $E_0 = i\Lambda^0 \oplus (i\Lambda^1 \oplus W_0)$. If $D_A \phi = 0$ then (1.2) is a complex, with cohomology group $\mathcal{H}^*_{(A,\phi)}$ say, and

$$\ker(P_{(A,\phi)}) = \mathcal{H}^0_{(A,\phi)} \oplus \mathcal{H}^1_{(A,\phi)}.$$

For any non-degenerate critical points α, β we define a relative index $i(\alpha, \beta)$ as follows. Let $(A_t, \phi_t) \subset \mathcal{A}(L_0) \times \Gamma(W_0)$ be a smooth path which is constant in t outside some interval (t_-, t_+) , and represents α for $t \leq t_-$ and β for $t \geq t_+$. Choose $\lambda > 0$ such that neither of the operators P_α and P_β has any eigenvalue in the interval $(0, \lambda)$. Let $E = \pi_2^*(E_0)$, a bundle over $\mathbb{R} \times Y$, and define $i(\alpha, \beta)$ to be the index of the Fredholm operator

$$\frac{\partial}{\partial t} + P_{(A_t,\phi_t)} + \lambda : L_1^2(E) \to L^2(E).$$

This index is the same as the spectral flow of the family of operators $\{P_{(A_t,\phi_t)} + \lambda\}$, see [APS].

2. Moduli spaces

Consider again the set-up of the previous section, with $X = \mathbb{R} \times Y$ and Y an oriented rational homology 3-sphere. Fix $\nu \in \Omega^1(Y)$ such that all critical points of $C = C_{\nu}$ are non-degenerate. For each pair α, β of critical points we shall define a moduli space $M(\alpha, \beta) = M(\mathbb{R} \times Y; \alpha, \beta)$ which will be a perturbed version of the space of gradient lines connecting α and β . In the language of finite-dimensional Morse theory our approach is somewhat analogous to perturbing the gradient vector field away from the critical points.

To define these perturbations let $\eta_1 : \mathbb{R} \to \mathbb{R}_{\geq 0}$ be a smooth function supported in [-1,1] and satisfying $\int \eta_1 = 1$, and let $\eta_2 : \mathbb{R} \to \mathbb{R}$ be a smooth, compactly supported function such that $\eta_2(t) = t$ on some interval containing all critical values of C. If A is any connection in L and ϕ a section of W^+ let $S = (A, \phi)$ and define a smooth function $h_S : \mathbb{R} \to \mathbb{R}$ by

$$h_S(T) = \int_{\mathbb{R}} \eta_1(t_1 - T) \, \eta_2(\int_{\mathbb{R}} \eta_1(t_2 - t_1) C(S_{t_2}) \, dt_2) \, dt_1,$$

where $S_t = S(t)$ is the restriction of S to $\{t\} \times Y$. Note that h_S is bounded with all its derivatives independently of S, and the association $S \mapsto h_S$ is a C^{∞} -map $L_1^p \to C^k$ for all k (and $p \ge 2$, say).

Let the parameter $\omega \in \Omega^2(\mathbb{R} \times Y)$ have compact support contained in a set $\Xi \times Y$, where Ξ is the result of removing from \mathbb{R} a small open interval around each critical value of C. Let $h_S^*(\omega)$ denote the pull-back of ω by the smooth map $h_S \times \mathrm{id}_Y : \mathbb{R} \times Y \to \mathbb{R} \times Y$. We will use the following translationary invariant equations for $S = (A, \phi)$:

(2.1)
$$\rho(F_A + i\pi_2^*(d\nu) + i h_{(A,\phi)}^*(\omega)) = \frac{1}{2}\phi \otimes \phi^* - \frac{1}{4}|\phi|^2 \cdot \mathbf{1},$$

where $\pi_2 : \mathbb{R} \times Y \to Y$ is the projection. If $S = (A, \phi)$ is in temporal gauge then the equations take the form

(2.2)
$$\frac{\partial S_t}{\partial t} = -\operatorname{grad}(C_{\nu})_{S_t} + E_S(t),$$

where the perturbation term $E_S(t)$ depends on $S|_{(t-1,t+1)\times Y}$ and vanishes if $h_S(t) \notin \Xi$.

Lemma 4. If b is any constant then for $\|\omega\|_{C^k}$ sufficiently small the following holds. Let $S = (A, \phi)$ be any smooth solution to the equations (2.1) satisfying a pointwise bound $|\phi| \leq b$. Then

(1) Either $\frac{\partial}{\partial t}C(S_t) < 0$ for all t, or $[S_t] \equiv \alpha$ for some critical point α .

(2) If $C(S_t)$ is bounded in t then there are critical points α_+, α_- of C such that the gauge equivalence class $[S_t]$ converges in C^k to α_{\pm} as $t \to \pm \infty$.

