ON GINZBURG'S LAGRANGIAN CONSTRUCTION OF REPRESENTATIONS OF GL(n)

ALEXANDER BRAVERMAN AND DENNIS GAITSGORY

ABSTRACT. In [3] V. Ginzburg observed that one can realize irreducible representations of the group $GL(n,\mathbb{C})$ in the cohomology of certain Springer's fibers for the group GL_d (for all $d \in \mathbb{N}$). However, Ginzburg's construction of the action of GL(n) on this cohomology was a bit artificial (he defined the action of Chevalley generators of the Lie algebra gl_n on the corresponding cohomology by certain explicit correspondences, following the work of A. Beilinson, G. Lusztig and R. MacPherson ([1]), who gave a similar construction of the quantum group $U_q(gl_n)$).

In this note we give a very simple geometric definition of the action of the whole group $GL(n, \mathbb{C})$ on the above cohomology and simplify the results of [3].

1. Introduction

1.1. The combinatorics. Throughout this note we will fix natural numbers n and d. E will be a fixed n-dimensional (complex) vector space E and G will denote the group GL(E). Let, in addition, \mathfrak{g}_d denote the Lie algebra $\mathbf{gl}(d,\mathbb{C})$.

$$\mathcal{P}_{n,d} = \{ (n_1, \dots, n_k) | \sum_{i=1}^k n_i = d; \quad n_i \le n \text{ for all } i = 1, \dots, k$$
 and $n_1 \ge n_2 \ge \dots \ge n_k \ge 1 \}.$

With any $\mathbf{P} \in \mathcal{P}_{n,d}$ one usually associates three objects: an irreducible representation $\rho(\mathbf{P})$ of the symmetric group S_d , an irreducible representation $V(\mathbf{P})$ of G and a nilpotent orbit $\mathcal{O}_{\mathbf{P}}$ in \mathfrak{g}_d .

First of all, $\mathcal{O}_{\mathbf{P}}$ by definition consists of all nilpotent matrices in \mathfrak{g}_d , which have k Jordan blocks of sizes n_1, \ldots, n_k .

The representation $\rho(\mathbf{P})$ is characterized uniquely by the following property: Let $S_{\mathbf{P}} = S_{n_1} \times \ldots \times S_{n_k}$ be the corresponding subgroup of S_d . If the partition \mathbf{P} is a (strict) refinement of a partition \mathbf{P}' , we shall write $\mathbf{P} < \mathbf{P}'$. We have:

$$\operatorname{Hom}_{S_d}(\rho(\mathbf{P}),\operatorname{Ind}_{S_{\mathbf{P}}}^{S_d}(\operatorname{sign})) \neq 0, \ \operatorname{Hom}_{S_d}(\rho(\mathbf{P}),\operatorname{Ind}_{S_{\mathbf{P'}}}^{S_d}(\operatorname{sign})) = 0, \ \operatorname{if} \ \mathbf{P} < \mathbf{P'}.$$

Finally, we set
$$V(\mathbf{P}) = \text{Hom}_{S_d}(\rho(\mathbf{P}), E^{\otimes d})$$
.

Received January 15, 1999.

The work of both authors was partially supported by the National Science Foundation and by the Ellentuck Fund

1.2. The variety $X_{n,d}$. Fix n and d as above. Let $X_{n,d}$ be the complex algebraic variety whose \mathbb{C} -points consist of all partial flags (filtrations) \mathcal{V} of the form

$$(1.1) 0 = V_0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = \mathbb{C}^d.$$

The variety $X_{n,d}$ splits into connected components numbered by the set $Q_{n,d}$ of *n*-tuples of non-negative integers $\mathbf{d} = (d_1, \dots, d_n)$ with $d_1 + \dots + d_n = d$:

For $\mathbf{d} \in \mathcal{Q}_{n,d}$ as above, the corresponding connected component (denoted as $X_{n,d}^{\mathbf{d}}$) consists of flags \mathcal{V} , for which $\dim(V_i/V_{i-1}) = d_i$. We set $|\mathbf{d}| = \dim X_{n,d}^{\mathbf{d}}$. Let now

$$\mathcal{N}_{n,d} = \{ a \in \mathfrak{g}_d | \ a^n = 0 \}.$$

 $\mathcal{N}_{n,d}$ is a closed subvariety of the nilpotent cone of \mathfrak{g}_d .

