MAXIMAL FUNCTIONS AND HILBERT TRANSFORMS ALONG VARIABLE FLAT CURVES

Anthony Carbery and Sonsoles Pérez

ABSTRACT. In this work we establish L^p boundedness for maximal functions and Hilbert transforms along variable curves in the plane, via L^2 estimates for certain singular integral operators with oscillatory terms.

§1. Introduction

In this paper, we study the $L^p(\mathbb{R}^2)$ boundedness for the maximal function \mathcal{M} and the Hilbert transform \mathcal{H} along variable curves. In our discussions, these are defined a priori on functions in $C_0^{\infty}(\mathbb{R}^2)$ by

$$\mathcal{M}f(x) = \sup_{0 < h < \infty} \frac{1}{h} \left| \int_0^h f(x_1 - t, x_2 - S(x_1, x_1 - t)) dt \right|$$

and

$$\mathcal{H}f(x) = p.v. \int_{-\infty}^{\infty} f(x_1 - t, x_2 - S(x_1, x_1 - t)) \frac{dt}{t},$$

where S(x,y) is a suitable real-valued function vanishing on the diagonal.

We shall also consider the singular integral operators T_{λ} (acting on functions on the real line) which are of the form

$$T_{\lambda}f(x) = \lim_{\epsilon \to 0} \int_{|x-y| \ge \epsilon} e^{i\lambda S(x,y)} (x-y)^{-1} f(y) dy.$$

Local versions of the operators T_{λ} have been studied by Phong and Stein [PS], and by Pan [P] who proved the L^p boundedness of T_{λ} with bounds independent of λ when the mixed derivative S''_{xy} does not vanish to infinite order at any diagonal point (x_0, x_0) . In [S] Seeger showed that for a certain class of phases S without this finite type property, the associated operators T_{λ} are also uniformly bounded on L^2 . Here we extend the Seeger-type result, for a different, closely related (but not always directly comparable) class of phases, to all other p, 1 .

Received March 1, 1999.

The second author was partially supported by grant PB97/0030 and both authors were supported by European Commission TMR "Harmonic Analysis"

Theorem 1. Let S be an antisymmetric function in $C^3(\mathbb{R}^2)$. Let $g: \mathbb{R}_+ \to \mathbb{R}_+$ be a non-decreasing function satisfying that there exists a constant $B \geq 1$ such that

$$g(Bt) \ge 2g(t),$$

and suppose that for some $E \geq 1$ and $A \geq 1$,

(1)
$$A^{-1}g(|x-y|) \le |S_1'(x,y)| \le Ag(E|x-y|),$$
$$A^{-1}g(|x-y|) \le |S_2'(x,y)| \le Ag(E|x-y|).$$

Suppose furthermore that $S_{112}^{""}$ is single-signed on \mathbb{R}^2 . Then \mathcal{M} is bounded on L^p for all $1 , and <math>\mathcal{H}$ is bounded on L^p for all 1 .

A local version of the theorem where the hypotheses are assumed on S in a neighbourhood of the diagonal and \mathcal{M} and \mathcal{H} are suitably modified also holds. Included in this setting are examples such as $S(x,y) = e^{-(x-y)^{-2}}g(x,y)$, $g(x,x) \neq 0$, or $S(x,y) = e^{-(x-y)^{-2}h(x,y)}$, h(x,x) > 0, (defined thus for y > x and extended to be antisymmetric) where g and h are smooth. Thus the theorem covers certain "flat" curves which is a point of principal interest.

It is well-known that estimates for \mathcal{H} yield uniform estimates for T_{λ} . Indeed, if \mathcal{F}_2 denotes the Fourier transform in the second variable then $\mathcal{F}_2\mathcal{H}f(x_1,\lambda) = T_{\lambda}(\mathcal{F}_2f(\cdot,\lambda))(x_1)$. By applying Plancherel's theorem we see that

$$\sup_{\lambda \in \mathbb{R}} \|T_{\lambda}\|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} = \|\mathcal{H}\|_{L^{2}(\mathbb{R}^{2}) \to L^{2}(\mathbb{R}^{2})}.$$

Moreover, a variant of de Leeuw's theorem implies that if \mathcal{H} is bounded on $L^p(\mathbb{R}^2)$ then

$$\sup_{\lambda \in \mathbb{R}} \|T_{\lambda}\|_{L^{p}(\mathbb{R}) \to L^{p}(\mathbb{R})} \leq \|\mathcal{H}\|_{L^{p}(\mathbb{R}^{2}) \to L^{p}(\mathbb{R}^{2})}.$$

Thus, an immediate consequence of Theorem 1 is the following corollary:

Corollary 2. If S satisfies the same hypotheses as in Theorem 1, then for any p, 1 , we have

$$\sup_{\lambda \in \mathbb{R}} ||T_{\lambda}||_{L^{p}(\mathbb{R}) \to L^{p}(\mathbb{R})} \le C.$$

In the work of Seeger [S], S, in addition to (1), is assumed to satisfy a condition on its second order derivatives (related to the so-called k-quasimonotonicity condition.) We, in contrast, demand a condition on the third-order derivative S'''_{112} .

