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AN ALGEBRAIC METHOD FOR

PUBLIC-KEY CRYPTOGRAPHY

Iris Anshel, Michael Anshel, and Dorian Goldfeld

Abstract. Algebraic key establishment protocols based on the difficulty of solv-
ing equations over algebraic structures are described as a theoretical basis for
constructing public–key cryptosystems.

1. Introduction

A protocol is a multi–party algorithm, defined by a sequence of steps, speci-
fying the actions required of two or more parties in order to achieve a specified
objective. Furthermore, a key establishment protocol is a protocol whereby a
shared secret becomes available to two or more parties, for subsequent crypto-
graphic applications (see [7]).

We present a compact algebraic key establishment protocol, followed by a
group–theoretic illustration, for secret key establishment between two individuals
whose only means of communication is a public channel. The foundation of
the method lies in the difficulty of solving equations over algebraic structures,
in particular groups. The protocol requires each party to perform an algebraic
computation (several multiplications followed by rewriting in a monoid or group).
The results of the computation are then exchanged between the parties over a
public channel and a common shared secret key is then obtained by each party
after a second computation is performed. The second computation involves an
algorithm to solve the word problem in the monoid or group.

In the case that the protocol is group–based, we show that an adversary
(observing all communication over the public channel) can break the scheme
and determine the secret key provided a system of conjugacy equations over the
associated group is feasibly solvable. This is in contrast to the method proposed
in [1]. A very different but loosely related construction (encryption using rewrite
systems) is given in [5].

It is known that there exist groups where the word problem is solvable and
the conjugacy problem is unsolvable [8]. Further, there are many groups where
the word problem is known to be solvable in polynomial time while there is no
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known polynomial time algorithm to solve the conjugacy problem. An example
is the braid group on n strands where the word problem for a word w (of length
|w|) can be solved in running time O(|w|2n) while the best known algorithm for
solving the conjugacy problem requires at least exponential running time (see
[2]).

Recent developments in mathematical and computational cryptanalysis (see
[3,9]) have renewed interest in developing new cryptographic methods. These
methods include public–key cryptography based on hidden monomial systems,
combinatorial–algebraic systems, and the theories of elliptic and hyperelliptic
curves (see [6]).

2. The algebraic key establishment protocol

We now present an algebraic key establishment protocol which, in its most
general form consists of a five–tuple (U,V, β, γ1, γ2) where U and V are feasibly
computable monoids, and

β : U × U −→ V, γi : U × V −→ V (i = 1, 2)

are feasibly computable functions satisfying the following properties.

(i) For all elements x, y1, y2 ∈ U,

β(x, y1 · y2)) = β(x, y1) · β(x, y2).

(ii) For all elements x, y ∈ U,

γ1(x, β(y, x)) = γ2(y, β(x, y)).

(iii) Suppose y1, y2, . . . yk ∈ U and β(x, y1), β(x, y2), . . . , β(x, yk) are publicly
known for some secret element x ∈ U. Then, in general, it is infeasible
to determine the secret element x.

The users A and B are publicly assigned submonoids, SA, TB ⊆ U , respec-
tively. Suppose that SA is generated by the elements

{s1, . . . , sm},

and SB is generated by {t1, . . . , tn}. The protocol begins with user A choosing
a secret element a in SA and transmitting the elements

β(a, ti) i = 1, . . . , n.

Likewise, user B chooses a secret element b in T , transmits

β(b, si) i = 1, . . . , m.
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It follows from property (iii) that even though the transmission is over a public
channel, the secret elements a and b are secure. Property (i) above insures that
user A can compute the element

β(b, a),

and
γ1(a, β(b, a)).

Likewise user B can compute β(a, b) and γ2(b, β(a, b)). Recalling property (ii)
above we see that

κ = γ1(a, β(b, a)) = γ2(b, β(a, b))

can serve as an established key.

3. A group theoretic protocol

In this illustration the monoid U = V is a group, denoted G, and the users
A and B are publicly assigned subgroups

SA = 〈s1, s2, . . . , sm〉, SB = 〈t1, . . . , tn〉.

Here the function β : G × G → G is chosen to be conjugation,

β(x, y) = x−1y x,

and the functions γ1, γ2 are simply

γ1(u, v) = u−1v, γ2(u, v) = v−1u.

Users A and B choose secret elements a ∈ SA and b ∈ SB respectively, and user
A begins the protocol by computing, rewriting, and transmitting the collection
of elements

a−1t1a, a−1t2a, . . . , a−1tna.

Similarly, user B computes, rewrites, and transmits

b−1s1b, b−1s2b, . . . , b−1smb.

An adversary observing these transmissions is unable to determine a or b unless
(s)he can solve a set of simultaneous conjugacy equations over the base group.

Multiplying two elements in the group can be accomplished by simply con-
catenating the two expressions representing the elements. The process of rewrit-
ing, while not unique, must be chosen so that no adversary can determine the
conjugating element from viewing the publicly transmitted conjugates.
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Recalling that the conjugate of the product of two elements is the product of
the conjugates of those elements (i.e., property (i) of β), users A and B are now
in a position to compute, respectively, the elements

β(b, a) = b−1ab, β(a, b) = a−1ba.

In order to attain a common key, user A computes

κ = γ1(a, β(b, a)) = a−1b−1ab = [a, b],

and user B computes
κ = γ2(b, β(a, b)) = [a, b].

At this point each user has obtained the key κ in a (usually different) rewritten
form.

There are several methods to extract a common (identical) element. If there
is a feasible algorithm to put every word in the group in canonical form, the
canonical form algorithm can then be applied. There are many groups, however,
where the canonical form algorithm has a slow running time while an algorithm
to solve the word problem (determine if a word is the identity element) runs
considerably faster. In such a case it may be more efficient to obtain a common
key by having user B either send a rewritten form of κ or some other random
word (not equal to κ) in the group to user A. User A can then use the word
problem algorithm to determine if κ was sent or not. If κ was sent then this
determines the bit 1, otherwise the bit 0. By iterating m times, an m–bit
common key is exchanged. This protocol is probabilistic and generally slower
than the canonical form algorithm referred to above. It is also worth noting, that
to extract a common key, it suffices to have any well defined easily computable
function from G to any set whose elements have an easily computable canonical
form.

The construction of an algebraic key establishment protocol employing braid
groups is particularly promising. This is due to the fact that the best known
algorithm to solve the conjugacy problem requires at least exponential running
time. Furthermore, there are two different algorithmic approaches to the word
problem. Both the Birman, Ko, Lee (see [2]) canonical form for elements in
the braid group and the Dehornoy method (see [4]) of comparing braids can be
employed to rewrite publicly known elements and to obtain a common element
once an exchange has been completed.
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