Let $\mathcal{N}_{n,d} = T^*X_{n,d}$ denote the cotangent bundle to $X_{n,d}$. It may be identified with the set of all pairs

$$\{\mathcal{V} \in X_{n,d}, a \in \mathfrak{g}_d | \text{ such that } a(V_i) \subset V_{i-1} \}.$$

For $\mathbf{d} \in \mathcal{Q}_{n,d}$ we shall denote by $\widetilde{\mathcal{N}_{n,d}}^{\mathbf{d}}$ the corresponding connected component of $\widetilde{\mathcal{N}_{n,d}}$.

Let $\pi^{n,d}: \widetilde{\mathcal{N}_{n,d}} \to \mathfrak{g}_d$ denote the map, given by $\pi^{n,d}((\mathcal{V},a)) = a$. Then $\pi^{n,d}$ is actually a map from $\widetilde{\mathcal{N}_{n,d}}$ to $\mathcal{N}_{n,d}$ and it is a semi-small (cf. [2]) resolution of singularities of $\mathcal{N}_{n,d}$.

1.3. The main result. Recall that we have fixed an *n*-dimensional complex vector space E and we have set G = GL(E).

Fix now a decomposition

(1.4)
$$E = E_1 \oplus \cdots \oplus E_n$$
 such that dim $E_i = 1$.

For $\mathbf{d} \in \mathcal{Q}_{n,d}$ we shall denote by $E^{\mathbf{d}}$ the 1-dimensional vector space $E_1^{\otimes d_1} \otimes \ldots \otimes E_n^{\otimes d_n}$, where $\mathbf{d} = (d_1, \ldots, d_n)$.

Let $T \subset G$ be the maximal torus corresponding to the decomposition $E = E_1 \oplus \cdots \oplus E_n$. An element $\mathbf{d} \in \mathcal{Q}_{n,d}$ defines a character of T: this is the character by which T acts on $E^{\mathbf{d}}$.

Let now $\mathcal{L}_{E}^{n,d}$ denote the perverse sheaf on $\widetilde{\mathcal{N}_{n,d}}$ described as follows:

For $\mathbf{d} \in \mathcal{Q}_{n,d}$, we set the restriction of $\mathcal{L}_E^{n,d}$ to $\mathcal{N}_{n,d}^{\mathbf{d}}$ to be the 1-dimensional constant sheaf $E^{\mathbf{d}}[2|\mathbf{d}|]$. We endow $\mathcal{L}_E^{n,d}$ with a T-equivariant structure by letting T act on $E^{\mathbf{d}}[2|\mathbf{d}|]$ via the corresponding character.

The following result is essentially due to V. Ginzburg (cf. [3]) in a slightly less invariant form. The main purpose of this paper is to provide a simple proof of this result.

Theorem 1.4. There is a canonical T-equivariant isomorphism

(1.5)
$$\pi_*^{n,d}(\mathcal{L}_E^{n,d}) \simeq \bigoplus_{\mathbf{P} \in \mathcal{P}_{n,d}} IC_{\mathbf{P}} \otimes V(\mathbf{P}),$$

where $IC_{\mathbf{P}}$ denotes the intersection cohomology sheaf on the closure of $\mathcal{O}_{\mathbf{P}}$ in $\mathcal{N}_{n,d}$.

Remark. Note that the right hand side of (1.5) is independent of the decomposition $E = E_1 \oplus ... \oplus E_n$, though the sheaf $\mathcal{L}_E^{n,d}$ does depend on it.

For any $\mathbf{d} \in \mathcal{Q}_{n,d}$ and $\mathbf{P} \in \mathcal{P}_{n,d}$ let us denote by $V(\mathbf{P})_{\mathbf{d}}$ the corresponding weight space of $V(\mathbf{P})$. It is easy to see that $\mathcal{Q}_{n,d}$ exhaust all the weights that can appear in $V(\mathbf{P})$, i.e.