In the translation-invariant setting, when $S(x,y) = \gamma(x-y)$, our condition reduces to $\gamma''' \geq 0$ (see [DR]) which implies the infinitessimal doubling (see [CCVWW]) and hence doubling of γ' , (see [NVWW1], [NVWW2] and [CCC-DRVWW]). On the other hand, the single-signedness of S_{112}''' is the minimal

hypothesis for our proof — based upon smoothing estimates for relatives of T_{λ} where the Hilbert singularity is replaced by a smooth cut-off function — to work according to what is currently known about smoothing for oscillatory integral operators. (See for example [PS1] and [CCW]). A general result for more general versions of \mathcal{H} in which the variable curve has rotational curvature not vanishing to infinite order has recently been established in [CNSW]. In our setting, that condition reduces to S''_{xy} not vanishing to infinite order on the diagonal. The first results for the non-translation invariant flat case (i.e. in which the rotational curvature may vanish to infinite order on the diagonal) were obtained in [CWW2].

The idea of the proof is to consider pieces of the operators like the following

$$S_j f(x) = \frac{1}{2^{j+1}} \int_{2^j < |t| < 2^{j+1}} f(x_1 - t, x_2 - S(x_1, x_1 - t)) dt,$$

and

$$T_j f(x) = \int_{2^j < |t| < 2^{j+1}} f(x_1 - t, x_2 - S(x_1, x_1 - t)) \frac{dt}{t}.$$

Thus $\mathcal{H}f(x) = \sum_j T_j f(x)$ and \mathcal{M} is bounded for a non-negative function f by $\mathcal{M}f(x) \leq C \sup_j |S_j f(x)|$. And then we can apply the following generalization of the Cotlar-Stein lemma, see [C].

Proposition 3. (Almost-Orthogonality Principle) Assume that $\{Q_j\}$ satisfies $\sum_{i \in \mathbb{Z}} Q_j = I$. Assume that

$$||Q_j^*Q_k||_{2-2} + ||Q_jQ_k^*||_{2-2} \le C2^{-\epsilon|j-k|},$$

and that

$$\|\sum_{j} \pm Q_{j}\|_{p_{0}-p_{0}} + \|\sum_{j} \pm Q_{j}^{*}\|_{p_{0}-p_{0}} \le C,$$

for some $p_0 \in (1,2)$. Suppose that $Q_j = P_j - P_{j+1}$ where $P_j \geq 0$ and $\|\sup_j |P_j f|\|_r \leq C_r \|f\|_r$ for $p_0 \leq r \leq 2$. Assume also that

$$\|(\sum_{k} |Q_k g_k|^2)^{1/2}\|_{p_0'} \le C \|(\sum_{k} |g_k|^2)^{1/2}\|_{p_0'}.$$

Suppose that $\{T_i\}$, $\{S_i\}$ satisfy

$$|T_i f| < S_i |f|$$

where $S_j \geq 0$. Assume that $||S_j||_{r-r} \leq C$ for $p_0 \leq r \leq 2$. Moreover, assume that

(2)
$$||(S_i - P_i)Q_{i+k}^*||_{2-2} + ||(S_i - P_i)^*Q_{i+k}||_{2-2} \le C2^{-\epsilon|k|},$$

and

(3)
$$||T_j Q_{j+k}^*||_{2-2} + ||T_j^* Q_{j+k}||_{2-2} \le C2^{-\epsilon|k|}.$$

Then $f \to \sup_j |S_j f(x)|$ and $\sum_j T_j$ are bounded on L^p , $p_0 .$

In order to define the appropriate Littlewood-Paley decomposition $I = \sum_{j} Q_{j}$ we define the dilations,

$$A(t) = \begin{pmatrix} t & 0 \\ 0 & G(t) \end{pmatrix}$$
 with $G(t) = \int_0^t g(s)ds$.

Similar dilations were first explicitly used in the flat translation invariant case in [CCVWW]. The collection $\{A(t)\}$ satisfies the Rivière condition

$$||A(s)^{-1}A(t)|| \le C\left(\frac{t}{s}\right)^{\epsilon}$$
 for $s \ge t$, for some $\epsilon > 0$.

In fact in this case it is true with $\epsilon=1$ and it is enough to show that $\frac{G(t)}{G(s)} \leq C\frac{t}{s}$ for $s\geq t$. Observe that if $s\geq t$ there exists a natural number k such that $B^kt\leq s\leq B^{k+1}t$ and we have

$$\frac{1}{t}G(t) = \frac{1}{t} \int_0^t g(u)du \le \frac{1}{2t} \int_0^t g(Bu)du \le \dots \le \frac{1}{2^k t} \int_0^t g(B^k u)du
= \frac{1}{B^k 2^k t} \int_0^{B^k t} g(u)du \le \frac{1}{B^k 2^k t} G(s) = \frac{s}{t} \frac{1}{B^k 2^k} \frac{G(s)}{s} \le B \frac{G(s)}{s}.$$

Let ϕ be a nonnegative $C_0^{\infty}(\mathbb{R}^2)$ function such that $\int \phi = 1$. We set the initial averaging operator

$$P_0 f(x) = \int \phi(x - y) f(y) dy;$$

then an approximation of the identity (with $P_j \to I$ as $j \to -\infty$ and $P_j \to 0$ as $j \to \infty$) is given by

$$P_j f(x) = \int (det A_j)^{-1} \phi(A_j^{-1}(x-y)) f(y) dy$$
 with $A_j = A(2^j)$.

