PRODUCT FORMULAS ALONG T^3 FOR SEIBERG-WITTEN INVARIANTS

John W. Morgan, Tomasz S. Mrowka and Zoltán Szabó

1. Introduction

Suppose that X is a smooth closed oriented 4-manifold, and that X contains a smoothly embedded 2-torus $T^2 \hookrightarrow X$ with trivial self-intersection number. Similarly to Dehn-surgery on knots in 3-manifolds, a generalized logarithmic transformation of X along T^2 is defined by deleting a tubular neighborhood of T^2 from X and gluing it back via a diffeomorphism $\phi: \partial(D^2 \times T^2) \to \partial(X \setminus nd(T^2))$.

The aim of this paper is to study the effect of this smooth operation on the Seiberg-Witten invariants of the underlying 4-manifolds. Our first result gives a relation between the Seiberg-Witten invariants of the various manifolds obtained in this way.

Theorem 1.1. Let M be a smooth compact oriented 4-manifold with $b_2^+(M) \ge 1$, and suppose that ∂M is diffeomorphic to T^3 . Let us fix a basis $a,b,c \in H_1(\partial M,\mathbb{Z})$ and for each indivisible element $\gamma = pa + qb + rc$ let us fix an orientation reversing diffeomorphism $\phi_{\gamma}: \partial(D^2 \times T^2) \to \partial M$ with $(\phi_{\gamma})_*([\partial(D^2 \times pt)]) = \gamma$. Let

$$M_{\gamma} = M(\phi_{\gamma}) = M \cup_{\phi_{\gamma}} D^2 \times T^2.$$

(Since every ϕ_{γ} is isotopic to a linear map, it follows that the diffeomorphism type of M_{γ} depends only on γ not on the choice of ϕ_{γ} .) If the spin^c structure $\mathcal{L}' \to M_{\gamma}$ restricts non-trivially to $D^2 \times T^2$, then $SW_{M_{\gamma}} = 0$. For each spin^c structure $\mathcal{L}_0 \to M$ that restricts trivially to ∂M let $V_{\gamma}(\mathcal{L}_0)$ denote the set of isomorphism classes of spin^c structures over M_{γ} whose restriction to M is equal to \mathcal{L}_0 . Then we have

$$\sum_{\mathcal{L} \in V_{\gamma}(\mathcal{L}_0)} SW_{M_{\gamma}}(\mathcal{L}) =$$

$$p\left(\sum_{\mathcal{L}\in V_a(\mathcal{L}_0)}SW_{M_a}(\mathcal{L})\right) + q\left(\sum_{\mathcal{L}\in V_b(\mathcal{L}_0)}SW_{M_b}(\mathcal{L})\right) + r\left(\sum_{\mathcal{L}\in V_c(\mathcal{L}_0)}SW_{M_c}(\mathcal{L})\right),$$

where it is understood that in the $b_2^+ = 1$ case the invariants in the above formula are computed in corresponding chambers.

Received March 18, 1997.

Remark 1.2. • We choose an orientation of $\det(H^2_{\geq 0}(M, \partial M, \mathbb{R})) \otimes (\det(H^1(M, \partial M, \mathbb{R})))^{-1}$ called a homology orientation of $(M, \partial M)$. Standard Mayer-Vietoris arguments show that a homology orientation for $(M, \partial M)$ induces a homology orientation for M_{γ} , i.e. an orientation of $\det H^2_+(M_{\gamma}, \mathbb{R}) \otimes (\det H^1(M_{\gamma}, \mathbb{R}))^{-1}$, and hence orients the moduli spaces for M_{γ} , allowing us to define the function $SW_{M_{\gamma}}$. In the statement of the theorem all the functions $SW_{M_{\gamma}}$, etc. are computed using homology orientations derived from a common homology orientation of $(M, \partial M)$.

• If $b_2^+(M) \geq 2$, then $b_2^+(M_\gamma) \geq 2$ for all γ and there are no chamber structures for the invariants. If $b_2^+(M) = 1$, then $b_2^+(M_\gamma)$ equal to either 1 or 2. If $b_2^+(M_\gamma) = 1$, then the inclusion $M \hookrightarrow M_\gamma$ induces an isomorphism $H^2(M, \partial M, \mathbb{R})/\{x|x \cdot y = 0 \ \forall y\} \to H^2(M_\gamma, \mathbb{R})$. This identification of cohomology induces an identification of positive cones with their chamber structures. Since $c_1(\det \mathcal{L}_0) \in H^2(M)$ can be lifted to $H^2(M, \partial M)$, the $spin^c$ -structure \mathcal{L}_0 determines a wall in $H^2(M, \partial M, \mathbb{R})/\{x|x \cdot y = 0 \ \forall y\}$. If $b_2^+(M_\gamma) = 1$, then the set of $spin^c$ -structures over which we sum is exactly the set whose wall agrees with that of \mathcal{L}_0 . It is in this sense, that we compute the invariants in corresponding chambers.

Note, that if $i_*(\gamma)$ is indivisible, where $i_*: H_1(\partial M, \mathbb{Z}) \to H_1(M, \mathbb{Z})$, then the sum in the left hand side of the above formula consists only of one term, and consequently we get a formula computing $SW_{M_{\gamma}}$ in terms of SW_{M_a} , SW_{M_b} and SW_{M_c} . So in this case Theorem 1.1 provides a useful tool to compute Seiberg-Witten invariants. For applications of Theorem 1.1 along these lines, see [FS3], [Sz1] and [Sz2].

By using cylindrical end Seiberg-Witten moduli spaces over M we define in Theorem 3.1 relative Seiberg-Witten invariants $SW_M: \mathcal{C}_{M,\partial M} \to \mathbb{Z}$, where $\mathcal{C}_{M,\partial M}$ is defined as follows:

Let $\mathcal{K} \to S^1$ denote the product spin- structure over S^1 , i.e. \mathcal{K} represents the non-trivial element in the 1-dimensional spin cobordism group. Then the spin-structure $(\mathcal{K})^3 \to T^3$ is invariant under self-diffeomorphisms of T^3 , and as such gives a well-defined spin^c-structure $\mathcal{K}' \to \partial M$. Now let $\mathcal{C}_{M,\partial M}$ denote the isomorphism classes of pairs consisting of $spin^c$ -structure $\mathcal{L} \to M$ and a spin^c isomorphism from $\mathcal{L}|_{\partial M}$ to \mathcal{K}' .

Note that similarly to the closed case we have a map $c: \mathcal{C}_{M,\partial M} \to \mathbb{H}^2(M,\partial M,\mathbb{Z})$ given by $\mathcal{L} \mapsto c_1(\det \mathcal{L})$. If $H_1(M,\partial M,\mathbb{Z})$ has no 2-torsion, then

$$c: \mathcal{C}_{M,\partial M} \to \{x \in H^2(M,\partial M,\mathbb{Z}) | x \equiv w_2(M,\partial M) \pmod{2} \}$$

is a bijection, where $w_2(M, \partial M)$ is the relative second Stiefel-Whitney class $w_2(M)$ determined by the spin-structure $(\mathcal{K})^3 \to \partial M$. We say that $K \in H^2(M, \partial M, \mathbb{Z})$ is a relative basic class if there is a $\mathcal{L} \in \mathcal{C}_{M,\partial M}$ with $c(\mathcal{L}) = K$ and $SW_M(\mathcal{L}) \neq 0$. We define $SW_M(K) = \sum_{\mathcal{L} \in c^{-1}(K)} SW_M(\mathcal{L})$. Similarly to the closed case, the set of basic classes is finite.

Our second result, presented in Theorem 4.1, gives a relation between SW_M and $SW_{M(\phi)}$. As a corollary we prove the following.