(1.6)
$$V(\mathbf{P}) = \bigoplus_{\mathbf{d} \in \mathcal{Q}_{n,d}} V(\mathbf{P})_{\mathbf{d}}.$$

By decomposing both sides of (1.5) with respect to the characters of T, we obtain:

Corollary 1.5. There is a canonical T-equivariant isomorphism

(1.7)
$$\pi_*^{n,d} \left(\mathcal{L}_E^{n,d} |_{\widetilde{\mathcal{N}}_{n,d}}^{\mathbf{d}} \right) \simeq \bigoplus_{\mathbf{P} \in \mathcal{P}_{n,d}} IC_{\mathbf{P}} \otimes V(\mathbf{P})_{\mathbf{d}}.$$

By applying Theorem 1.4 to $E = \mathbb{C}^n$ with the standard decomposition into one-dimensional subspaces and the definition of intersection cohomology sheaf we obtain the following result:

For $a \in \mathcal{N}_{n,d}$ consider

$$(1.8) H^{\text{top}}((\pi^{n,d})^{-1}(a),\mathbb{C}) := \bigoplus_{\mathbf{d} \in \mathcal{O}_{n,d}} H^{\frac{1}{2}\operatorname{codim}_{\mathcal{N}_{n,d}}(\mathcal{O}_{\mathbf{P}})}((\pi^{n,d})^{-1}(a) \cap X_{n,d}^{\mathbf{d}},\mathbb{C}).$$

Corollary 1.6. (cf. [3] and [4]) Let $\mathbf{P} \in \mathcal{P}_{n,d}$ and let $a \in \mathcal{O}_{\mathbf{P}}$. Then the vector space $H^{top}((\pi^{n,d})^{-1}(a),\mathbb{C})$ can be naturally identified with the space of the representation $V(\mathbf{P})$ of $GL(n,\mathbb{C})$. Under this identification, the direct summand

$$H^{\frac{1}{2}\operatorname{codim}_{\mathcal{N}_{n,d}}(\mathcal{O}_P)}((\pi^{n,d})^{-1}(a)\cap X_{n,d}^{\mathbf{d}},\mathbb{C})\subset H^{top}((\pi^{n,d})^{-1}(a),\mathbb{C}),$$

goes over to the weight space $V(\mathbf{P})_{\mathbf{d}} \subset V(\mathbf{P})$.

Remark. The fact that $\pi^{n,d}$ is semi-small means that for $a \in \mathcal{O}_{\mathbf{P}}$ the variety $(\pi^{n,d})^{-1}(a)$ has no irreducible components of dimension larger than $\frac{1}{2}\operatorname{codim}_{\mathcal{N}_{n,d}}(\mathcal{O}_{\mathbf{P}})$. Hence, the vector space

$$H^{\frac{1}{2}\operatorname{codim}_{\mathcal{N}_{n,d}}(\mathcal{O}_{\mathbf{P}})}((\pi^{n,d})^{-1}(a)\cap X_{n,d}^{\mathbf{d}},\mathbb{C})$$

is endowed with a natural basis, consisting of the fundamental classes of irreducible components of dimension $\frac{1}{2} \operatorname{codim}_{\mathcal{N}_{n,d}}(\mathcal{O}_{\mathbf{P}})$.

2. Proof of Theorem 1.4

2.1. Digression on the Springer correspondence. Let \mathfrak{g} be any reductive Lie algebra and let W denote the corresponding Weyl group. Let us choose an invariant non-degenerate bilinear form on \mathfrak{g} , by means of which we shall identify \mathfrak{g} with its dual space \mathfrak{g}^* .

Recall the construction of the Springer sheaf on \mathfrak{g} . Let $\widetilde{\mathfrak{g}}$ denote the variety of all pairs (\mathfrak{b}, x) , where \mathfrak{b} is a Borel subalgebra of \mathfrak{g} and $x \in \mathfrak{b}$. Let $p : \widetilde{\mathfrak{g}} \to \mathfrak{g}$ denote the natural morphism.