The natural Littlewood-Paley difference operators Q_j are then $Q_j = P_j - P_{j+1}$. According to [CVWW] and [CWW1], the conditions on the operators P_j and Q_j in the almost orthogonality lemma are satisfied for any p_0 , $1 < p_0 < \infty$; just the Rivière condition is required. Therefore, subject to having verified (2) and (3), Proposition 3 shows that \mathcal{M} and \mathcal{H} are bounded on $1 . But the maximal function is trivially bounded on <math>L^{\infty}$, thus it maps continuously L^p into L^p for $1 . And for <math>\mathcal{H}$ we notice that the original problem itself is selfadjoint, so the boundedness of \mathcal{H} for $1 implies its boundedness for <math>2 \leq p < \infty$.

It hence remains to prove (2) and (3).

2. The curves and their normalization

Let S(x,y) be an antisymmetric function. Then it is easy to see that $S_1'(z,x) = -S_2'(x,z)$, $S_{11}''(z,x) = -S_{22}''(x,z)$, $S_{12}''(z,x) = -S_{12}''(x,z)$ (consequently $S_{12}''(x,x) = 0$), and $S_{112}'''(z,x) = -S_{122}'''(x,z)$. Since we also assume that S_{112}''' does not change sign then S_{122}''' does not change its sign either and its sign is opposite to that of S_{112}''' . On the other hand, by applying the mean value theorem we get

(4)
$$\operatorname{sgn} S_{12}''(z,x) = \operatorname{sgn} S_{112}''' \operatorname{sgn} (z-x).$$

Finally, by using $S'_1(x,x) = S'_2(x,x) = 0$ one may see that

(5)
$$\operatorname{sgn} S_1' = -\operatorname{sgn} S_{112}'''$$
 and $\operatorname{sgn} S_2' = \operatorname{sgn} S_{112}'''$,

since $S_1'(z,x) = S_{12}''(z,\nu)(x-z)$ for some $\nu \in \overline{zx}$ (the line segment joining z to x) and so $\operatorname{sgn} S_1''(z,x) = \operatorname{sgn} S_{112}''' \operatorname{sgn}(z-\nu) \operatorname{sgn}(x-z)$).

Lemma 4. If $S_{112}^{""}$ is single-signed and S is antisymmetric then for any x and y

$$|S_1'(x,y)| \le |x-y| |S_{12}''(x,y)|$$
 and $|S_2'(x,y)| \le |x-y| |S_{12}''(x,y)|$.

Proof. We use the mean value theorem:

$$|S_1'(x,y)| = |S_1'(x,y) - S_1'(x,x)| = |S_{12}''(x,u)||x-y|$$
 for some $u \in \overline{xy}$

If x < y then x < u < y and $|S_{12}''(x,u)| = -\operatorname{sgn} S_{112}'''S_{12}'(x,u)$. Since $\operatorname{sgn} S_{112}''' = -\operatorname{sgn} S_{122}'''$ this function is increasing in u and so $|S_{12}''(x,u)| \le |S_{12}''(x,y)|$. When x > y, $|S_{12}''(x,u)| = \operatorname{sgn} S_{112}''S_{12}'(x,u)$ is decreasing in u and thus also $|S_{12}''(x,u)| \le |S_{12}''(x,y)|$.

To prove the estimate for $|S_2'(x,y)|$ we can repeat the proof, or realize that $|S_2'(x,y)| = |S_1'(y,x)| \le |y-x||S_{12}''(y,x)| = |y-x||S_{12}''(x,y)|$, since S_{12}'' is also antisymmetric.

In our development we shall need to work with normalized versions of S(.,.), that is, for fixed j

$$\tilde{S}(x,y) = \frac{S(2^j x, 2^j y)}{G(2^j)}.$$

It is easy to check several facts concerning them that we shall need later on. First,

(6) for
$$i = 1, 2$$
 $|\tilde{S}'_i(x, y)| \ge A^{-1}$ whenever $|x - y| \ge 1$.

To see this observe that

$$|\tilde{S}_i'(x,y)| = \frac{2^j |S_i'(2^j x, 2^j y)|}{G(2^j)} \ge \frac{A^{-1} 2^j g(|2^j x - 2^j y|)}{G(2^j)} \ge \frac{A^{-1} 2^j g(2^j)}{G(2^j)} \ge A^{-1},$$

where the last inequality is true because g is a non-decreasing function. By Lemma 4 whenever $|x - y| \le C_0$ then

(7)
$$|\tilde{S}'_1(x,y)| \le C_0 |\tilde{S}''_{12}(x,y)|$$
 and $|\tilde{S}'_2(x,y)| \le C_0 |\tilde{S}''_{12}(x,y)|$

since

$$|\tilde{S}'_1(x,y)| = 2^j \frac{|S'_1(2^j x, 2^j y)|}{G(2^j)} \le 2^j |2^j x - 2^j y| \frac{|S''_{12}(2^j x, 2^j y)|}{G(2^j)} = |x - y| |\tilde{S}''_{12}(x,y)|.$$

With this observation we can prove the following lemma:

Lemma 5. If S is antisymmetric and $S_{112}^{""}$ is single-signed then, for any x, y and z such that either $-C_1 \leq z-x, z-y \leq 0$ with $x \leq y$, or $0 \leq z-x, z-y \leq C_1$ for $x \geq y$, there exists a constant C such that

$$\frac{|\tilde{S}_{1}'(z,y)| + |\tilde{S}_{1}'(z,x)| + |\tilde{S}_{2}'(z,x)|}{|\tilde{S}_{1}'(z,x) - \tilde{S}_{1}'(z,y)|} \le \frac{C}{|x-y|}.$$