Theorem 1.3. Let M, γ , ϕ_{γ} and M_{γ} be as above. Suppose that $b_2^+(M) > 1$, and that $\gamma \in \text{Ker } i_*$, where $i_* : H_1(\partial M, \mathbb{R}) \to H_1(M, \mathbb{R})$. Let \mathcal{B}_M , $\mathcal{B}_{M_{\gamma}}$ denote the set of basic classes of M and M_{γ} . We define formal series on $H_2(M_{\gamma}, \mathbb{R})$ by

$$SW_{M_{\gamma}}^* = \sum_{K \in \mathcal{B}_{M_{\gamma}}} SW_{M_{\gamma}}(K)(\exp K).$$

Then we have

$$SW_{M_{\gamma}}^* = \left(\sum_{L \in \mathcal{B}_M} SW_M(L)(\exp(\rho(L)))\right) (\exp(T_{\gamma}) - \exp(-T_{\gamma}))^{-1},$$

where $\rho: H^2(M, \partial M, \mathbb{Z}) \to H^2(M_{\gamma}, \mathbb{Z})$ is given by the Mayer-Vietoris sequence, and where T_{γ} is the Poincare dual of the core $\{pt\} \times T^2 \hookrightarrow M_{\gamma}$.

Let $\mathrm{Diff}^+(M)$ denote the group of orientation preserving self-diffeomorphisms of M. In case $\mathrm{Diff}^+(M)$ is large enough, we also have a stonger result on how $SW_{M_{\gamma}}$ depends on γ :

Corollary 1.4. Let M be as in Theorem 1.1, and suppose that $b_2^+(M) > 1$. Suppose that there is a basis $a, b, c \in H_1(\partial M, \mathbb{Z})$ with the following properties:

- (i) There is a 2-dimensional linear subspace $V \subset H_2(M, \partial M, \mathbb{Z})$ such that $j: H_2(M, \partial M, \mathbb{Z}) \to H_1(\partial M, \mathbb{Z})$ gives an isomorphism between V and the subspace of $V' \subset H_1(\partial M, \mathbb{Z})$ spanned by b, c.
- (ii) For all $A \in SL(V')$, there is an $f \in Diff^+(M)$, such that $f_*(V) = V$, and $(f_*)|_{V'} = A$.
- (iii) $a \in \operatorname{Ker} i_*$, where $i_* : H_1(\partial M, \mathbb{R}) \to H_1(M, \mathbb{R})$.

Then for all $\gamma = pa + qb + rc \in H_1(\partial M, \mathbb{Z})$ indivisible element we have

- If p=0, then $SW_{M_{\gamma}}=0$.
- If $p \neq 0$, then

$$SW_{M_{\gamma}}^* = SW_{M_a}^* \cdot \frac{\sinh(T_a)}{\sinh(T_{\gamma})} = SW_{M_a}^* \cdot \frac{\sinh(T_a)}{\sinh(T_a/p)},$$

where T_a , T_{γ} denote the Poincare dual of the cores in M_a and M_{γ} .

Remark 1.5. • If $p \neq 0$, then there is a natural isomorphism between $T_{\gamma}^{\perp} \subset H^2(M_{\gamma}, \mathbb{Q})$ and $T_a^{\perp} \subset H^2(M_a, \mathbb{Q})$ defined by lifting any $x \in T_{\gamma}^{\perp}$ to a class in $\tilde{x} \in H^2(M, \partial M, \mathbb{Q})$ such that $\langle \tilde{x}, V \rangle = 0$ and extending by zero to define a class in T_a^{\perp} . Note that under this identification $T_{\gamma} = T_a/p$.

• Note that if the core $(pt \times T^2) \to M_a$ lies in a cusp neighborhood, cf. [FS1], [GM], and $[pt \times T^2]$ is not a torsion class, then M satisfies the conditions in Corollory 1.4. In this special case the formula of Corollary 1.4 was proved previously in [FS2] by using rational blowdowns.

As another corollary we get the following result.

Corollary 1.6. Let X be a smooth closed oriented 4-manifold with $b_2^+(X) >$ 1. Suppose that X contains a smoothly embedded 2-torus $T^2 \hookrightarrow X$, with selfintersection 0, such that $[T^2] \in H_2(X,\mathbb{Z})$ is not a torsion class. Then X has Seiberg-Witten simple type, i.e. if $\mathcal{L} \in \mathcal{C}_X$ satisfies

$$d(\mathcal{L}) = \frac{1}{4}(c_1(\det \mathcal{L})^2 - 2e(X) - 3\operatorname{sign}(X)) > 0,$$

then $SW_X(\mathcal{L}) = 0$.

These results are proved by using cylindrical end Seiberg-Witten moduli spaces over M. The technical background is presented in Section 2. In Section 3 we define relative Seiberg-Witten invariants and prove some basic properties. The proof of Theorem 1.1, Theorem 1.3, Corollary 1.4 and Corollary 1.6 are given in Section 4.

Other product formulas along T^3 for the generalized fiber sum operation will be presented in [MMSzT] by using different techniques. Similar results for Donaldson invariants were given in [MSz].

For analogous results in the 3-dimensional case and applications, see [MT], [L], [C].

2. Cylindrical end moduli spaces

Suppose that M is a smooth oriented 4-manifold, and that the end of Mis diffeomorphic to $T^3 \times [0, \infty)$. Fix a flat riemannian metric h on T^3 , and a riemannian metric g on M such that g is equal to $h + dt^2$ near the end of M. Let us briefly recall the setup for Seiberg-Witten invariants. For more details see [KM2], [M], [Wi].

For any compactly supported real smooth self-dual two-form $\mu \in \Omega^2_+(M,\mathbb{R})$ and $spin^c$ structure $\mathcal{L} \to M$ we define the Seiberg-Witten moduli space in the following way. Let $S^{\pm}(\mathcal{L})$ denote the plus and minus spin bundles associated to \mathcal{L} , and let $L = \det(\mathcal{L})$. Let $\mathcal{A}(L)$ denote the space of $L^2_{2,loc}$ connections on L, and $\Gamma(S^+(\mathcal{L}))$ the space of $L^2_{2,loc}$ sections in $S^+(\mathcal{L})$. The perturbed Seiberg-Witten equations are

- $F_A^+ = q(\phi) + i\mu$, $D_A(\phi) = 0$,

where $A \in \mathcal{A}(L), \ \phi \in \Gamma(S^+(\mathcal{L})), \ q : \Gamma(S^+(\mathcal{L})) \to \Omega^2_+(M, i\mathbb{R})$ is a quadratic bundle map defined by $q(\phi) = \phi \otimes \phi^* - (|\phi|^2/2) \operatorname{Id}$, and $D_A : \Gamma(S^+(\mathcal{L})) \to$ $\Gamma(S^{-}(\mathcal{L}))$ is the Dirac operator associated to A. The energy of a solution of (A,ϕ) is defined by $\int_M |F_A|^2 dvol$. The moduli space $\mathcal{M}_M(\mathcal{L},g,\mu)$ is defined by dividing the space of finite energy solutions by the action of the gauge group $\mathcal{G}(M)$, where $\mathcal{G}(M)$ is the group of $L^2_{3,loc}$ maps $u:M\to U(1)$.

Our goal in this section is to study the qualitative nature of this moduli space. The first step is to understand solutions on T^3 and $T^3 \times \mathbb{R}$.