We set
$$\mathbf{Spr} = p_* \mathbb{C}_{\widetilde{\mathfrak{g}}}[\dim \mathfrak{g}].$$

It is well-known (cf. [2]) that **Spr** is a semi-simple perverse sheaf on \mathfrak{g} . Moreover, one has a canonical isomorphism

(2.1)
$$\operatorname{End}(\mathbf{Spr}) \simeq \mathbb{C}[W],$$

where $\mathbb{C}[W]$ denotes the group algebra of W.

If now ρ is any (not necessarily irreducible) finite-dimensional representation of W, we attach to it a perverse sheaf \mathcal{S}_{ρ} on \mathfrak{g} by setting

$$(2.2) S_{\rho} = (\mathbf{Spr} \otimes \rho)^{W}$$

It follows easily from (2.1) that S_{ρ} is semi-simple and is irreducible if and only if ρ is irreducible.

Let **F** denote the Fourier-Deligne transform functor, that maps the category of \mathbb{C}^* -equivariant perverse sheaves on \mathfrak{g} to itself (this functor is well-defined, since we have chosen an identification $\mathfrak{g} \simeq \mathfrak{g}^*$).

We shall need the following version of the Springer correspondence for the Lie algebra $\mathfrak{g} = \mathfrak{g}_d$ (cf. [2], [4]):

Theorem 2.2. Let $\rho = \rho(\mathbf{P})$ for $\mathbf{P} \in \mathcal{P}_{n,d}$. Then $\mathbf{F}(\mathcal{S}_{\rho}) \simeq IC_{\mathbf{P}}$, where $IC_{\mathbf{P}}$ is viewed as a perverse sheaf on \mathfrak{g}_d via the closed embedding $\mathcal{N}_{n,d} \hookrightarrow \mathfrak{g}_d$.

2.3. A reformulation of Theorem 1.4. Consider $E^{\otimes d}$ as a representation of the group $S_d \times G$. Since our constructions are functorial, the sheaf $\mathcal{S}_{E^{\otimes d}}$ carries a G-action and hence a T-action.

Using Theorem 2.2, we can reformulate Theorem 1.4 as follows:

Theorem 2.4. One has a canonical T-equivariant isomorphism

(2.3)
$$\pi_*^{n,d}(\mathcal{L}_E^{n,d}) \simeq \mathbf{F}(\mathcal{S}_{E^{\otimes d}})$$

(note that T acts naturally on both sides of (2.3)).

The rest of this section is occupied by the proof of Theorem 2.4.

Proof. Since \mathbf{F} is an involution on the category of \mathbb{C}^* -equivariant sheaves on \mathfrak{g} , we must construct an isomorphism between $\mathbf{F}(\pi_*^{n,d}(\mathcal{L}_E^{n,d}))$ and $\mathcal{S}_{E^{\otimes d}}$.

First, we shall give an explicit description of the sheaf $\mathbf{F}(\pi_*^{n,d}(\mathcal{L}_E^{n,d}))$.

Let $\widetilde{\mathfrak{g}}_{n,d}$ denote the variety of all pairs (\mathcal{V},x) where $\mathcal{V} \in X_{n,d}$ and $x \in \mathfrak{g}_d$ such that $x(V_i) \subset V_i$. We have natural projections $p: \widetilde{\mathfrak{g}}_{n,d} \to \mathfrak{g}_d$ and $q: \widetilde{\mathfrak{g}}_{n,d} \to X_{n,d}$ given by $p((\mathcal{V},x)) = x$ and $q((\mathcal{V},x)) = \mathcal{V}$, respectively.

The variety $\widetilde{\mathfrak{g}}_{n,d}$ is a vector bundle over $X_{n,d}$ and for $\mathbf{d} \in \mathcal{Q}_{n,d}$ we shall denote by $\widetilde{\mathfrak{g}}_{n,\mathbf{d}}$ the preimage of the corresponding connected component of $X_{n,d}$.