Proof. We consider the case $-C_1 \le z - x, z - y \le 0$ which implies $|x - y| \le 2C_1$ with $x \le y$ (the proof for the case $0 \le z - x, z - y \le C_1$ for $x \ge y$ is a repetition of the following arguments). We have that

$$\begin{split} |\tilde{S}_{1}'(z,x) - \tilde{S}_{1}'(z,y)| &= \int_{x}^{y} -\operatorname{sgn}\tilde{S}_{112}''' \cdot \tilde{S}_{12}''(z,u)du \\ &\geq -\operatorname{sgn}\tilde{S}_{112}''' \cdot \tilde{S}_{12}''(z,x)(y-x) = |\tilde{S}_{12}''(z,x)||y-x|, \end{split}$$

where we have used that the function inside the integral is increasing in u. By (7), as $|z - x| \le C_1$ then

$$|\tilde{S}'_1(z,x) - \tilde{S}'_1(z,y)| \ge c|\tilde{S}'_1(z,x)||y-x||$$

and

$$|\tilde{S}'_1(z,x) - \tilde{S}'_1(z,y)| \ge c|\tilde{S}'_2(z,x)||y - x|.$$

Then we just need to prove the lemma for $|\tilde{S}_1'(z,y)|$. If $|\tilde{S}_1'(z,x)| \geq \frac{|\tilde{S}_1'(z,y)|}{2}$ then with the previous estimate we get also $|\tilde{S}_1'(z,x) - \tilde{S}_1'(z,y)| \geq c|\tilde{S}_1'(z,y)||y-x|$. But otherwise $|\tilde{S}_1'(z,x) - \tilde{S}_1'(z,y)| \geq \frac{1}{2}|\tilde{S}_1'(z,y)| \geq c|\tilde{S}_1'(z,y)||y-x|$, since $|y-x| \leq 2C_1$.

3. The heart of the proof

If T is an integral operator on \mathbb{R}^n with distribution kernel K(x,y), and $A \in GL(n,\mathbb{R})$, we let A_*T be the operator whose kernel is $(det A)^{-1}K(A^{-1}x,A^{-1}y)$. Thus $||A_*T||_{p-p} = ||T||_{p-p}$ for all $1 \leq p \leq \infty$. In the case that T is the Hilbert transform along a curve $\Gamma(x,t)$, then A_*T becomes the Hilbert transform along the curve $A_*\Gamma$, where $(A_*\Gamma)(x,t) = A[\Gamma(A^{-1}x,t)]$.

We just need to prove estimates (2) and (3). By the essential self-adjointness of the problem, it suffices to prove either the first or the second inequalities in (2) and (3). For k>0, they are a direct consequence of the smoothness of $\{P_j\}$, the support properties of $\{T_j,S_j,P_j\}$ and the fact that $T_j1=T_j^*1=(S_j-P_j)1=(S_j-P_j)^*1=0$. For instance, we indicate how to prove that $\|T_j^*Q_{j+k}\|_{2-2}\leq C2^{-\epsilon k}$; for this it suffices to show that $\|T_j^*P_{j+k}\|_{2-2}\leq C2^{-\epsilon k}$. Moreover, by setting $T_{jk}^*f(x)=A_{j+k_*}^{-1}T_j^*f(x)$ it is equivalent to the estimate $\|T_{jk}^*P_0\|_{2-2}\leq C2^{-\epsilon k}$. To prove that we just need the cancellation property $T_{jk}^*1=0$ and that T_{jk}^* has its distribution kernel supported in $\{(x,y):|x-y|\leq C2^{-\epsilon k}\}$. This reduces to seeing that if $|t|\leq 2^{j+1}$, $|x-A_{j+k_*}^{-1}\Gamma(x,t)|\leq C2^{-\epsilon k}$. Now

$$|x - A_{j+k_*}^{-1}\Gamma(x,t)| \le \left|\frac{t}{2^{j+k}}\right| + \left|\frac{S(2^{j+k}x_1 + t, 2^{j+k}x_1)}{G(2^{j+k})}\right|.$$

To handle the second term, notice that since $S'_1(x,x) = 0$ then

$$|S(2^{j+k}x_1+t,2^{j+k}x_1)| = \left| \int_0^t S_1'(2^{j+k}x_1+s,2^{j+k}x_1)ds \right|$$

$$\leq \int_0^{|t|} Ag(Es)ds \leq CG(E|t|),$$

which is smaller than or equal to $CG(E2^{j+1})$. The support condition now follows from the Rivière property. (The estimate $G(E2^{j+1})/G(2^{j+k}) \leq C2^{-\epsilon k}$ holds for any $k \geq k_0$ with k_0 such that $2^{k_0-1} \geq E$, but otherwise $||T_j^*Q_{j+k}||_{2-2} \leq C \leq C2^{-k}$.)

When $k \leq 0$, since $||Q_{j+k}P_j^*||_{2-2} \leq C2^{\epsilon k}$ then $||Q_{j+k}(S_j-P_j)^*||_{2-2} \leq C2^{\epsilon k}$ is equivalent to $||Q_{j+k}S_j^*||_{2-2} \leq C2^{\epsilon k}$, and the bound for $||Q_{j+k}T_j^*||_{2-2}$ will follow exactly the same argument.

