ERRATUM TO "ALMOST-COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION"

DAVID BORTHWICK AND ALEJANDRO URIBE

The proof of Theorem 2.3 of [1] contains an erroneous assumption. It is (tacitly) assumed the Laplacian Δ_k on $\mathcal{E} \otimes L^{\otimes k}$ preserves the degree decomposition of \mathcal{E} . However, Δ_k is the Laplacian for the Clifford connection, not the Levi-Cevita connection, and in general only preserves degree mod 2. The corrected statement is:

Theorem 2.3. There exist constants C, K such that, for $\phi \in C^{\infty}(X, \mathcal{E} \otimes L^{\otimes k})$, k > K, $D\phi = 0$ implies that

$$\|\psi\| < Ck^{-1/2} \|\phi_0\|,$$

where $\phi = \phi_0 + \psi$ is the decomposition of ϕ into zero and higher degree components.

Proof. In general we have $\langle \phi, D^2 \phi \rangle = \langle \phi, (\Delta_k + k\sigma + R)\phi \rangle$. So $D\phi = 0$ implies

$$\langle \phi, \Delta_k \phi \rangle + \langle \phi, k \sigma \phi \rangle = -\langle \phi, R \phi \rangle.$$

By [1], Theorem 2.1 we have

$$\langle \phi, \Delta_k \phi \rangle > (kn - C') \|\phi\|^2$$
,

and the form of σ implies

$$\langle \phi, k\sigma\phi \rangle \ge -kn \|\phi_0\|^2 + k(2-n) \|\psi\|^2$$
.

Putting these facts together, we deduce that

$$-C' \|\phi_0\|^2 + (2k - C') \|\psi\|^2 < \|R\| \|\phi\|^2,$$

which implies

$$\|\psi\|^2 < Ck^{-1} \|\phi\|^2$$
.

This same method should also be used in the proof of Theorem 4.2. Thus in Theorems 4.2, 4.3 and Corollary 4.4 the error terms should be $O(k^{-1/2})$ instead of O(1/k).

Received February 19, 1998.

First author supported in part by NSF grant DMS-9401807.

Second author supported in part by NSF grant DMS-9623054.

References

1. D. Borthwick and A. Uribe, Almost-complex structures and geometric quantization, Math. Res. Lett. 3 (1996), 845–861.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVERSITY, ATLANTA $E\text{-}mail\ address:}$ davidb@mathcs.emory.edu

MATHEMATICS DEPARTMENT, UNIVERSITY OF MICHIGAN, ANN ARBOR $E\text{-}mail\ address:}$ uribe@math.lsa.umich.edu