It is known that p is a small map in the sense of Goresky-MacPherson and that its restriction to any connected component of $\widetilde{\mathfrak{g}}_{n,d}$ is surjective. In particular, any connected component of $\widetilde{\mathfrak{g}}_{n,d}$ has dimension $d^2 = \dim \mathfrak{g}_d$.

We introduce a perverse sheaf \mathcal{K}_E over $\widetilde{\mathfrak{g}}_{n,d}$ as follows:

For $\mathbf{d} \in \mathcal{Q}_{n,d}$ its direct summand (denoted by $\mathcal{K}_E^{\mathbf{d}}$) that lives over the connected component $\widetilde{\mathfrak{g}}_{n,\mathbf{d}}$ is set to be $E^{\mathbf{d}}[d^2]$.

Lemma 2.5. One has a canonical T-equivariant isomorphism

(2.4)
$$\mathbf{F}(\pi_*^{n,d}(\mathcal{L}_E^{n,d})) \simeq p_* \mathcal{K}_E.$$

Proof. Both $\widetilde{\mathcal{N}}_{n,d}$ and $\widetilde{\mathfrak{g}}_{n,d}$ are vector subbundles of the trivial bundle $X_{n,d} \times \mathfrak{g}_d$ over $X_{n,d}$. Since we have chosen an identification $\mathfrak{g}_d \simeq \mathfrak{g}_d^*$, this trivial bundle is canonically self-dual and

$$(2.5) \widetilde{\mathcal{N}_{n,d}} = \widetilde{\mathfrak{g}}_{n,d}^{\perp},$$

where $\widetilde{\mathfrak{g}}_{n,d}^{\perp}$ denotes the orthogonal complement (in the trivial bundle $X_{n,d} \times \mathfrak{g}_d$) to the vector subbundle $\widetilde{\mathfrak{g}}_{n,d}$.

Let $\widetilde{\mathbf{F}}$ denote the Fourier-Deligne transform functor that maps the category of \mathbb{C}^* -equivariant perverse sheaves on $X_{n,d} \times \mathfrak{g}_d$ to itself. It follows from the standard properties of the functor $\widetilde{\mathbf{F}}$ that one has a canonical T-equivariant isomorphism

$$\widetilde{\mathbf{F}}(\mathcal{L}_E^{n,d}) \simeq \mathcal{K}_E.$$

This observation, together with the fact that Fourier transform commutes with direct images, implies Lemma 2.5.

2.6. It remains to show that $p_*\mathcal{K}_E$ is isomorphic to $\mathcal{S}_{E^{\otimes d}}$. But the map p is small in the sense of Goresky-MacPherson (cf. [2]) and, therefore, $p_*\mathcal{K}_E$ is equal to the Goresky-MacPherson extension of its restriction on the set \mathfrak{g}_d^{rs} of regular semisimple elements in \mathfrak{g}_d . Since $\mathcal{S}_{E^{\otimes d}}$ is also equal to the Goresky-MacPherson extension of its restriction on \mathfrak{g}_d^{rs} , it is enough to construct a T-equivariant isomorphism of the restrictions of $\mathcal{S}_{E^{\otimes d}}$ and p_*K_E to \mathfrak{g}_d^{rs} .

Let $\mathbb{C}^{(d)}$ denote the d-th symmetric power of \mathbb{C} , i.e. the quotient of \mathbb{C}^d by the natural action of the symmetric group S_d . Let ${}^0\mathbb{C}^d$ denote the complement to all the diagonals in \mathbb{C}^d , i.e.

(2.6)
$${}^{0}\mathbb{C}^{d} = \{(z_{1},...,z_{d}) \in \mathbb{C}^{d} | z_{i} \neq z_{j} \text{ for } i \neq j\}.$$

Set ${}^0\mathbb{C}^{(d)}$ to be the image of ${}^0\mathbb{C}^d$ in $\mathbb{C}^{(d)}$ and we denote by σ_d the natural map ${}^0\mathbb{C}^d \to {}^0\mathbb{C}^{(d)}$.