Now we have to break up the operator S_j^* into two pieces determined by whether or not t is positive, and we work with $(\tilde{S}_j^*) = A_j^{-1} {}_* S_j^*$. Then we set the normalized "positive" part of the operator S_j^* as follows

$$(\tilde{S}_{j}^{*})^{+}f(x) = \int f(x_{1}+t, x_{2}+\tilde{S}(x_{1}+t, x_{1}))\alpha^{+}(t)dt$$
, with $\tilde{S}(x, y) = \frac{S(2^{j}x, 2^{j}y)}{G(2^{j})}$,

where α^+ is a real-valued smoothed-out version of $\chi_{[1,2]}$. (The corresponding kernel for the case $(S_j^*)^-$ is with α^- being a smoothed-out version of $\chi_{[-2,-1]}$). We write $\tilde{Q}_{j+k} = A_j^{-1} {}_* Q_{j+k}$. Therefore, we need to show that

$$\|\tilde{Q}_{j+k}(\tilde{S}_{j}^{*})^{+}\|_{2-2} \le C2^{\epsilon k}$$
 and $\|\tilde{Q}_{j+k}(\tilde{S}_{j}^{*})^{-}\|_{2-2} \le C2^{\epsilon k}$.

Since the two estimates are similar we concentrate only on the first.

Let $K: \mathbb{R}^m \to C$ be a kernel, and $A: \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}^q$ be a function. Let $Tf(x) = \int_{\mathbb{R}^m} f(x_1 - y_1, x_2 - A(x_1, y)) K(y) dy$ where $(x_1, x_2) \in \mathbb{R}^p \times \mathbb{R}^q$ and $(y_1, y_2) \in \mathbb{R}^p \times \mathbb{R}^{m-p}$. Define $T_{\lambda}h(x) = \int_{\mathbb{R}^m} h(x - y_1) e^{i\lambda A(x, y)} K(y) dy$ where now $x \in \mathbb{R}^p$. Then $(TS^*)_{\lambda} = T_{\lambda}S^*_{\lambda}$, and Plancherel's theorem in the $x_2 \in \mathbb{R}^q$ variable shows that $||T||_{2-2} = \sup_{\lambda} ||T_{\lambda}||_{2-2}$. Thus, in our case at hand, it suffices to prove

$$\|(\tilde{Q}_{j+k})_{\lambda}((S_{i}^{*})^{+})_{\lambda}\|_{2-2} \leq C2^{\epsilon k},$$

uniformly in λ , or indeed

(8)
$$\|(\tilde{Q}_{j+k})_{\lambda}((\tilde{S}_{j})^{+})_{\lambda}((\tilde{S}_{j})^{+})_{\lambda}(\tilde{Q}_{j+k}^{*})_{\lambda}\|_{2-2} \leq C2^{\epsilon k}.$$

Now the convolution kernel of \tilde{P}_{j+k} can be written as

$$\frac{1}{2^k} \Phi_1\left(\frac{x_1}{2^k}\right) \frac{G(2^j)}{G(2^{j+k})} \Phi_2\left(\frac{G(2^j)x_2}{G(2^{j+k})}\right),\,$$

for some even functions Φ_1 and Φ_2 such that Φ_1 is supported in [-2,2], and Φ_2 is such that $\widehat{\Phi}_2$ is identically one in [-1,1] and also supported in [-2,2]. By taking the Fourier transform in the second variable we have

$$\begin{split} Ker(\tilde{Q}_{j+k})_{\lambda}(x_1) &= \frac{1}{2^k} \Phi_1\left(\frac{x_1}{2^k}\right) \widehat{\Phi_2}\left(\frac{G(2^{j+k})\lambda}{G(2^j)}\right) \\ &\quad - \frac{1}{2^{k+1}} \Phi_1\left(\frac{x_1}{2^{k+1}}\right) \widehat{\Phi_2}\left(\frac{G(2^{j+k+1})\lambda}{G(2^j)}\right) \\ &= \frac{1}{2^{k+1}} \Phi_1\left(\frac{x_1}{2^{k+1}}\right) \left[\widehat{\Phi_2}\left(\frac{G(2^{j+k})\lambda}{G(2^j)}\right) - \widehat{\Phi_2}\left(\frac{G(2^{j+k+1})\lambda}{G(2^j)}\right)\right] \\ &\quad + \frac{1}{2^k} \Psi\left(\frac{x_1}{2^k}\right) \widehat{\Phi_2}\left(\frac{G(2^{j+k})\lambda}{G(2^j)}\right) \\ &\equiv I_{\lambda}(x_1) + II_{\lambda}(x_1) \end{split}$$

where $\Psi(x) = \Phi_1(x) - \frac{1}{2}\Phi_1(\frac{x}{2})$ and so $\int \Psi = 0$.

Since $\widehat{\Phi}_2$ is identically one in [-1,1], $I_{\lambda}(x_1)=0$ unless $\frac{G(2^{j+k+1})|\lambda|}{G(2^j)}\geq 1$, and as $\left|\widehat{\Phi}_2\left(\frac{G(2^{j+k})\lambda}{G(2^j)}\right)-\widehat{\Phi}_2\left(\frac{G(2^{j+k+1})\lambda}{G(2^j)}\right)\right|\leq 2$, the estimate (8) when we consider the part I_{λ} of the $Ker(\tilde{Q}_{j+k})_{\lambda}$ follows from $\|(\tilde{Q}_{j+k}^*)_{\lambda}\|_{2-2}\leq C$ and

(9)
$$\|((S_j^*)^+)_{\lambda}((S_j^*)^+)_{\lambda}\|_{2-2} \le C2^{\epsilon k}$$
, when $\frac{G(2^{j+k+1})|\lambda|}{G(2^j)} \ge 1$.