The proof is a compactness and unique continuation argument and is deferred to an appendix.

For any critical points α, β of C we define, as a set,

$$M(\alpha, \beta) = \{S = (A, \phi) \text{ satisfying } (2.1) \mid \lim_{t \to -\infty} [S_t] = \alpha; \lim_{t \to \infty} [S_t] = \beta\} / \text{Gauge},$$

where the limits refer to the C^k -topology. Note that the elements of $M(\alpha, \beta)$ satisfy the gradient flow equation for C outside a compact subset of $\mathbb{R} \times Y$.

It was proved in [KM] that if (A, ϕ) is a solution to (1.1) then at points where $|\phi|$ has a local maximum one has

$$|\phi|^2 \le \max(0, 4|\rho(i\mu)| - 2s),$$

where s is the scalar curvature of the underlying 4-manifold. It follows that if $\|\omega\|_{C^0} \leq 1$, say, there is a constant b such that for any critical points α, β and any $[A, \phi] \in M(\alpha, \beta)$ we have a pointwise bound $|\phi| \leq b$. In the following we will assume ω chosen so that the conclusions of Lemma 4 hold for this constant b.

It is convenient at this stage to introduce suitable function spaces. Let α, β be critical points of C. Let v > 0 be smaller than the first positive eigenvalue of P_{α} , and let w > 0 be smaller than the first positive eigenvalue of P_{β} . Choose a connection A_0 in L and a section ϕ_0 of W^+ such that $S_0 = (A_0, \phi_0)$ is in temporal gauge outside a compact set and satisfies $[S_t] = \alpha$ for $t \ll 0$ and $[S_t] = \beta$ for $t \gg 0$. Let 2 and set

$$\mathcal{C} = \mathcal{C}(\alpha, \beta) = S_0 + L_1^{p;v,w}(i\Lambda^1 \times W^+).$$

Here $L_m^{p;v,w}$ is the L_m^p Sobolev space defined using a weight $\exp(-vt)$ on the negative end and $\exp(wt)$ on the positive end.

For the group of gauge transformations we take

$$\mathcal{G} = \{ u : \mathbb{R} \times Y \to U(1) \mid u \in L_{2,loc}^p; du \cdot u^{-1} \in L_1^{p;v,w} \}.$$

Then \mathcal{G} acts on \mathcal{C} , and if $\mathcal{C}^* \subset \mathcal{C}$ is the subset of elements with spinor field not identically zero then $\mathcal{C}^*/\mathcal{G}$ is a Banach manifold.

There is now a natural identification

(2.3)
$$M(\alpha, \beta) = \{(A, \phi) \in \mathcal{C}(\alpha, \beta) \text{ satisfying } (2.1)\}/\mathcal{G}.$$

The existence of a natural injective map from right to left in (2.3) follows from the usual elliptic techniques. To see that this map is onto one can use the non-degeneracy of the critical points of C to prove an exponential decay result for solutions in temporal gauge.

Let $M(\alpha, \beta) \subset \mathcal{C}/\mathcal{G}$ have the subspace topology.

The moduli spaces $M(\alpha, \beta)$ have compactness properties familiar from finite-dimensional Morse theory. If $S_n = (A_n, \phi_n) \in M(\alpha, \beta)$ is any sequence then we can fix gauge by requiring $d^*(A_n - A_1) = 0$. Since $|\phi_n|$ is uniformly bounded we find as in [KM] that a subsequence of $\{S_n\}$ converges in C^k over compact subsets to some solution S_{∞} of the equations (2.1). By Lemma 4 this limit lies in some moduli space $M(\alpha', \beta')$ with $C(\alpha) \geq C(\alpha') \geq C(\beta') \geq C(\beta)$. (If $[S_{\infty}] \in M(\alpha, \beta)$ then the convergence is global.) Now let $C(\alpha) = x_0 > x_1 > \cdots > x_m = C(\beta)$ be the critical values of C in the interval $[C(\beta), C(\alpha)]$ and choose $y_j \in (x_j, x_{j-1})$. Let S_n^j be the translate of S_n with $C(S_n^j) = y_j$. Then a subsequence of $\{S_n^j\}$ converges over compacta to an element of some moduli space $M(\alpha_j, \beta_j)$, and by continuity we must have $\beta_{j-1} = \alpha_j$.

Proposition 5. For generic small $\omega \in C^k$, each moduli space $M(\alpha, \beta)$ is a smooth finite-dimensional manifold of dimension

$$\dim(M(\alpha, \beta)) = -d_{\alpha} + i(\alpha, \beta),$$

where $d_{\alpha} = 1$ if $\alpha = \theta$ and $d_{\alpha} = 0$ otherwise.