Notice that every $spin^c$ structure $\mathcal{L} \to T^3 \times \mathbb{R}$ pulls back from T^3 , and Clifford multiplication by dt gives an identification between $S^+(\mathcal{L})$ and $S^-(\mathcal{L})$. Let $S(\mathcal{L})$ denote the restriction of $S^+(\mathcal{L})$ to T^3 , and take $L_0 = \det(\mathcal{L})$. Let us fix the riemannian metric $h + dt^2$, where h is a flat metric on T^3 . Using the product structure over the cylinder we can write the connections in temporal gauge, and the Seiberg-Witten equations can be written as the gradient flow equation of the functional, see [KM2], [MSzT],

(1)
$$f(A,\phi) = \int_{T^3} a \wedge F_{A_0} + \frac{1}{2} \int_{T^3} a \wedge da + \int_{T^3} \langle \phi, D_A \phi \rangle dvol,$$

where $A \in \mathcal{A}(L_0)$, $\phi \in \Gamma(S(\mathcal{L}))$, A_0 is a fixed background connection and $a = A - A_0$.

The critical points of $f(A, \phi)$ are the solutions of the three dimensional analogue of the Seiberg-Witten equations:

- $F_A = q(\phi)$,
- $D_A(\phi) = 0$,

where A and ϕ are in $L^2_{3/2}$. After dividing out by the action of the gauge group $\mathcal{G}(T^3)$, i.e the group of $L^2_{5/2}$ maps $u:T^3\to U(1)$, we get the moduli space $\mathcal{M}_{T^3}(\mathcal{L},h)$.

Lemma 2.1. Suppose that h is a flat metric on T^3 , and let \mathcal{L}_0 denote the trivial $spin^c$ structure over T^3 . Then $\mathcal{M}_{T^3}(\mathcal{L}_0, h) = \mathcal{F}/\mathcal{G}(T^3)$, where $(A, \phi) \in \mathcal{F}$ if A is a flat S^1 connection over T^3 , and $\phi \equiv 0$. In particular $\mathcal{M}_{T^3}(\mathcal{L}_0, h)$ can be identified with T^3 . Furthermore if $\mathcal{L} \neq \mathcal{L}_0$ then $\mathcal{M}_{T^3}(\mathcal{L}, h)$ is empty.

Proof. Since h is a flat metric, the Weitzenbock formula for Dirac operator, see [KM2] or [M], implies that if $(A, \phi) \in \mathcal{M}_{T^3}(\mathcal{L}, h)$ then $\phi \equiv 0$. This implies that $F_A = 0$ and \mathcal{L} trivial.

The component group of $\mathcal{G}(T^3) = \mathcal{G}(\partial M)$ is identified with $H^1(T^3, \mathbb{Z})$. Since $T^3 = \partial M$, we get a distinguished subgroup $\mathcal{G}_0(T^3) \subset \mathcal{G}(T^3)$: $u \in \mathcal{G}_0(T^3)$ if u can be extended to a $u' \in \mathcal{G}(M)$. Another interpretation of $\mathcal{G}_0(T^3)$ is as follows. Let $\rho \in H^1(U(1), \mathbb{Z})$ be the fundamental cohomology class of U(1). Then $u: T^3 \to U(1)$ is in $\mathcal{G}_0(T^3)$ if $u^*(\rho)$ is in the image of $i^*: H^1(M, \mathbb{Z}) \to H^1(T^3, \mathbb{Z})$. (Although $\mathcal{G}_0(T^3)$ depends on M, we will suppress this in order to keep the notation simple.)

From now on we use the notations $\chi(T^3) = \mathcal{M}_{T^3}(\mathcal{L}_0, h) = \mathcal{F}/\mathcal{G}(T^3)$ and $\chi_0(T^3) = \mathcal{F}/\mathcal{G}_0(T^3)$. Notice that dividing by $\mathcal{G}(T^3)$ gives a covering $p : \chi_0(T^3) \to \chi(T^3)$. Note also that since the gauge group $(S^1)^{T^3}$ acts on the connections on $\det(\mathcal{L}_0)$ by the square of the usual action $\chi(T^3)$ is naturally a $(\mathbb{Z}/2)^3$ covering of $\operatorname{Hom}(\pi_1(T^3), U(1))$.

Standard techniques and Lemma 2.1 imply the following.

Theorem 2.2. Let M be a smooth oriented cylindrical-end 4-manifold, such that the end of M is diffeomorphic to $T^3 \times [0, \infty)$. Let h be a flat metric on T^3 ,

and g a riemannian metric on M, such that g is equal to $h+dt^2$ at the end of M. Let $\mu \in \Omega^2_+(M,\mathbb{R})$ be a compactly supported self-dual two-form. Let $\mathcal{L} \to M$ be a spin^c structure and $\mathcal{L}|_{T^3} \to T^3$ be its restriction to a slice. If $\mathcal{L}|_{T^3}$ is nontrivial then $\mathcal{M}_M(\mathcal{L},g,\mu)$ is empty. Furthermore if $\mathcal{L}|_{T^3}$ is trivial then $\mathcal{M}_M(\mathcal{L},g,\mu)$ is compact, and by taking limits at the non-compact end of the tube $T^3 \times [0 \times \infty)$ we have a continuous map $\partial_\infty : \mathcal{M}_M(\mathcal{L},g,\mu) \to \chi_0(T^3)$. The homology orientation of $(M,\partial M)$ induces an orientation of $\mathcal{M}_M(\mathcal{L},g,\mu)$.

Proof. Suppose that $(A, \phi) \in \mathcal{M}_M(\mathcal{L}, g, \mu)$. Since (A, ϕ) has finite energy, it follows from [KM2, Proposition 8], that $\mathcal{M}_{T^3}(\mathcal{L}|_{T^3}, h)$ is not empty. Now Lemma 2.1 implies that $\mathcal{L}|_{T^3}$ is trivial. If $\mathcal{L}|_{T^3}$ is trivial, then the function f given in Equation 1 descends to a real valued function on the configuration space modulo gauge equivalence. Now the connectedness of the critical set implies that every finite energy flowline over $T^3 \times \mathbb{R}$ is static, i.e pulls back from T^3 . This, and the arguments in [KM2, Lemma 4] imply that $\mathcal{M}_M(\mathcal{L}, g, \mu)$ is compact. The existence of the continuous map ∂_{∞} follows from the arguments of [MMR, page 63-70]: Just as the Chern-Simons functional is real analytic, it is easy to see that f given in Equation 1 is real analytic as well. So it is easy to see, that Simon's result [Si] applies in this context as well, showing that a finite energy path in the space of configurations has finite length. From that it is straightforward to deduce the existence of the continuous map ∂_{∞} . The statement about the orientation of the moduli space is completely analogous to the closed case. \square

From now on we study the local properties of the map $\partial_{\infty}: \mathcal{M}_M(\mathcal{L}, g, \mu) \to \chi_0(T^3)$. Since this is equivalent to studying $\overline{\partial}_{\infty} = p \circ \partial_{\infty}$ we work over $\chi(T^3)$.

We shall see that $\chi(T^3)$ has a singular point. This creates singularities in $\mathcal{M}_M(\mathcal{L}_0, g, \mu)$. It turns out that, at least when the dimension of the moduli space $\mathcal{M}_M(\mathcal{L}_0, g, \mu)$ is less or equal to 4, the moduli space is a compact manifold with boundary, the boundary mapping to the singular point.