It is not difficult to see that the kernel of $((\tilde{S}_j^*)^+)_{\lambda}((\tilde{S}_j)^+)_{\lambda}$ is, as a function of x and y,

$$K_{\lambda}^{+}(x,y) = \int e^{i\lambda[\tilde{S}(z,y) - \tilde{S}(z,x)]} \alpha^{+}(z-y)\alpha^{+}(z-x)dz.$$

To show (9), since K_{λ}^+ is supported in $|x-y| \leq 5$, it suffices to prove that $\int |K_{\lambda}^+(x,y)|^2 dx \leq C/|\lambda|$ uniformly in y, since both the Rivière condition and $G(2^{j+k+1})|\lambda|/G(2^j) \geq 1$ then imply $\int |K_{\lambda}^+(x,y)|^2 dx \leq C2^{\epsilon k}$. In order to do that we first observe that by Van der Corput's lemma $|K_{\lambda}(x,y)| \leq C/(|\lambda||x-y|)$. Indeed, set $u(z) = \tilde{S}(z,y) - \tilde{S}(z,x)$ then $u'(z) = \tilde{S}'_1(z,y) - \tilde{S}'_1(z,x)$ and $u''(z) = \tilde{S}''_{11}(z,y) - \tilde{S}''_{11}(z,x) = \tilde{S}'''_{112}(z,\nu)(y-x)$ for fixed x and y and since \tilde{S}'''_{112} is single-signed, u'' is single-signed and $|u'(z)| = |\tilde{S}'_1(z,y) - \tilde{S}'_1(z,x)| \geq C|x-y||\tilde{S}'_1(z,x)| \geq c|x-y|$ (see Lemma 5 and (6)). Then,

$$\int |K_{\lambda}^{+}(x,y)|^{2} dx \leq \int_{\{x:|x-y|<\delta\}} C dx + \int_{\{x:|x-y|>\delta\}} \frac{1}{\lambda^{2}|x-y|^{2}} dx \\ \leq C\delta + C \frac{1}{\lambda^{2}\delta} \leq C \frac{1}{|\lambda|},$$

by taking $\delta = 1/|\lambda|$.

Thus the contribution to (8) arising from I_{λ} is under control.

Now we need to consider, for technical reasons, separately the cases $\chi_{x\geq y}$ and $\chi_{x\leq y}$. Let A be the operator with kernel $K_{\lambda}^+(x,y)\chi_{\{x\geq y\}}$ and let B be the operator with kernel $K_{\lambda}^+(x,y)\chi_{\{x\leq y\}}$; since $\overline{K_{\lambda}^+}(y,x)=K_{\lambda}^+(x,y)$ we have that $A^*=B$, and in order to prove (8) it is enough to prove it either for A or for B. Since we have a trivial estimate for the L^{∞} operator norm it suffices to show that the L^1 norm of the operator has the decay we want, and in fact it is enough to show that

$$\int \left| \int II_{\lambda}(x - x')K'_{\lambda}(x', y)dx' \right| dx \le C2^{\epsilon k}$$

uniformly in $y \in \mathbb{R}$, $\lambda \in \mathbb{R}$, and K'_{λ} denotes K^+_{λ} restricted to $x \geq y$. But $\int II_{\lambda}(x-x')K'_{\lambda}(x',y)dx' = C\Psi_k *_1 K'_{\lambda}(\cdot,y)$ (*1 means convolution in the first variable and $\Psi_k(x) = \frac{1}{2^k}\Psi(\frac{x}{2^k})$), and therefore since $\int \Psi_k = 0$ the following lemma finishes the proof.

Lemma 6. For $K'_{\lambda}(x,y) = K^+_{\lambda}(x,y)\chi_{\{x \geq y\}}(y)$, we have

$$\int |K'_{\lambda}(x+h,y) - K'_{\lambda}(x,y)| dx \le C|h|^{\frac{1}{2}}.$$

Proof. Let us assume $|h| \leq \frac{1}{4}$ otherwise the conclusion is clear, and let us assume

for simplicity that h > 0. Then

$$\int |K'_{\lambda}(x+h,y) - K'_{\lambda}(x,y)| dx$$

$$\leq \int \left| \int \left[e^{i\lambda \left[\tilde{S}(z,y) - \tilde{S}(z,x+h)\right]} - e^{i\lambda \left[\tilde{S}(z,y) - \tilde{S}(z,x)\right]} \right] \alpha^{+}(z-y)\alpha^{+}(z-x-h) dz \right| dx$$

$$+ \int \left| \int e^{i\lambda \left[\tilde{S}(z,y) - \tilde{S}(z,x)\right]} \left(\alpha^{+}(z-y)\alpha^{+}(z-x) - \alpha^{+}(z-y)\alpha^{+}(z-x-h) \right) dz \right| dx$$

$$= I + II.$$

The second term is fine because, since we are working with normalized pieces of curves the regions of integration are finite, and the function α^+ is smooth enough, so it is clearly O(|h|). The first term satisfies