Proof. By Lemma 4, for small ω all moduli spaces $M(\alpha, \alpha)$ will consist of a single point, so we may assume $\alpha \neq \beta$. Let Ω^2_{Ξ} be the space of parameters ω , i.e. the space of C^k 2-forms on $\mathbb{R} \times Y$ with compact support contained in $\Xi \times Y$. We assume ω is small in the sense spelled out in the previous section. The linearization of the equations (2.1) at a point (ω, A, ϕ) , taking into account the Coulomb gauge fixing condition, is the operator

$$T = T_{(\omega, A, \phi)} : \Omega^2_{\Xi} \times L^{p; v, w}_1(i\Lambda^1 \oplus W^+) \to L^{p; v, w}(i\Lambda^0 \oplus i\Lambda^+ \oplus W^-)$$

which takes (κ, a, ψ) to

$$(\lambda_{\phi}^{*}(a,\psi), d^{+}a + i(h_{(A,\phi)}^{*}(\kappa))^{+} + K(a,\psi) - \frac{1}{2}(dt \wedge \sigma(\phi,\psi))^{+}, \frac{1}{2}a\phi + D_{A}(\psi)).$$

Here $K=K_{(\omega,A,\phi)}$ is a bounded operator $L^p_1 \to C^k$ satisfying

$$\operatorname{supp}(K(a,\psi)) \subset h_{(A,\phi)}^{-1}(\Xi) \times Y.$$

We must first verify that if we fix ω then the linearization at a point (A, ϕ) is Fredholm. For this purpose we may assume (A, ϕ) is smooth and in temporal gauge. Identify $\pi_2^*(\Lambda_Y^0 \oplus \Lambda_Y^1) = \Lambda_{\mathbb{R} \times Y}^1$ and $\pi_2^*(\Lambda_Y^1) = \Lambda_{\mathbb{R} \times Y}^+$, the latter by means of the map $\omega \mapsto dt \wedge \omega + *_Y \omega$. Let

$$E = \pi_2^*(i\Lambda_Y^0 \oplus i\Lambda_Y^1 \oplus W_0).$$

Then up to scalar factors the operator $T':(a,\psi)\mapsto T(0,a,\psi)$ can be written as

 $T' = \frac{\partial}{\partial t} + P_t + K : L_1^{p;v,w}(E) \to L^{p;v,w}(E),$

where $P_t = P_{(A_t,\phi_t)}$ is the operator over Y defined in the previous section. Our choice of weights for the Sobolev spaces then implies that T' is Fredholm of index $-d_{\alpha} + i(\alpha, \beta)$.

Secondly, we must show that $T=T_{(\omega,A,\phi)}$ is surjective whenever (ω,A,ϕ) is a solution to the equations (2.1). Let $(\zeta,a',\psi')\in L^{q;-v,-w}$ be L^2 -orthogonal to $\operatorname{im}(T)$, where q is the exponent conjugate to p. Because either α or β must have non-zero spinor field, ϕ is not identically zero. Hence $\lambda_{\phi}^*\lambda_{\phi}$ is an isomorphism $L_2^{p;v,w}\to L^{p;v,w}$, so $\zeta=0$. By Lemma 4 we have

$$\frac{\partial}{\partial t}h_{(A,\phi)}(t) < 0$$

for all t, so by varying κ alone we see that a' vanishes on $h_{(A,\phi)}^{-1}(\Xi) \times Y$. By varying a alone we conclude as in [KM] that ψ' must also vanish on $h_{(A,\phi)}^{-1}(\Xi) \times Y$. But then (a',ψ') lies in the kernel of the operator

$$\left(\frac{\partial}{\partial t} + P_t\right)^* = -\frac{\partial}{\partial t} + P_t,$$

so by unique continuation, (a', ψ') is identically zero. This shows T is surjective. \square

The discussion above carries over to 4-manifolds with tubular ends in a natural way. Let Y_1, \ldots, Y_l be oriented rational homology spheres, each with a Riemannian metric, a spin^c-structure, a good perturbation of the functional C_j (as in Proposition 3), and some form ω_j defining a perturbation of the equations over $\mathbb{R} \times Y_j$. Let X be an oriented Riemannian 4-manifold with an open subset isometric to $\mathbb{R}_+ \times Y_j$ for each j, such that the interior $X_0 = X \setminus \bigcup_j (\mathbb{R}_+ \times Y_j)$ is compact. Let X have a spin^c-structure compatible with those on the ends. For any form $\mu \in \Omega_c^2(X)$ we obtain equations on X for a pair $(A, \phi) \in \mathcal{A}(L) \times \Gamma(W^+)$ by combining the equations (1.1) on X_0 with (2.1) on the ends, using a suitable cut-off function. For any vector $\underline{\alpha} = \{\alpha_j\}$, with α_j a critical point of C_j , let

$$M(X; \underline{\alpha})$$

be the space of solutions to these equations over X which are asymptotic to α_j on the j'th end, modulo gauge. For generic μ all moduli spaces $M(X;\underline{\alpha})$ will be smooth away from points with zero spinor field.