Let $(A,0) \in \chi(T^3)$. The linearization of the 3-dimensional Seiberg-Witten equations around (A,0) gives

(2)
$$L_{5/2}^2(X, i\mathbb{R}) \xrightarrow{d_1} L_{3/2}^2(T^*(T^3) \otimes i\mathbb{R} \oplus S(\mathcal{L})) \xrightarrow{d_2} L_{1/2}^2(T^*(T^3) \otimes i\mathbb{R} \oplus S(\mathcal{L})),$$

where $d_1(f) = (2df, 0)$, and $d_2(a, \phi) = (*da, D_A(\phi)).$

Lemma 2.3. For every $(A,0) \in \chi(T^3)$ let $\mathcal{H}^1_{(A,0)}$ denote the vector space $\operatorname{Ker} d_1^* \cap \operatorname{Ker} d_2$, where $d_1^* : L^2_{3/2}(T^*(T^3) \otimes i\mathbb{R} \oplus S(\mathcal{L})) \longrightarrow L^2_{1/2}(T^3, i\mathbb{R})$ is the L^2 -adjoint of d_1 . Then $\mathcal{H}^1_{(A,0)} = \mathcal{H}^1(T^3, i\mathbb{R}) \oplus \operatorname{Ker}(D_A)$, where $\mathcal{H}^1(T^3, i\mathbb{R})$ is the space of purely imaginary harmonic 1-forms on T^3 . There is a unique point $\theta = (\theta_0, 0)$ such that $\operatorname{Ker}(D_{\theta_0}) \neq 0$. Furthermore $\operatorname{Ker} D_{\theta_0} = \mathbb{C}^2$ is the space of contant sections of the trivialized spin-bundle $S^+(\mathcal{L}_0)$.

Proof. It follows from (2) that $\mathcal{H}^1_{(A,0)} = \mathcal{H}^1(T^3, i\mathbb{R}) \oplus \operatorname{Ker} D_A$. Since h is a flat metric, it follows from the Weitzenbock formula that for $u \in \operatorname{Ker} D_A$ we have

 $\nabla_A(u) = 0$. Since $S(\mathcal{L}) \to T^3$ is a trivial bundle, $u \neq 0$ implies that A is the trivial connection, and u is a constant section.

Theorem 2.4. With M, h, g, \mathcal{L} as above, suppose that $b_2^+(M) > 0$ and that $\mathcal{L}|_{T^3}$ is trivial. Fix a homology orientation of $(M, \partial M)$. Let $U \subset \chi(T^3)$ be a small neighborhood of θ . Then for all generic compactly supported 2-forms $\mu \in \Omega^2(M, \mathbb{R})$ the moduli space $\mathcal{M}_M(\mathcal{L}, g, \mu) \setminus ((\overline{\partial}_{\infty})^{-1}(U))$ is either empty or is a smooth compact oriented manifold of dimension

$$d = \frac{1}{4}(1 + (c_1(L)^2 - 2e(M) - 3\operatorname{sign}(M)))$$

with boundary. Furthermore if g and μ are fixed, then there are only finitely many spin^c structures $\mathcal{L} \to M$, for which the moduli space $\mathcal{M}_M(\mathcal{L}, g, \mu)$ is not empty.

Proof. Suppose that $x \in \chi(T^3)$ and let μ_x denote the smallest absolute value of a non-zero eigenvalue of the complex (2) based at x. Let $h^0(x) = \dim(\operatorname{Ker} d_1)$, $h^1(x) = \dim \mathcal{H}^1_x = \dim(\operatorname{Ker} d_1^* \cap \operatorname{Ker} d_2)$. By Lemma 2.3 $h^0(x)$, $h^1(x)$ are constants on $\chi(T^3) \setminus U$. Since $\chi(T^3) \setminus U$ is compact it follows that there is a $\delta > 0$ such that $\delta \leq \mu_x/2$ for all $x \in \chi(T^3) \setminus U$. It follows that all $A \in \mathcal{M}_M(\mathcal{L}, g, \mu) \setminus (\overline{\partial}_{\infty})^{-1}(U)$ decays exponentially to $\partial_{\infty}(A)$ with exponent at least δ . The smoothness of $\mathcal{M}_M(\mathcal{L}, g, \mu)$ for generic μ follows from standard arguments. In order to compute the formal dimensions of $\partial_{\infty}^{-1}(x)$ and $\mathcal{M}_M(\mathcal{L}, g, \mu)$ we use the index formula of [APS], which gives

$$\dim(\partial_{\infty}^{-1}(x)) = \frac{1}{4}(c_1(L)^2 - 2e(M) - 3\operatorname{sign}(M)) - \frac{h^0(x) + h^1(x)}{2} + \frac{\rho(x)}{2},$$

where $\rho(x)$ is the ρ invariant of the boundary operator $(d_1^* + d_2)$. In this case $\rho(x)$ doesn't depend on the choice of flat metric h, and $\rho(x)$ is constant on $\chi(T^3) \setminus \theta$. Since T^3 admits an orientation reversing self diffeomorphism it follows that $\rho(x) = 0$. Now $h^1(x) = 3$, $h^0(x) = 1$ implies

$$\dim \mathcal{M}_M(\mathcal{L}, g, \mu) = h^1(x) + \dim(\partial_{\infty}^{-1}(x)) = 1 + \frac{1}{4}(c_1(L)^2 - 2e(M) - 3\operatorname{sign}(M)).$$

Since μ is compactly supported, and there are no non-trivial finite energy flowlines on the tube, it follows from arguments in [KM2, Corollary 3], that for all but finitely many \mathcal{L} the moduli space $\mathcal{M}_M(\mathcal{L}, g, \mu)$ is empty.

We still have to understand the local structure of $\mathcal{M}_M(\mathcal{L}, g, \mu)$ around the singular points $(\overline{\partial}_{\infty})^{-1}(\theta)$.

From now on we work in a neighborhood of $\theta = (\theta_0, 0) \in \mathcal{A}(L) \otimes \Gamma(S(\mathcal{L}))$ and use the identification between $L^2_{3/2}(T^*(T^3) \otimes i\mathbb{R} \oplus S(\mathcal{L}))$ and $\mathcal{A}(L) \otimes \Gamma(S(\mathcal{L}))$ given by $(a, \phi) \to (\theta_0 + a, \phi)$.

In order to study the gradient flow of the functional f defined in (1) we use the center manifold technique of [MMR, page 78-92]. A center manifold around θ is a C^2 manifold which contains a neighborhood of θ in $\chi(T^3)$, its tangent space at θ is \mathcal{H}^1_{θ} and it is invariant under the gradient flow. The restriction of the flow to the center manifold gives a finite dimensional approximation to the flow around θ and determines the local structure of the cylindrical-end moduli space around the singular boundary value θ . In this case the center manifold can be taken to be \mathcal{H}^1_{θ} :

Lemma 2.5. At every $(a,\phi) \in \mathcal{H}^1_\theta$ the gradient vector $\nabla_f(a,\phi)$ is tangent to \mathcal{H}^1_{θ} . In particular \mathcal{H}^1_{θ} is a center manifold around θ .

Proof. Let $(a, \phi) \in \mathcal{H}^1_{\theta}$, and $A = \theta_0 + a$. Then

$$\nabla_f(a,\phi) = (*(F_A - q(\phi)), D_A(\phi)).$$

Since A is flat and ϕ is constant we have $\nabla_f(a,\phi) = (-*(q(\phi)), \frac{1}{2}a \cdot \phi)$. Since h is a flat metric on T^3 , the space of purely imaginary harmonic 1-forms can be characterized as the space of constant sections of $\bigwedge^1(T^3, i\mathbb{R})$. It follows that $*(q(\phi))$ is a harmonic 1-form and $a \cdot \phi$ is a constant section of $S(\mathcal{L})$. This finishes the proof of Lemma 2.5.