For $\mathbf{d} \in \mathcal{Q}_{n,d}$ let ${}^0\mathbb{C}^{(\mathbf{d})}$ denote the quotient of ${}^0\mathbb{C}^d$ by $S_{\mathbf{d}}$. Let $\sigma_{\mathbf{d}} : {}^0\mathbb{C}^{(\mathbf{d})} \to {}^0\mathbb{C}^{(d)}$ be the natural map.

For $\mathbf{d} \in \mathcal{Q}_{n,d}$ let $\widetilde{\mathfrak{g}}_{n,\mathbf{d}}^{rs}$ denote the open subset of $\widetilde{\mathfrak{g}}_{n,\mathbf{d}}$, consisting of all pairs $(\mathcal{V},x) \in \widetilde{\mathfrak{g}}_{n,\mathbf{d}}$ such that $x \in \mathfrak{g}_d^{rs}$.

One has a Cartesian square:

(2.7)
$$\widetilde{\mathfrak{g}}_{n,\mathbf{d}}^{rs} \xrightarrow{e_{\mathbf{d}}} {}^{0}\mathbb{C}^{(\mathbf{d})}$$

$$p \downarrow \qquad \qquad \sigma_{\mathbf{d}} \downarrow \qquad \qquad \sigma_{\mathbf{d$$

Here e_d is the map which associates to any $x \in \mathfrak{g}_d^{rs}$ the collection of its eigenvalues and $e_{\mathbf{d}}$ is the map which associates to every pair $(\mathcal{V}, x) \in \widetilde{\mathfrak{g}}_{n,\mathbf{d}}$ the eigenvalues of x in the spaces $V_1, V_2/V_1, ..., V_n/V_{n-1}$ respectively.

Let S_E denote the d-th symmetric power of the constant local system with fiber E on \mathbb{C} . In other words, S_E is a locally constant sheaf on ${}^0\mathbb{C}^{(d)}$ defined as

$$S_E := (E^{\otimes d} \otimes (\sigma_d)_* \mathbb{C})^{S_d}.$$

We have a T-equivariant identification:

$$e_d^* S_E[d^2] \simeq \mathcal{S}_{E^{\otimes d}}.$$

Analogously, for $\mathbf{d} \in \mathcal{Q}_{n,d}$, let $K_E^{\mathbf{d}}$ be the constant sheaf over ${}^0\mathbb{C}^{(\mathbf{d})}$ with fiber $E^{\mathbf{d}}$. We have:

$$e_{\mathbf{d}}^* \, \mathrm{K}_E^{\mathbf{d}}[d^2] \simeq \mathcal{K}_E$$

(in a T-equivariant way).

The assertion of Theorem 2.4 now follows from the following lemma.

Lemma 2.7. There exists canonical T-equivariant isomorphism

(2.8)
$$\bigoplus_{\mathbf{d}\in\mathcal{Q}_{n,d}} (\sigma_{\mathbf{d}})_* K_E^{\mathbf{d}} \simeq S_E.$$

Proof. The lemma follows easily from the following linear algebra observation: there exists canonical $T \times S_d$ -equivariant isomorphism

(2.9)
$$\bigoplus_{\mathbf{d} \in \mathcal{Q}_{n,d}} E^{\mathbf{d}} \simeq E^{\otimes d}.$$

The proof is clear.

2.8. Acknowledgments. We thank V. Ginzburg for explaining to us the contents of [3].

References

- [1] A. Beilinson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of GL_n , Duke Math. J. **61** (1990), no. 2, 655–677
- [2] W. Borho and R. MacPherson, *Partial resolutions of nilpotent varieties*, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, 101-102, (1983), 23-74.
- [3] V. Ginzburg, Lagrangian construction of the enveloping algebra $U(sl_n)$, C.R. Acad. Sci. Paris Sér. I Math. **312** (1991), 907–912.
- [4] N. Chriss and V. Ginzburg Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997.
- 2-175, Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA, and 1 Olden Lane, Institute for Advanced Study, Princeton, NJ

Department of Mathematics, Harvard University, 1 Oxford st. Cambridge MA, and 1 Olden Lane, Institute for Advanced Study, Princeton, NJ

 $\hbox{\it E-mail address: braval@math.mit.edu, gaitsgde@math.harvard.edu}$