There is also an analogue of Lemma 4 for solutions to the perturbed equations over X. In particular, for small ω_j we may assume that for every $[S] \in M(X; \underline{\alpha})$ and each end of X, either $\frac{\partial}{\partial t}C_j(S_t) < 0$ for all (non-negative) t, or $[S_t] \equiv \alpha_j$.

3. The main result

We first define the invariant $\gamma(Y,c)$ for an oriented rational homology 3-sphere Y with spin^c-structure c. Choose a Riemannian metric g on Y and a perturbation ν for which the functional $C = C_{\nu}$ has only non-degenerate critical points. Let A be a connection in L_0 satisfying $F_A + id\nu = 0$, i.e. (A,0) is a critical point of C_{ν} . The non-degeneracy condition for (A,0) means that the Dirac operator D_A has zero kernel. Let V be any simply-connected oriented Riemannian 4-manifold with one tubular end $\mathbb{R}_+ \times Y$. Choose an extension of the spin^c-structure on $\mathbb{R}_+ \times Y$ to all of V and let $L \to V$ be the associated U(1)-bundle. Let A be a smooth connection in L such that on the end, $A = \pi_2^*(A)$. The Dirac operator D_A defines a Fredholm operator $L_1^2(W^+) \to L^2(W^-)$.

Let m be the smallest non-negative integer such that C has no critical points α with $i(\alpha, \theta) = 2m + 1$, where θ is the critical point with zero spinor field. Then define

$$\gamma(Y, c, g, \nu) = 8m + c_1(L)^2 - \sigma(V) - 8\operatorname{ind}_{\mathbb{C}}(D_{\mathbf{A}}),$$

where $\sigma(V)$ is the signature of V. Note that on a closed spin^c 4-manifold \tilde{V} the index of the Dirac operator is precisely $\frac{1}{8}(c_1(\tilde{L})^2 - \sigma(\tilde{V}))$. To see that $\gamma(Y, c, g, \nu)$ depends only on (Y, c, g, ν) , use the additivity of the index of the Dirac operator over $\tilde{V} = V_0 \cup_Y V_0'$.

Now define

$$\gamma(Y,c) = \inf_{g,\nu} \ \gamma(Y,c,g,\nu); \quad \gamma(Y) = \max_{c} \gamma(Y,c).$$

If Y is an integral homology sphere then $c_1(L)^2 \equiv \sigma(V)$ (8), whence $\gamma(Y) \in 8\mathbb{Z}$.

Theorem 6. Let Z be any smooth, compact, oriented 4-manifold whose boundary is a disjoint union of rational homology spheres: $\partial Z = Y_1 \cup \cdots \cup Y_l$. Suppose the intersection form of Z is negative definite and $b_1(Z) = 0$.

Given any spin^c-structure on Z, let L be the associated U(1)-bundle on Z and \mathbf{c}_i the induced spin^c-structure on Y_i . Then

$$c_1(L)^2 - \sigma(Z) \le \sum_j \gamma(Y_j, \mathbf{c}_j),$$

where $\sigma(Z)$ is the signature of Z.

Note that applying Theorem 6 with $Z = [0, 1] \times Y$ gives

$$(3.1) 0 \le \gamma(Y, c) + \gamma(\bar{Y}, \bar{c}),$$

so $\gamma(Y,c)$ is always finite.

Proposition 7. Let Y be any oriented rational homology 3-sphere which admits a metric with positive scalar curvature. If c is any spin^c-structure on Y and \bar{c} the corresponding spin^c-structure on \bar{Y} then

$$\gamma(\bar{Y}, \bar{c}) = -\gamma(Y, c).$$

Proof. If Y has a metric g with positive scalar curvature then for $\nu = 0$ the functional C_{ν} has only one critical point, namely the one with zero spinor field, and this is non-degenerate. Choose an embedding of Y in a smooth, compact, simply-connected, oriented 4-manifold: $\tilde{V} = V_1 \cup_Y V_2$. Stretching \tilde{V} along Y we obtain

$$0 = \gamma(Y, c, g, \nu) + \gamma(\bar{Y}, \bar{c}, g, \nu),$$

so

$$\gamma(Y,c) \le \gamma(Y,c,g,\nu) = -\gamma(\bar{Y},\bar{c},g,\nu) \le -\gamma(\bar{Y},\bar{c}).$$

Combining this with (3.1) proves the proposition.