Now we have to study the gradient flow on \mathcal{H}_{θ}^{1} . Let us fix an isomorphism between \mathcal{H}^1_{θ} and Im $\mathbb{H} \oplus \mathbb{H}$, such that $*q(\phi)$ and $a \cdot \phi$ corresponds to $\phi i \phi$ and $a \phi i$, where here a is an imaginary quaternion, $\phi \in \mathbb{H}$ and we are using quaternion multiplication. Now $\nabla_f(a,\phi) = (-\frac{1}{2}\phi i\overline{\phi},a\phi i)$, and the gradient flow equations

- $a'(t) = -\frac{1}{2}\phi(t)i\overline{\phi}(t),$ $\phi'(t) = a(t)\phi(t)i$

Lemma 2.6. The quantities $2|a|^2 - |\phi|^2$ and $a \times (\phi i \overline{\phi})$, where $a \times b = \text{Im}(a \cdot b)$ is the cross product in $Im \mathbb{H}$, are preserved under the gradient flow.

Proof. Since $\overline{a} = -a$, and $\overline{(\alpha\beta)} = \overline{\beta}\overline{\alpha}$ for $\alpha, \beta \in \mathbb{H}$, we have $(\overline{\phi})' = -i\overline{\phi}\overline{a} = i\overline{\phi}a$. Now

$$(2a\overline{a} - \phi\overline{\phi})' = a\phi i\overline{\phi} + \phi i\overline{\phi}a - \phi i\overline{\phi}a - a\phi i\overline{\phi} = 0.$$

Similarly

$$(a \times \phi i \overline{\phi})' = (-\frac{1}{2}\phi i \overline{\phi}) \times \phi i \overline{\phi} + a \times (-2|\phi|^2 \cdot a) = 0.$$

This finishes the proof of Lemma 2.6.

We say that $y \in \mathcal{H}^1_\theta$ is in the stable set \mathcal{S} if the flowline starting at y converges to some (a,0). If the flowline converges to (0,0) then we say that y is in the stable set of the origin. The stable set of the origin is denoted by S_{θ} .

Lemma 2.7. Let $(a,\phi) \in \mathcal{H}^1_{\theta}$. Then $(a,\phi) \in \mathcal{S}$ if and only if $2|a|^2 \geq |\phi|^2$, $a \times \phi i \overline{\phi} = 0$ and $\langle a, \phi i \overline{\phi} \rangle \geq 0$, where \langle , \rangle is the usual real inner product on Im \mathbb{H} . Also $(a, \phi) \in \mathcal{S}_{\theta}$ if and only if $(a, \phi) \in \mathcal{S}$ and $2|a|^2 = |\phi|^2$. Furthermore $\mathcal{S} \setminus (0, 0)$ is a 5-dimensional manifold with boundary, where $\partial(\mathcal{S}\setminus(0,0))=\mathcal{S}_{\theta}\setminus(0,0)$.

Proof. It follows from Lemma 2.6 that $2|a|^2 \ge \phi|^2$, $a \times \phi i \overline{\phi} = 0$ and $\langle a, \phi i \overline{\phi} \rangle \ge 0$ are necessary conditions for (a, ϕ) to be in \mathcal{S} , and it is easy to check that they are also sufficient. The rest of the lemma is obvious.

Let $U' \subset \operatorname{Ker} d_1^*$ be a small neighborhood of θ . Since $\mathcal{M}_M(\mathcal{L}, g, \mu)$ is compact, we can fix $T_0 >> 0$ and a neighborhood U of θ in $\chi(T^3)$ satisfying the following: $U \subset U' \cap \mathcal{H}^1_{\theta}$, and for all $A \in \mathcal{M}(U) = (\overline{\partial}_{\infty})^{-1}(U)$ and $t \geq T_0$, the restriction of A to the slice $T^3 \times t$ is in U'.

Let $\mathcal{M}(U) \to \mathcal{M}(U)$ denote the base fibration, let $\mathcal{S}(U)$ denote the stable set of U, and let μ_{θ} be defined as above. It follows from the arguments of [MMR], that if U and U' are sufficiently small then we have a well-defined continuous map

$$\hat{\partial}_{\infty}: \tilde{\mathcal{M}}(U) \to \mathcal{S}(U),$$

such that the restriction of $A \in \tilde{\mathcal{M}}(U)$ to the tube $T^3 \times [T_0, \infty)$ is exponentially close, with exponent at least $\mu_{\theta}/2$ to the flowline in the center manifold starting from $\hat{\partial}_{\infty}(A)$. Now as a corollary of Lemma 2.7 and the arguments of [MMR] we have the following structure theorem.

Theorem 2.8. Fix a metric g as above. The following holds for generic μ . Let $\mathcal{K} \subset \mathcal{M}_M(\mathcal{L}, g, \mu)$ be defined as $\mathcal{K} = (p \circ \partial_{\infty})^{-1}(\theta)$, and let $\mathcal{K}' \subset \mathcal{K}$ denote the part of \mathcal{K} where the decay on the tube is exponential, with exponent at least $\mu_{\theta}/2$. Then generically \mathcal{K} and \mathcal{K}' are smoothly stratified spaces, satisfying dim $\mathcal{K}' = \dim(\mathcal{M}_M(\mathcal{L}, g, \mu)) - 5$, dim $\mathcal{K} = \dim(\mathcal{M}_M(\mathcal{L}, g, \mu)) - 1$, where in these equations dim means the formal dimension, i.e. minus the Euler characteristic of the appropriate elliptic complex. Furthermore $\mathcal{M}_M(\mathcal{L}, g, \mu) \setminus \mathcal{K}'$ is a smooth oriented manifold of dimension equal to its formal dimension, with boundary $\mathcal{K} \setminus \mathcal{K}'$.

3. Relative invariants

Let M be a smooth oriented compact 4-manifold with boundary, and suppose that ∂M is diffeomorphic to T^3 . Let \mathcal{C}'_M denote the set of isomorphism classes of $spin^c$ structures $\mathcal{L} \to M$ such that $\mathcal{L}|_{\partial M}$ is trivial, and let $\mathcal{C}_{M,\partial M}$ be defined as in Section 1. Let $r: \mathcal{C}_{M,\partial M} \to \mathcal{C}'_M$ denote the forgetful map.

Our aim in this section is to define relative Seiberg-Witten invariants

$$SW_M: \mathcal{C}_{M,\partial M} \to \mathbb{Z}$$

by using cylindrical end moduli spaces over M. So let $M' = M \cup_{T^3} T^3 \times [0, \infty)$, fix a flat metric h on T^3 , and a corresponding cylindrical end metric g on M'. Fix \mathcal{L} and let $\mathcal{L}_0 = r(\mathcal{L})$, and for a generic compactly supported $\mu \in \Omega^2_+(M', \mathbb{R})$ let $\mathcal{M}_M(\mathcal{L}_0, g, \mu)$ denote the cylindrical end moduli space over M'. Then by Theorem 2.2, we have continuous maps

$$\partial_{\infty}: \mathcal{M}_M(\mathcal{L}_0, g, \mu) \to \chi_0(T^3),$$

and $\overline{\partial}_{\infty} = p \circ \partial_{\infty} : \mathcal{M}_M(\mathcal{L}_0, g, \mu) \to \chi(T^3)$. Let $\theta \in \chi(T^3)$ be the trivial solution, and let $\Lambda(\mathcal{L}_0) = p^{-1}(\theta)$ denote the lattice of singular points in $\chi_0(T^3)$. It is easy to see, that there is a natural one-to-one correspondence between $\Lambda(\mathcal{L}_0)$ and $r^{-1}(\mathcal{L}_0)$. In particular there is a $\theta(\mathcal{L}) \in \Lambda(\mathcal{L}_0)$ that corresponds to \mathcal{L} . Now we take a geometric representative D of $\mu(pt)^{d/2}$, where

$$d = d(\mathcal{L}) = \frac{1}{4}(c_1(\det \mathcal{L}_0)^2 - 2e(M) - 3sign(M)),$$

and define

$$\mathcal{N}_M(\mathcal{L}, g, \mu, D) = \mathcal{M}_M(\mathcal{L}_0, g, \mu) \cap D \cap \partial_{\infty}^{-1}(\theta(\mathcal{L})).$$

Note. If $d \equiv 1$ (2), then we define the relative invariant SW_M to be zero. Of course it is clear that, $d = \dim \mathcal{M}_{M \cup (D^2 \times T^2)}$, so if d is odd, then all the invariants related in Theorem 1.1 and Theorem 1.2 are zero. From now on we assume $d \equiv 0$ (2). The usual cobordism arguments and Theorem 2.8 imply the following.

