EQUIDIMENSIONALITY OF LAGRANGIAN FIBRATIONS ON HOLOMORPHIC SYMPLECTIC MANIFOLDS

Daisuke Matsushita

ABSTRACT. We prove that every irreducible component of every fibre of Lagrangian fibrations on holomorphic symplectic manifolds is a Lagrangian subvariety. Especially, Lagrangian fibrations are equidimensional.

1. Introduction

We begin with the definition of Lagrangian subvarieties.

Definition 1. Let X be a complex manifold with a holomorhpic symplectic form ω . A subvariety Y is said to be a Lagrangian subvariety if $\dim Y = (\frac{1}{2}) \dim X$ and there exists a resolution $\nu : \tilde{Y} \to Y$ such that $\nu^* \omega$ is identically zero on \tilde{Y} .

Note that this notion does not depend on the choice of ν . We prove the following theorem.

Theorem 1. Let X be a Kähler manifold and $f: X \to B$ a proper surjective morphism over a normal variety B. Assume that there exists a d-closed holomorphic symplectic form ω on X and a general fiber of f is a Lagrangian subvariety with respect to ω . Then every irreducible component of every fibre of f is a Lagrangian subvariety. Especially f is equidimensional.

Since every holomorphic form on a compact Kähler manifold is d-closed, we obtain the following result from combining Theorem 1 with [2, Theorem 2] and [3, Theorem 1].

Corollary 1. Let $f: X \to B$ be a surjective morphism from an irreducible symplectic manifold X to a normal projective variety B. Assume that $0 < \dim B < \dim X$. Then every irreducible component of every fibre of f is a Lagrangian subvariety.

Remark. If we drop the condition of properness, then f is not necessarily equidimensional. Let f be a morphism from \mathbb{C}^4 to \mathbb{C}^2 defined by

$$f(x, y, z, w) := (x, xy),$$

Received February 10, 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14E40, Secondary 14D05.

^{*}Research Fellow of the Japan Society for the Promotion of Science.

and $\omega := dx \wedge dz + dy \wedge dw$. Then ω is a d-closed holomorphic symplectic form and a general fibre of f is a Lagrangian subvariety with respect to ω . Since $\dim f^{-1}(0) = 3$, f is not equidimensional.

From Theorem 1, we obtain some information of the singularities of B.

Corollary 2. For every point p of B, there exists a Stein neighborhood U of p and a finite morphism $\pi: U \to U$ from a smooth Stein manifold U.

Proof. For a point p of B, we choose a point $q \in f^{-1}(p)$ and a smooth Stein neighborhoods W of q. Since f is equidimensional, we obtain a finite morphism $\pi: U \to U$ from a smooth Stein manifold U by cutting W with hypersurfaces.

Remark. The author does not know whether there exists an example such that B is not smooth.

2. Proof of Theorem 1

We refer the following theorem due to Kollár [1, Theorem 2.2] and Mo. Saito [4, Theorem 2.3, Remark 2.9].

Theorem 2. Let $f: X \to B$ be a proper surjective morthpism from a smooth Kähler manifold X to a normal variety B. Then $R^i f_* \omega_X$ is torsion free, where ω_X is the dualizing sheaf of X.

Proof. Let $\bar{\omega}$ be the complex conjugate of ω . Since ω is d-closed, $\bar{\omega}$ can be considered as an element of $H^2(X, \mathcal{O}_X)$. By Leray spectral sequence, there exists a morphism

$$H^2(X, \mathcal{O}_X) \to H^0(B, \mathbb{R}^2 f_* \mathcal{O}_X).$$

Then $\bar{\omega}$ is a torsion element in $H^0(B, \mathbb{R}^2 f_* \mathcal{O}_X)$ since a general fibre of f is a Lagrangian subvariety. In addition, $\omega_X \cong \mathcal{O}_X$. Hence $\bar{\omega}$ is zero in $H^0(B, \mathbb{R}^2 f_* \mathcal{O}_X)$ by Theorem 2. We derive a contradiction assuming that there exists an irrducible component of a fibre of f which is not a Lagrangian subvariety. The letter V denotes an non Lagrangian component. We take an embedding resolution $\pi: \tilde{X} \to X$ of V. Let \tilde{V} be the proper transform of V. We will show that $\pi^*\omega$ is not zero in $H^0(\tilde{V},\Omega^2_{\tilde{V}})$. If dim $V=(1/2)\dim X$, it is obious by the definition. If dim V > (1/2) dim X, we take a smooth point $q \in V$ such that π is isomorphic in a neighborhood of q. Since dim $V > (1/2) \dim X$ and ω is nondegenerate, the restriction of ω on the tangent space of V at q is nonzero. Because π is isomorphic in a neighborhood of q, $\pi^*\omega$ is not zero in $H^0(\tilde{V},\Omega^2_{\tilde{V}})$. Take the complex conjugate, $\pi^*\bar{\omega}$ is not zero in $H^2(\tilde{V}, \mathcal{O}_{\tilde{V}})$. Therefore $\bar{\omega}$ is not zero in $H^2(V, \mathcal{O}_V)$. Let p := f(V) and $X_p := f^{-1}(p)$. We consider the following

morphism:

$$R^2 f_* \mathcal{O}_X \otimes k(p) \to H^2(X_p, \mathcal{O}_{X_p}) \to H^2(V, \mathcal{O}_V).$$

Then $\bar{\omega}$ is zero in $\mathbb{R}^2 f_* \mathcal{O}_X \otimes k(p)$ and nonzero in $H^2(V, \mathcal{O}_V)$. That is a contradiction.

Acknowledgment

The author express his thanks to Professors A. Beauville, A. Fujiki, Y. Miyaoka, S. Mori and N. Nakayama for their advice and encouragement.

References

- [1] J. Kollár, Higher direct images of dualizing sheaves, Ann. of Math. 123 (1986), 11-42.
- [2] D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology **38** (1999), 79-83.
- [3] D. Matsushita, Addendum to: On fibre space structures of a projective irreducible symplectic manifold, to appear in Topology.
- [4] M. Saito, Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J. 42 (1990), 127–148.

RESEARCH INSTITUE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, OIWAKE-CHO KITASHIRAKAWA, SAKYO-KU KYOTO 606-8052 Japan

E-mail address: tyler@kurims.kyoto-u.ac.jp