Proof of Theorem 1 assuming Theorem 6. Let Z be as in Theorem 1. As noticed in [FS], by performing surgery on a set of generators for the free part of $H_1(Z;\mathbb{Z})$ we obtain a new 4-manifold Z' with $b^1=0$ and with the same intersection form. If $\xi \in J_{Z'}^{\#}$ is any characteristic element then we can find a spin^c-structure on Z' with associated U(1)-bundle L such that $c_1(L)$ is Poincaré dual to ξ modulo torsion. Since $\gamma(Y) = \max_{c} \gamma(Y, c)$, Theorem 1 follows from Theorem 6.

Proof of Theorem 6. Choose a metric g_j and a good perturbation ν_j on Y_j . We will show that the assumption

(3.2)
$$c_1(L)^2 - \sigma(Z) > \sum_j \gamma(Y_j, \mathbf{c}_j, g_j, \nu_j)$$

leads to a contradiction. Let X be the manifold obtained by adding a half-tube $\mathbb{R}_+ \times Y_j$ to each boundary component of Z. Extend the product metrics on the ends to all of X. Let $M = M(X; \underline{\theta})$, where $\underline{\theta} = \{\theta_j\}$. If $D_{\mathbf{A}}$ is the Dirac operator on X then dim $M = \operatorname{ind}_{\mathbb{R}}(D_{\mathbf{A}}) - 1$. The assumption (3.2) is therefore equivalent to

$$\dim M + 1 > \sum 2m_j,$$

where m_j is the integer entering in the definition of $\gamma(Y_j)$. Let $2m = \dim M - 1 - \sum 2m_j$, which is non-negative since M has odd dimension.

If the forms ω_j defining perturbations on the tubes are zero then M has a unique reducible point P (i.e. one with zero spinor field), since X is negative definite. Moreover, as a reducible solution, P is regular. So for small non-zero ω_j , M will still contain a unique reducible point P. After perturbing M in a neighbourhood of P (along the lines of [D1]) if necessary, we may assume P is regular as a point in M. P will then have an open neighbourhood $U \subset M$ homeomorphic to an open cone on \mathbb{CP}^d for some $d \geq 0$. Let $M^* = M \setminus \{P\}$ and $M^0 = M \setminus U$.

Let $B \subset X$ be a compact ball and let \mathcal{B}_B^* be the orbit space of pairs (A, ϕ) defined over B with $\phi \neq 0$, modulo gauge. (Thus the A's are connections in $L|_B$ and the ϕ 's are sections in $W^+|_B$.) Suitably completed, \mathcal{B}_B^* is a Hilbert manifold. Let $\mathbb{L}_B \to \mathcal{B}_B^*$ be the canonical U(1)-bundle (i.e. the base-point fibration).

For any $\underline{\alpha}$ let

$$r: M^*(X; \underline{\alpha}) \to \mathcal{B}_B^*$$

be the restriction map, where the star in M^* means we remove the singular point if $\underline{\alpha} = \underline{\theta}$. Thus the domain of r is the union of all moduli spaces $M^*(X;\underline{\alpha})$. Note that r really maps into \mathcal{B}_B^* : for a solution to the Dirac equation cannot vanish on an open set of X unless it is identically zero.

Let s be a generic section of the m-fold direct sum $m\mathbb{L}$. By [DK, Lemma 5.2.9] we may assume each restriction map r is transverse (on each moduli space) to $s^{-1}(0)$, so each stratum of $V = r^{-1}s^{-1}(0)$ is smooth of the correct dimension.

In a moduli space $M^*(X;\underline{\alpha})$ with $\alpha_j = \theta_j$ there is also another source of cohomology. To explain this, let \mathcal{B}_j^* be the orbit space of pairs (A,ϕ) (with $\phi \neq 0$) defined over $I_j = [0,1] \times Y_j$. We will define a smooth map $r_j : M^*(X;\underline{\alpha}) \to \mathcal{B}_j^*$. Choose ϵ such that for each j, C_j has no critical value in the interval $(C_j(\theta_j), \epsilon]$. Fix $T \gg 0$ and define $\bar{t}_j : M(X;\underline{\alpha}) \to \mathbb{R}$ implicitly by

$$\bar{t}_j(S) = T \quad \text{if } C_j(S_T) \le \epsilon$$
 $C_j(S_{\bar{t}_j(S)}) = \epsilon \quad \text{if } C_j(S_T) \ge \epsilon,$

where $S_t = S|_{\{t\} \times Y_j}$. Let $t_j = f \circ \bar{t}_j$, where f is a smooth function satisfying f(x) = T for $x \leq T + 1$, f(x) = x for $x \geq T + 2$, and $f' \geq 0$. Then t_j is smooth. We now define r_j by