Theorem 3.1. Let M, \mathcal{L} , h, g be as above, and suppose that $b_2^+(M) > 1$. Then for all generic μ and D, the moduli space $\mathcal{N}_M(\mathcal{L}, g, \mu, D)$ is a compact, oriented 0-dimensional manifold, and by counting its points with signs, we define

$$SW_M(\mathcal{L}) = \#(\mathcal{N}_M(\mathcal{L}, g, \mu, D)).$$

 $SW_M(\mathcal{L})$ is independent of h, g, μ and D. $SW_M(\mathcal{L})$ is zero for all but finitely many $\mathcal{L} \in \mathcal{C}_{M,\partial M}$. Furthermore for any orientation preserving self-diffeomorphism $f: M \to M$, and $\mathcal{L} \in \mathcal{C}_{M,\partial M}$ we have

$$SW_M(\mathcal{L}) = (-1)^{\epsilon} SW_M(f^*(\mathcal{L})),$$

where $\epsilon \in \mathbb{Z}_2$ is the sign of the action of f^* on the homology orientation of $(M, \partial M)$.

Remark 3.2. If $b_2^+(M) = 1$, then the same definition gives the invariant $SW_M(\mathcal{L}, g, \mu)$, which in general can depend on g and μ .

An equivalent definition of SW_M , is the following. Take a small closed ball $B_{\mathcal{L}}$ around $\theta(\mathcal{L}) \in \chi_0(T^3)$, and let $S_{\mathcal{L}}^2 = \partial(B_{\mathcal{L}})$. Now let us define

$$\mathcal{N}'_M(\mathcal{L}, g, \mu, D) = \mathcal{M}_M(\mathcal{L}_0, g, \mu) \cap D \cap \partial_{\infty}^{-1}(S_{\mathcal{L}}^2).$$

It follows from Theorem 2.8, that for all generic μ and D, the moduli space $\mathcal{M}_M(\mathcal{L}_0, g, \mu) \cap D \cap \partial_{\infty}^{-1}(B_{\mathcal{L}})$ is a compact 1-manifold with boundary. Its boundary is $-\mathcal{N}'_M(\mathcal{L}, g, \mu, D) \coprod \mathcal{N}_M(\mathcal{L}, g, \mu, D)$. This implies:

Lemma 3.3. If $b_2^+(M) \geq 1$, then for all generic μ and D, the moduli space $\mathcal{N}'_M(\mathcal{L}, g, \mu, D)$ is a compact oriented 0-manifold, and we have

$$SW_M(\mathcal{L}) = \#(\mathcal{N}'_M(\mathcal{L}, g, \mu, D)).$$

This description of $SW_M(\mathcal{L})$ leads to the following simple type result.

Theorem 3.4. Suppose that $b_2^+(M) \ge 1$, and the kernel of $i_*: H_1(T^3, \mathbb{Z}) \to H_1(M, \mathbb{Z})$ is non-trivial. Then for each $\mathcal{L} \in \mathcal{C}_M$ with $d(\mathcal{L}) > 0$ we have

$$SW_M(\mathcal{L}) = 0,$$

where in the $b_2^+(M) = 1$ case this invariant is computed in the chamber determined by (g, μ) .

Proof. Let us take a geometric representative D' of $\mu(pt)^{\frac{d}{2}-1}$. Then

$$\mathcal{N} = \mathcal{M}_M(\mathcal{L}_0, q, \mu) \cap D' \cap \partial_{\infty}^{-1}(S_{\mathcal{L}}^2)$$

is a smooth, closed oriented 2-manifold. Let $\tilde{\mathcal{N}} \to \mathcal{N}$ be the base fibration, and let $c_1(\tilde{\mathcal{N}})$ denote its first Chern class. Then it follows from Lemma 3.3, that

$$SW_M(\mathcal{L}) = \langle c_1(\tilde{\mathcal{N}}), \mathcal{N} \rangle.$$

We compute $c_1(\tilde{\mathcal{N}})$ by making use of the map

$$\hat{\partial}_{\infty}: \tilde{\mathcal{M}}_M(\mathcal{L}_0, g, \mu) \cap \partial_{\infty}^{-1}(B_{\mathcal{L}}) \to \mathcal{H}^1_{\theta}$$

defined in Section 2. Note that $\hat{\partial}_{\infty}$ maps $\tilde{\mathcal{N}}$ to the stable set $\mathcal{S}(S_{\mathcal{L}}^2)$ of $S_{\mathcal{L}}^2$. It is easy to see, cf. Lemma 2.6 and Lemma 2.7, that $\mathcal{S}(S_{\mathcal{L}}^2)$ is the total space of a 2-dimensional disc bundle over $S_{\mathcal{L}}^2$, with first Chern class 1, where the zero section corresponds to $S_{\mathcal{L}}^2 \subset \mathcal{H}_{\theta}^1$. Since $(\hat{\partial}_{\infty}^{-1}(0,0)) \cap D'$ is empty by dimension counting, it follows from the continuity of $\hat{\partial}_{\infty}$, that if $B_{\mathcal{L}}$ is chosen to be small enough, then $\hat{\partial}_{\infty}(\tilde{\mathcal{N}}) \subset \mathcal{S}(S_{\mathcal{L}}^2) \setminus S_{\mathcal{L}}^2$. Since $\hat{\partial}_{\infty}$ is S^1 -equivariant, it follows that $c_1(\tilde{\mathcal{N}})$ is equal to the degree of $\partial_{\infty}: \mathcal{N} \to S_{\mathcal{L}}^2$.

After removing small open balls around the singular points of $\chi_0(T^3)$ we get a connected manifold $Y \subset \chi_0(T^3)$. Since Y is connected, we have a well defined degree deg of $\partial_{\infty} : \mathcal{M}_M(\mathcal{L}_0, g, \mu) \cap D' \cap \partial_{\infty}^{-1}(Y) \to Y$. Of course deg is equal to the degree of $\partial_{\infty} : \mathcal{N} \to S^2_{\mathcal{L}}$. On the other hand, since $\operatorname{Ker} i_* \neq 0$, it follows, that $\chi_0(T^3)$ and Y are non-compact, and so the compactness of $\mathcal{M}_M(\mathcal{L}_0, g, \mu) \cap D'$ implies that deg = 0. This finishes the proof of Theorem 3.4

4. Applications

Let M be a smooth compact oriented 4-manifold with boundary, and suppose that $\partial M = T^3$. For any orientation reversing diffeomorphsim $\phi : \partial (D^2 \times T^2) \to \partial M$ we define a closed oriented 4-manifold $M(\phi) = M \cup_{\phi} (D^2 \times T^2)$.

In this section we establish relations between the relative Seiberg-Witten invariant of M and the Seiberg-Witten invariant of $M(\phi)$.