$$I = \int \left| \int \int_0^h \frac{\partial}{\partial t} e^{i\lambda [\tilde{S}(z,y) - \tilde{S}(z,x+t)]} dt \, \alpha^+(z-y) \alpha^+(z-x-h) dz \right| dx$$

$$= \int \left| \int \int_0^h i\lambda \tilde{S}_2'(z,x+t) e^{i\lambda [\tilde{S}(z,y) - \tilde{S}(z,x+t)]} dt \, \alpha^+(z-y) \alpha^+(z-x-h) dz \right| dx$$

$$\leq |h| \sup_{0 \leq t \leq h} \int \left| \int \lambda \tilde{S}_2'(z,x+t) e^{i\lambda [\tilde{S}(z,y) - \tilde{S}(z,x+t)]} \alpha^+(z-y) \alpha^+(z-x-h) dz \right| dx$$

$$= |h| \sup_{0 \leq t \leq h} \int \left| \int \lambda \tilde{S}_2'(z,x) e^{i\lambda [\tilde{S}(z,y) - \tilde{S}(z,x)]} \alpha^+(z-y) \alpha^+(z-x-h) dz \right| dx.$$

Then, it suffices to show that

$$\int_{x:|x-y|>\delta} \left| \int \lambda \tilde{S}_2'(z,x) e^{i\lambda [\tilde{S}(z,y)-\tilde{S}(z,x)]} \alpha^+(z-y) \alpha^+(z-x-h+t) dz \right| dx \le \frac{C}{\delta},$$

independently of $0 \le t \le h$, because then

$$\int |K'_{\lambda}(x+h,y) - K'_{\lambda}(x,y)| \, dx \le C\delta + C\frac{|h|}{\delta} \le C|h|^{\frac{1}{2}},$$

by taking $\delta = |h|^{\frac{1}{2}}$. Now we integrate by parts with respect to z and obtain

$$\int \lambda \tilde{S}_{2}'(z,x)e^{i\lambda[\tilde{S}(z,y)-\tilde{S}(z,x)]}\alpha^{+}(z-y)\alpha^{+}(z-x-h+t)dz$$

$$= -\frac{1}{i}\int \frac{\partial}{\partial z} \left(\frac{\tilde{S}_{2}'(z,x)}{\tilde{S}_{1}'(z,y)-\tilde{S}_{1}'(z,x)}\right)e^{i\lambda[\tilde{S}(z,y)-\tilde{S}(z,x)]}\alpha^{+}(z-y)\alpha^{+}(z-x-h+t)dz$$

$$-\frac{1}{i}\int \frac{\partial}{\partial z} \left(\alpha^{+}(z-y)\alpha^{+}(z-x-h+t)\right)\frac{\tilde{S}_{2}'(z,x)}{\tilde{S}_{1}'(z,y)-\tilde{S}_{1}'(z,x)}e^{i\lambda[\tilde{S}(z,y)-\tilde{S}(z,x)]}dz.$$

Since for $K'_{\lambda}(x,y) = K^+_{\lambda}(x,y)\chi_{\{x\geq y\}}(y)$ we are under the hypothesis of Lemma 5 and then we get $|\tilde{S}'_1(z,y) - \tilde{S}'_1(z,x)| \geq C|x-y||\tilde{S}'_2(z,x)|$. We shall be finished if we can show

$$\int_{x:|x-y|>\delta} \int \left| \frac{\partial}{\partial z} \left(\frac{\tilde{S}_2'(z,x)}{\tilde{S}_1'(z,y) - \tilde{S}_1'(z,x)} \right) \right| dz dx \le \frac{C}{\delta}$$

for 1 < z - y < 2 and 0 < z - x < 3 (recall that 0 < t < h and $h \le \frac{1}{4}$). But

$$\frac{\partial}{\partial z} \frac{\tilde{S}_{2}'(z,x)}{\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)} = \frac{-\tilde{S}_{12}''(z,x)\tilde{S}_{1}'(z,x)}{[\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)]^{2}} + \frac{\tilde{S}_{12}''(z,x)\tilde{S}_{1}'(z,y)}{[\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)]^{2}} - \frac{\tilde{S}_{2}'(z,x)[\tilde{S}_{11}''(z,y) - \tilde{S}_{11}''(z,x)]}{[\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)]^{2}} = M + N + L.$$

Now, it is very important to check that each of the terms has single sign and that $\operatorname{sgn} M = \operatorname{sgn} L$; fortunately we know the signs precisely in terms of the sign of $\tilde{S}_{112}^{"'}$ (we use that $\tilde{S}_{11}^{"'}(z,y) - \tilde{S}_{11}^{"'}(z,x) = \tilde{S}_{112}^{"''}(z,\nu)(y-x)$.) Indeed then, by (4) and (5)

$$\operatorname{sgn} M = \operatorname{sgn} (-\tilde{S}_{12}''(z, x) \tilde{S}_{1}'(z, x)) = \operatorname{sgn} \tilde{S}_{112}''' \operatorname{sgn} (x - z) (-\operatorname{sgn} \tilde{S}_{112}''')$$

$$= \operatorname{sgn} (z - x),$$

$$\operatorname{sgn} N = \operatorname{sgn} (\tilde{S}_{12}''(z, x) \tilde{S}_{1}'(z, y)) = -\operatorname{sgn} \tilde{S}_{112}''' \operatorname{sgn} (x - z) (-\operatorname{sgn} \tilde{S}_{112}''')$$