$$r_j([S]) = [S|_{[t_j(S),t_j(S)+1]\times Y_j}].$$

Similarly, for any critical point $\alpha \neq \theta_i$ set

$$M^{\epsilon}(\alpha, \theta_j) = \{ [S] \in M(\alpha, \theta_j) \mid C_j(S|_{\{0\} \times Y_j}) = \epsilon \}$$

and define a smooth map $r_j: M^{\epsilon} \to \mathcal{B}_j^*$ by

$$r_j([S]) = [S|_{[0,1] \times Y_i}].$$

Now let $\mathbb{L}_j \to \mathcal{B}_j^*$ be the canonical complex line bundle and s_j a generic section of $m_j\mathbb{L}_j$. We may assume r_j is transverse (on each moduli space where it is defined) to $s_j^{-1}(0)$. Let $V_j = r_j^{-1}s_j^{-1}(0)$. We can arrange that all intersections of strata in V, V_1, \ldots, V_l are transverse, and similarly for the intersection $\mathbb{CP}^d \cap V \cap (\cap V_j)$ in $M^* = M^*(X; \theta)$.

Now set

$$U = M^0 \cap V \cap (\cap V_j).$$

We claim U is compact. For U has dimension 1, so the standard compactification of U consists of U itself together with "broken solutions" with exactly two factors. The codimension 1 strata resulting from factorization on the j'th end have the form

$$(M(X;\underline{\alpha}) \cap V \cap (\bigcap_{i \neq j} V_i)) \times (M^{\epsilon}(\alpha_j, \theta_j) \cap V_j),$$

with $\alpha_j \neq \theta_j$ and $\alpha_i = \theta_i$ for $i \neq j$. For reasons of dimension we must have $i(\alpha, \theta_j) = 2m_j + 1$. However, by definition of m_j there is no such α_j , hence U is compact.

Now, it is easy to see that $r^*(\mathbb{L})$ and $r_j^*(\mathbb{L}_j)$ restrict to the tautological line bundle on \mathbb{CP}^d . But then $\partial U = \mathbb{CP}^d \cap V \cap (\cap V_j)$ has one point counted mod 2, contradicting the fact that U is a compact 1-manifold-with-boundary. Therefore (3.2) is impossible, so the theorem is proved.

Remark. Our main object in this paper is to give a simple proof of Theorem 1. However, when studying concrete examples it may be of interest to examine the proof above to see if one can obtain a lower bound on $\operatorname{rk}(J_Z) - |\xi|^2$. We will do this in [F2] and show that Theorems 1 and 6 hold for an invariant γ defined in terms of certain distinguished elements of the (metric dependent) Seiberg-Witten-Floer cohomology groups (with coefficients in some fixed field) rather than the critical points of C. These distinguished elements measure interaction with the critical point θ and can be identified with the differentials in a spectral sequence for computing the equivariant Seiberg-Witten-Floer group ([AB1], [AB2], [F1]).

4. Binary polyhedral spaces

Let $\Gamma \subset SU(2)$ be a finite subgroup and $D \subset \mathbb{C}^2$ the closed unit ball. Consider the rational homology sphere $Y = \partial D/\Gamma$. Let X be the smooth 4-manifold underlying the minimal resolution of the quotient singularity \mathbb{C}^2/Γ . The portion $Z \subset X$ lying above D/Γ is a compact 4-manifold with boundary Y. Recall that the intersection form J_Z is a root lattice. In particular, if Γ is the binary icosahedral group, in which case Y is the Poincaré sphere, then $J_Z = -E_8$.

Proposition 8. Let c be the spin-structure that Y inherits from the unique spin-structure on Z. Then $\gamma(Y,c) = \text{rk}(J_Z)$.

Proof. Theorem 6 gives $\operatorname{rk}(J_Z) \leq \gamma(Y,c)$. We must prove that $\operatorname{rk}(J_Z) \geq \gamma(Y,c)$. The universal covering space \tilde{V} of $V=X\setminus Z$ can be naturally identified with $\mathbb{C}^2\setminus D$ as a smooth manifold. Let x_i be euclidean coordinates on \tilde{V} and $r=\sum x_i^2$. By [K1] there is a hyperkähler structure on X whose metric g satisfies

(4.1)
$$\partial^p(g^{ij} - \delta^{ij}) = o(r^{-4-p}), \quad p \ge 0$$

on V, where δ is the euclidean metric and ∂ denotes differentiation with respect to the coordinates x_i . Extend the metric δ to all of X, let $u: X \to \mathbb{R}_+$ be a smooth function equal to r^{-1} outside Z, and set $\tilde{g} = u^2 g$, $\tilde{\delta} = u^2 \delta$. Then $(V, \tilde{\delta}|_V)$ is isometric to $\mathbb{R}_+ \times Y$, with $t = \log(r)$ the coordinate on \mathbb{R}_+ .