Let $\gamma \in \phi_*([\partial D^2 \times pt]) \in H_1(\partial M, \mathbb{Z})$, and let us assume that $\gamma \in \operatorname{Ker} i_*$, where $i_*: H_1(\partial M, \mathbb{R}) \to H_1(M, \mathbb{R})$. In this case we can fix a $b \in H_2(M, \partial M, \mathbb{R})$, such that $\partial b = \gamma$. Now for every $spin^c$ structure $\mathcal{L} \in \mathcal{C}_{M(\phi)}$, such that \mathcal{L} restricts trivially to $D^2 \times T^2$, we define $\Lambda^+(\mathcal{L}) \subset \mathcal{C}_M$ in the following way. Let $\mathcal{L}_0 \to M$ be the restriction of \mathcal{L} to M, and let $\Lambda(\mathcal{L}_0) = r^{-1}(\mathcal{L}_0) \subset \mathcal{C}_{M,\partial M}$. By pairing

with b we get a linear map $f: \Lambda(\mathcal{L}_0) \to \mathbb{R}$, where $f(\mathcal{L}') = \langle c_1(\det \mathcal{L}'), b \rangle$. We say that $\mathcal{L}' \in \Lambda^+(\mathcal{L})$, if $\mathcal{L}' \in \Lambda(\mathcal{L}_0)$ and

$$\langle c_1(\det \mathcal{L}), b + [D^2 \times pt] \rangle < f(\mathcal{L}').$$

Note that the definition of $\Lambda^+(\mathcal{L})$ doesn't depend on the choice of b. Now we can state our result.

Theorem 4.1. Let M, ϕ and $M(\phi)$ be as above. Suppose that $b_2^+(M) \geq 1$ and that $\gamma \in \text{Ker } i_*$. Then for all spin^c structures $\mathcal{L} \to M(\phi)$, that restrict trivially to $D^2 \times T^2$, we have

$$SW_{M(\phi)}(\mathcal{L}) = \sum_{\mathcal{L}' \in \Lambda^+(\mathcal{L})} SW_M(\mathcal{L}').$$

Proof. Fix a cylindrical end metric g_1 on $D^2 \times T^2$, such that the scalar curvature of g_1 is non-negative, and positive at some points, and the restriction of g_1 to the end is of the form $h_1 + dt^2$, where h_1 is a flat metric on T^3 . Then ϕ and h_1 induce a flat metric h on ∂M . Let g be a compatible cylindrical end metric on $M' = M \cup_{T^3} (T^3 \times [0, \infty))$. Now let $\mathcal{N} = \mathcal{N}_M(\mathcal{L}_0, g, \mu, D)$, where \mathcal{L}_0 is the restriction of \mathcal{L} to M, cf. Section 3. Then it follows from Theorem 2.8, that for generic μ and D, the moduli space \mathcal{N} is a smooth compact 1-manifold with boundary $\cup_{\mathcal{L}' \in \Lambda(\mathcal{L}_0)} \partial_{\infty}^{-1}(\theta(\mathcal{L}'))$.

On the $D^2 \times T^2$ side the non-negative scalar curvature implies that the cylindrical end moduli space $\mathcal{M}_{D^2 \times T^2}$ over $D^2 \times T^2$ is equal to the space of flat S^1 connections with trivial spinor fields modulo those gauge automorphisms that can be extended over $M(\phi)$. We have an inclusion $\partial_{\infty} : \mathcal{M}_{D^2 \times T^2} \to \chi_0(\partial M)$. Note that for all $A \in \mathcal{M}_{D^2 \times T^2}$ we have $\operatorname{Ker} D_A = 0$. Clearly ∂_{∞} depends on ϕ . Let W_{γ} be the image of $\mathcal{M}_{D^2 \times T^2}$. Then $W_{\gamma} \subset \chi_0(\partial M)$ is the disjoint union of hypersurfaces, each being the image of an affine linear subspace in $\mathbb{R}^3 = \tilde{\chi}_0(\partial M)$. The different components correspond to the different extensions of \mathcal{L}_0 to $M(\phi)$. Note that W_{γ} avoids the singular points in $\chi_0(\partial M)$. To see that let us choose a trivialization of the spin^c structure over $D^2 \times T^2$ by fixing a spin structure over $D^2 \times T^2$. It is easy to see, that the restriction to the boundary is the product of a spin structure over T^2 and the twisted spin structure over S^1 with holonomy -1. It follows that for all flat connection A over $D^2 \times T^2$, we have $\operatorname{Ker}(D_{\partial_{\infty}(A)}) = 0$.

Let $W_{\gamma}(\mathcal{L})$ denote the component of W_{γ} that corresponds to \mathcal{L} . By choosing μ generic we can assume that $\partial_{\infty}: \mathcal{N} \to \chi_0(T^3)$ and W_{γ} are transverse. Since every point in the intersection of $\partial_{\infty}(\mathcal{N})$ and W_{γ} is a smooth point of $\chi_0(T^3)$, it follows that every point in $\partial_{\infty}^{-1}(W_{\gamma})$ is represented by a solution which decays exponentially with a fixed exponent to the boundary value. Standard gluing results as in [T] or [MM] show that the moduli space for M_{γ} is identified with

$$\mathcal{N} \times_{\chi_0(T^3)} W_{\gamma} = \partial_{\infty}^{-1}(W_{\gamma}).$$

It follows that that $SW_{M(\phi)}(\mathcal{L})$ is equal to the oriented intersection of $\partial_{\infty}(\mathcal{N})$ and $W_{\gamma}(\mathcal{L})$.

To compute this intersection, let us define $g: \mathcal{N} \to \mathbb{R}$ by

$$g(A,\phi) = \frac{i}{2\pi} \int_b F_A,$$

where $b \in H_2(M, \partial M, \mathbb{R})$ with $\partial b = \gamma$. Note that this integral is well-defined because of the decay condition on A. It follows from the definitions of f and g, that if $\partial_{\infty}(A, \phi) = \theta(\mathcal{L}')$, then $g(A, \phi) = f(\mathcal{L}')$. Let

$$\mathcal{N}(\mathcal{L}) = \{ (A, \phi) \in \mathcal{N} | g(A, \phi) = \langle c_1(\det \mathcal{L}), b + [D^2 \times pt] \rangle \}.$$

It is easy to see that $\mathcal{N}(\mathcal{L}) = \mathcal{N} \cap \partial_{\infty}^{-1}(W_{\gamma}(\mathcal{L}))$. It follows that $\mathcal{N}(\mathcal{L})$ is a transverse level set in \mathcal{N} , and for all $(A, \phi) \in \mathcal{N}(\mathcal{L})$ the boundary value $\partial_{\infty}(A, \phi)$ is nonsingular. Now we have

$$SW_{M(\phi)}(\mathcal{L}) = \#(\mathcal{N}(\mathcal{L})).$$

On the other hand $\#(\mathcal{N}(\mathcal{L}))$ is clearly equal to the number, counted with signs, of those endpoints of \mathcal{N} for which $g(A,\phi) > \langle c_1(\det \mathcal{L}), b + [D^2 \times pt] \rangle$. It follows, that

$$\#\mathcal{N}(\mathcal{L}) = \sum_{\mathcal{L}' \in \Lambda^+(\mathcal{L})} \#(\partial_{\infty}^{-1}(\mathcal{L}')) = \sum_{\mathcal{L}' \in \Lambda^+(\mathcal{L})} SW_M(\mathcal{L}')$$

and this finishes the proof of Theorem 4.1.

Proof of Corollary 1.6. Let X be as in the statement of the corollary. Suppose that $\mathcal{L} \in \mathcal{C}_X$, and $d(\mathcal{L}) > 0$. Let $M = X \setminus nd(T^2)$, where nd denotes the open tubular neighborhood. Then $b_2^+(M) = b_2^+(X) - 1 \ge 1$. Let $\mathcal{L}_0 \in \mathcal{C}_M^0$ denote the restriction of \mathcal{L} to M. Then $d(\mathcal{L}_0) = d(\mathcal{L}) > 0$. Since $[T^2]$ is not a torsion class it follows from Theorem 3.4, that for all $\mathcal{L}' \in \Lambda(\mathcal{L}_0)$ we have $SW_M(\mathcal{L}') = 0$. Now we can apply the formula in Theorem 4.1, and that gives $SW_X(\mathcal{L}) = 0$.