$$= \operatorname{sgn} (x - z), \quad \text{and}$$

$$\operatorname{sgn} L = -\operatorname{sgn} \tilde{S}_{112}''' \operatorname{sgn} \tilde{S}_{112}''' \operatorname{sgn} (y - x)$$

$$= \operatorname{sgn} (x - y).$$

So since z-x>0 then M and N have single sign. Also since we need to prove the lemma only for $K'_{\lambda}(x,y)=K^+_{\lambda}(x,y)\chi_{\{x\geq y\}}(y)$ then $\operatorname{sgn} M=\operatorname{sgn} L$. Therefore, we can use that

$$\iint |M+N+L|dzdx \leq \left|\iint Mdzdx + \iint Ldzdx\right| + \left|\iint Ndzdx\right|.$$

The double integral of N is, for some boundary points x^* and x^{**} , by using Lemma 5 and the fact that we are always integrating over bounded intervals, controlled by

$$\left|\iint Ndxdz\right| \leq \int \left|\frac{\tilde{S}_1'(z,y)}{\tilde{S}_1'(z,y) - \tilde{S}_1'(z,x)}\right|_{x^*}^{x^{**}} dz \leq \frac{C}{\delta} \int dz \leq \frac{C}{\delta}.$$

Now we integrate M, first in the variable x and then with respect to z,

$$\iint M dx dz = \int \frac{-\tilde{S}_{1}'(z,x)}{\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)} \bigg]_{x^{*}}^{x^{**}} dz + \iint \frac{\tilde{S}_{12}''(z,x)}{\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)} dx dz.$$

In the same way, but first in the variable z and then with respect to x,

$$\iint Ldzdx = \int \frac{\tilde{S}_{2}'(z,x)}{\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)} \bigg]_{z^{*}}^{z^{**}} dx - \iint \frac{\tilde{S}_{12}''(z,x)}{\tilde{S}_{1}'(z,y) - \tilde{S}_{1}'(z,x)} dzdx,$$

for suitable boundary points z^* and z^{**} . Therefore, again Lemma 5 gives

$$\left| \iint (M+L) dz dx \right| = \left| \int \frac{-\tilde{S}_1'(z,x)}{\tilde{S}_1'(z,y) - \tilde{S}_1'(z,x)} \right|_{x^*}^{x^{**}} dz + \int \frac{\tilde{S}_2'(z,x)}{\tilde{S}_1'(z,y) - \tilde{S}_1'(z,x)} \right|_{z^*}^{z^{**}} dx \right| \leq \frac{C}{\delta},$$

as required. \Box

References

[C] A. Carbery, A version of Cotlar's lemma for L^p spaces and some applications, Contemp. Math. 189 (1995), 117–134.

[CCVWW] A. Carbery, M. Christ, J. Vance, S. Wainger and D. Watson, Operators associated to flat plane curves: L^p estimates via dilation methods, Duke Math. J. 59 (1989), 675–700.

[CCW] A. Carbery, M. Christ and J. Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc., to appear.

[CVWW] A. Carbery, J. Vance, S. Wainger and J. Wright, A variant of the notion of a space of homogeneous type, J. Funct. Anal. 132 (1995), 119–140.

[CWW1] A. Carbery, S. Wainger and J. Wright, Hilbert transforms and maximal functions associated to flat curves, J. Fourier Anal. Appl. Special Issue (1995), 119–139.

[CWW2] A. Carbery, S. Wainger and J. Wright, *Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group*, J. Amer. Math. Soc. **8,1** (1995), 141–179.

[CCCDRVWW] H. Carlsson, M. Christ, A. Córdoba, J. Duoandikoetxea, J.L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, L^p estimates for maximal functions and Hilbert transforms along variable flat convex curves in \mathbb{R}^2 , Bull. Amer. Math. Soc. (N.S.) 14 (1986), 263–267.

[CNSW] M. Christ, A. Nagel, E. M. Stein and S. Wainger, Singular and maximal Radon transforms: analysis and geometry., preprint, to appear.

[DR] J. Duoandikoetxea and J.L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541–561.

[NVWW1] A. Nagel, J. Vance, S. Wainger and D. Weinberg, *Hilbert transforms for convex curves*, Duke Math. J. **50** (1983), 735–744.

[NVWW2] A. Nagel, J. Vance, S. Wainger and D. Weinberg, Maximal functions for convex curves, Duke Math. J. 52 (1985), 715–722.

[P] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207–220.

[PS]	D.H. Phong and E.M. Stein, Hilbert integrals, singular integrals and Radon
	transforms, I, Acta Math. 157 (1986), 99–157.
[PS1]	D.H. Phong and E.M. Stein, On a stopping process for oscillatory integrals,
	J. Geom. Anal. 4 (1994), 104–120.
[S]	A. Seeger, L^2 estimates for a class of singular oscillatory integrals, Math.
	Res. Lett. 1 (1994), 65–73.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF EDINBURGH, JAMES CLERK MAXWELL BUILDING, THE KING'S BUILDINGS, MAYFIELD Rd., Edinburgh EH9 3JZ, U.K. $E\text{-}mail\ address}$: carbery@maths.ed.ac.uk

Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN

E-mail address: sonsoles.perez@uam.es