Since X is simply-connected and has even intersection form it has a unique spin structure. Let $D^{\tilde{\delta}}: \Gamma(W^+) \to \Gamma(W^-)$ be the Dirac operator on $(X, \tilde{\delta})$. Recall that Y has positive scalar curvature, so $D^{\tilde{\delta}}$ defines a Fredholm operator $L_1^2 \to L^2$. We will show that $\operatorname{ind}(D^{\tilde{\delta}}) = 0$. By definition of $\gamma(Y, c)$ this will imply

$$\gamma(Y,c) \le -\sigma(Z) = \operatorname{rk}(J_Z)$$

and the proposition will be proven.

We wish to compare the Dirac operators $D^{\tilde{g}}$ and $D^{\tilde{\delta}}$. Since taking the square root of a positive real symmetric matrix is a smooth operation, there is a natural choice of an endomorphism of TX which intertwines \tilde{g} and $\tilde{\delta}$. This allows us to identify the frame bundles of (X, \tilde{g}) and $(X, \tilde{\delta})$, hence also their spin bundles. We choose $\tilde{\delta}$ as reference metric and use the corresponding Levi-Civita connection $\nabla^{\tilde{\delta}}$ to define the Sobolev spaces $L_1^2(W^{\pm})$.

This being said it is standard fare to deduce from (4.1) that $D^{\tilde{g}}$ defines a Fredholm operator $L^2_1(W^+) \to L^2(W^-)$ of the same index as $D^{\tilde{\delta}}$. Now let $\tilde{\psi} \in L^2_1(W^+ \oplus W^-)$ be any section satisfying $D^{\tilde{g}}(\tilde{\psi}) = 0$. Then $\psi = u^{\frac{3}{2}}\tilde{\psi}$ satisfies

$$D^g(\psi) = 0; \quad |\psi| = o(r^{-\frac{3}{2}}); \quad |\nabla^g(\psi)| = o(r^{-\frac{5}{2}}).$$

(See [H].) In particular, $\langle \nabla^g(\psi), \psi \rangle_g = o(r^{-4})$. We can now copy the argument in the proof of [K2, Lemma 2.2], using the Weitzenböck formula for the Dirac operator and the fact that g has zero scalar curvature, to conclude that $\nabla^g(\psi) = 0$. Hence $\psi = 0$, so $\operatorname{ind}(D^{\tilde{g}}) = 0$. This completes the proof of Proposition 8.

Appendix A. Proof of Lemma 4

(0) We begin with a remark on unique continuation. Let $S = \{S_t\}$ be any smooth solution to the gradient flow equation $\frac{\partial S_t}{\partial t} = -\operatorname{grad}(C)_{S_t}$. Then if $\frac{\partial S_t}{\partial t} = 0$ at some point $t = t_0$ we must have $S_t = S_{t_0}$ for all t. This follows from the unique continuation argument in [DK, section 4.3.4] since we can define another solution \tilde{S} , of class C^1 on $\mathbb{R} \times Y$, by

$$\tilde{S}_t = \begin{cases} S_t \text{ for } t \le t_0 \\ S_{t_0} \text{ for } t \ge t_0. \end{cases}$$

(1) Fix b > 0 and let $\{\omega_n\}$ be any sequence with $\|\omega_n\|_{C^k} \to 0$. Let $\{S_n = (A_n, \phi_n)\}$ be a smooth solution to (2.1) with $\omega = \omega_n$ and suppose $\|\phi_n\|_{C^0} \leq b$. Then $\|h_{S_n}^*(\omega_n)\|_{C^k} \to 0$. If B is any smooth connection in L then over any bounded open subset V (containing [-1, 1], say) we can find gauge transformations u_n such that

$$d^*(u_n^2(A_n) - B) = 0.$$

Arguing as in [KM] we see that there is a subsequence of $\{u_n(S_n)\}$ which converges in C^k over compact subsets of V to some solution S_{∞} of the equations (2.1) with $\omega = 0$.

Now let $C'_n(t) = \frac{\partial}{\partial t}C(S_n(t))$ and suppose $C'_n(t_n) \geq 0$ for some t_n . Since the equations (2.1) are translationary invariant we may assume $t_n = 0$. Equation (2.2) and the Cauchy-Schwartz inequality gives

(A.1)
$$\|\operatorname{grad}(C)_{S_n(0)}\|_{L^2} \le \|E_{S_n}(0)\|_{L^2} \le \operatorname{const} \cdot \|\omega_n\|_{C^0}.$$

Therefore $\operatorname{grad}(C)_{S_{\infty}(0)} = 0$, so the argument in (0) shows that in a temporal gauge for S_{∞} , $S_{\infty}(t)$ must be independent of t. Therefore

$$\lim_{n} h_{S_n}(0) = h_{S_{\infty}}(0) = C(S_{\infty}(0)) \notin \Xi.$$

But Ξ is closed, so for sufficiently large n we must have $h_{S_n}(0) \notin \Xi$, whence $E_{S_n}(0) = 0$ by definition. Equation (2.2) then gives

$$C'_n(0) = -\|\operatorname{grad}(C)_{S_n(0)}\|_{L^2}^2 \le 0,$$

so $S_n(0)$ is a critical point. By (0) above, $[S_n(t)]$ is constant in t on the maximal interval containing 0 where $h_{S_n} \notin \Xi$. Since Ξ is closed and does not contain any critical points this interval must be all of \mathbb{R} . This proves statement (1) of the lemma.