Proof of Theorem 1.3. It follows from Theorem 4.1, that for all $\mathcal{L}_0 \in \mathcal{C}_M'$ we have

$$\sum_{\mathcal{L}' \in \Lambda(\mathcal{L}_0)} SW_M(\mathcal{L}') \exp(\rho(c(\mathcal{L}'))) \cdot (t - t^{-1})^{-1} = \sum_{\mathcal{L} \in V_{\gamma}(\mathcal{L}_0)} SW_{M(\phi)} \exp(c_1(\det \mathcal{L})),$$

where $t = \exp(T)$. By summing over $\mathcal{L}_0 \in \mathcal{C}_M'$ we get the formula of Theorem 1.3.

Proof of Corollary 1.4. Let $\operatorname{Diff}^+(M)$ denote the group of orientation preserving self-diffeomorphisms of M. Then $\operatorname{Diff}^+(M)$ acts naturally on $\mathcal{C}_{M,\partial M}$. We claim that if the orbit of $\mathcal{L} \in \mathcal{C}_{M,\partial M}$ is not finite under this action, then $SW_M(\mathcal{L}) = 0$. This follows from the naturality of SW_M and the fact that $SW_M(\mathcal{L})$ is zero for all but finitely many $\mathcal{L} \in \mathcal{C}_{M,\partial M}$.

We define the subset $W \subset \mathcal{C}_{M,\partial M}$ as follows: $\mathcal{L} \in W$ if $c_1(\det(\mathcal{L}))$ is trivial on V, where $V \subset H_2(M,\partial M,\mathbb{Z})$ is as in Corollary 1.4. Since each $x \neq 0 \in \mathbb{Z}^2$ has infinite order under the action of $\mathbb{SL}_2(\mathbb{Z})$, it follows from the definition of

V, that for each $\mathcal{L} \in \mathcal{C}_{M,\partial M} \setminus W$ the orbit of \mathcal{L} under Diff⁺ is infinte, and so it follows that $SW_M(\mathcal{L}) = 0$

Now let us define $W_1 \subset H^2(M, \partial M, \mathbb{R})$ by: $x \in W_1$ if x restricts trivially to V. Let $\rho_a : H^2(M, \partial M, \mathbb{R}) \to H^2(M_a, \mathbb{R}), \ \rho_\gamma : H^2(M, \partial M, \mathbb{R}) \to H^2(M_\gamma, \mathbb{R})$ be given by Mayer-Vietoris sequence. Then it is easy to see, that $\rho_a|_{W_1}$ and $\rho_\gamma|_{W_1}$ are one-to-one. On the other hand we proved above that all basic classes $K \in \mathcal{B}_M$ satisfy $K \in W_1$. Now applying Theorem 1.3 for M_γ and M_a shows

$$SW_{M_{\alpha}}^* \cdot \sinh(T_{\gamma}) = SW_{M_a}^* \cdot \sinh(T_a),$$

and this finishes the proof of Corollary 1.4.

Proof of Theorem 1.1. Let us take $\mathcal{N} = \mathcal{N}_M(\mathcal{L}_0, g, \mu, D)$, where μ and D are generic. Let $W_{\gamma} \subset \chi_0(\partial M)$ be defined as in the proof of Theorem 4.1. Then W_{γ} is the disjoint union of hypersurfaces, all of which avoid the singular points in $\chi_0(T^3)$, where different components correspond to different extensions of \mathcal{L}_0 to M_{γ} . Note that W_{γ} depends on γ . For generic choices of μ and D, the intersection of $\partial_{\infty}(N)$ and W_{γ} is transverse, and clearly as above

$$\sum_{\mathcal{L} \in V_{\gamma}(\mathcal{L}_0)} SW_{M_{\gamma}}(\mathcal{L}) = \#(\mathcal{N} \cap \partial_{\infty}^{-1}(W_{\gamma})).$$

It is easy to see that for any curve $\delta \subset \chi_0(T^3)$, that connects two singular points in $\chi_0(T^3)$ or any loop δ in $\chi_0(T^3)$ such that δ intersects W_a , W_b , W_c and W_{γ} transversally we have

$$\#(\delta \cap W_{\gamma}) = p \cdot \#(\delta \cap W_a) + q \cdot \#(\delta \cap W_b) + r \cdot \#(\delta \cap W_c)$$

and since $\partial_{\infty}(N)$ is the finite union of such curves and loops, this proves Theorem 1.1

References

- [APS] M. F. Atiyah, V. K. Patodi and I. M. Singer Spectral assymetry and riemannian geometry I, Math. Proc. Camb. Phil. Soc. 77 (1975), 97–118.
 - [C] W. Chen, Dehn surgery formula for Seiberg-Witten invariants of homology 3spheres, preprint 1997.
 - [D] S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math. Soc. 33 (1996), 45–70.
- [DK] S. K. Donaldson and P. B. Kronheimer, 'The geometry of four-manifolds', Clarendon, Oxford, 1990.
- [FS1] R. Fintushel and R. Stern, Surgery in cups neighborhoods and the geography of irreducible 4-manifolds, Invent. Math. 117 (1994), 455-523.
- [FS2] _____, Rational blowdowns of smooth 4-manifolds, preprint 1995.
- [FS3] _____, Knots, links and 4-manifolds, preprint 1996.
- [GM] R. E. Gompf and T. S. Mrowka, Irreducible 4-manifolds need not be complex, Ann. of Math. 138 (1993), 61–111.
- [KM1] P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Diff. Geom. 41 (1995), 573–735.
- [KM2] _____, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808.

- [L] Y. Lim, Seiberg-Witten invariants for 3-manifolds and product formulae, preprint
- [M] J. W. Morgan, 'The Seiberg-Witten Equations and applications to the topology of smooth four-manifolds', Mathematical Notes, 44, Princeton University Press, 1996.
- [MM] J. W. Morgan and T. S. Mrowka, The gluing theorem near smooth points of the character variety, preprint 1993.
- [MMR] J. W. Morgan, T. S. Mrowka and D. Ruberman, The L^2 -moduli space on manifolds with cylindrical ends, Monogr. Geom. Topology 2 (1993).
- [MMSzT] J. W. Morgan, T. S. Mrowka, Z. Szabó and C. H. Taubes, in preparation.
 - [MSz] J. W. Morgan and Z. Szabó, Embedded tori in 4-manifolds, Topology (to appear).
 - [MSzT] J. W. Morgan, Z. Szabó and C. H. Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom-Conjecture, J. Diff. Geom, 44 (1996), 706–788.
 - [MT] G. Meng and C. H. Taubes, <u>SW</u> = 3D Milnor torsion, preprint 1996.
 - [Sz1] Z. Szabó, Simply-connected irreducible 4-manifolds with no symplectic structures, Invent. Math. (to appear).
 - [Sz2] _____, Exotic 4-manifolds with $b_2^+ = 1$, Math. Res. Lett. 3 (1996), 731–741.
 - [Si] L. Simon, Asymptotics for a class of non-linear evolution equations with applications to geometric problems, Ann of Math., 118 (1983), 525–571.
 - [T] C. H. Taubes, Gauge theory on assymptotically periodic 4-manifolds, J. Diff. Geom. 25 (1987), 363–430.
 - [Wi] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY 10027 E-mail address: jm@math.columbia.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

E-mail address: mrowka@math.mit.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544-1000 $E\text{-}mail\ address:}$ szabo@math.princeton.edu