(2) Now let ω be so small that statement (1) holds, and such that any $P \in \mathcal{A}(L_0) \times \Gamma(W_0)$ satisfying

is close to some critical point of C, where the constant is the same as in (A.1). More precisely, we require $C(P) \notin \Xi$ whenever (A.2) holds.

Let $S=(A,\phi)$ be a smooth solution to the equations (2.1) satisfying $\|\phi\|_{C^0} \leq b$, and let $C(S_t)$ be bounded in t. Then if $\{t_n\}$ is any sequence with $t_n \to \infty$ we can find gauge transformations u_n such that a subsequence of $u_n(S|_{(t_n-2,t_n+2)\times Y})$ converges in C^k to a point \tilde{S} which is defined on $(-2,2)\times Y$, say, and provides a solution to (2.1) on $(-1,1)\times Y$. Clearly, $\frac{\partial}{\partial t}C(\tilde{S}_t)=0$, so our assumption on ω implies that for $t\in [-1,1]$, \tilde{S}_t is a critical point of C. Since the critical points of C are isolated, the gauge equivalence class $[\tilde{S}_t]$ must be independent of t, and we see that as $t\to\infty$, $[S_t]$ converges in C^k to some critical point α_+ . Similarly, we obtain a limit α_- as $t\to-\infty$.

Added in proof: At the end of Section 2, in order to obtain transversality in moduli spaces over X it is useful to let the forms ω_j vary as well and argue as in the proof of Propostion 5.

Acknowledgements

I wish to thank S. Donaldson and P. Kronheimer for encouragement and R. Wang for interesting conversations.

References

- [AB1] D. M. Austin and P. J. Braam, Morse-Bott theory and equivariant cohomology, Floer Memorial Volume, Editors: H. Hofer, C. H. Taubes, A. Weinstein, and E. Zehnder, Birkhäuser, 1995, pp. 123-183.
- [AB2] _____, Equivariant Floer theory and gluing Donaldson polynomials, Topology **35** (1996), 167–200.
- [APS] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb. Phil. Soc. 79 (1976).

- [D1] S. K. Donaldson, An application of gauge theory to four dimensional topology, J. Diff. Geom. 18 (1983), 279–315.
- [D2] _____, The orientation of Yang-Mills moduli spaces and 4-manifold topology,
 J. Diff. Geom. 26 (1987), 397–428.
- [D3] _____, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math. Soc. **33** (1996), 45–70.
- [DF] S. K. Donaldson and M. Furuta, Floer homology groups in Yang-Mills theory, In preparation.
- [DK] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford University Press, 1990.
- [E1] N. D. Elkies, A characterization of the \mathbb{Z}^n lattice, Math. Res. Lett. 2 (1995), 321–326.
- [E2] _____, Lattices and codes with long shadows, Math. Res. Lett. 2 (1995), 643–651.
- [F1] K. A. Frøyshov, On Floer homology and four-manifolds with boundary, D.Phil. Thesis, Oxford, 1995.
- [F2] _____, In preparation.
- [FS] R. Fintushel and R. J. Stern, SO(3)-connections and the topology of 4-manifolds,
 J. Diff. Geom. 20 (1984), 523-539.
- [FU] D. S. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, Second edition, Springer-Verlag, 1991.
- [H] N. Hitchin, Harmonic spinors, Adv. in Maths. 14 (1974), 1–55.
- [K1] P. B. Kronheimer, The construction of ALE spaces as hyper-kähler quotients, J. Diff. Geom. 29 (1989), 665–683.
- [K2] _____, A Torelli-type theorem for gravitational instantons, J. Diff. Geom. 29 (1989), 685–697.
- [KM] P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808.
- [LM] R. B. Lockhart and R. C. McOwen, Elliptic differential operators on non-compact manifolds, Ann. Scuola Norm. Sup. Pisa 12 Ser. 4 (1985), 409–447.
- [T1] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Diff. Geom. 25 (1987), 363–430.
- [T2] _____, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), 221–238.
- [W] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769–796.

Institute for Advanced Study, Princeton, NJ 08540 $E\text{-}mail\ address:}$ froyshov@math.ias.edu