DYNAMICS OF RATIONAL MAPS: A CURRENT ON THE BIFURCATION LOCUS

Laura DeMarco

ABSTRACT. Let $f_{\lambda}: \mathbf{P}^1 \to \mathbf{P}^1$ be a family of rational maps of degree d>1, parametrized holomorphically by λ in a complex manifold X. We show that there exists a canonical closed, positive (1,1)-current T on X supported exactly on the bifurcation locus $B(f) \subset X$. If X is a Stein manifold, then the stable regime X - B(f) is also Stein. In particular, each stable component in the space Poly_d (or Rat_d) of all polynomials (or rational maps) of degree d is a domain of holomorphy.

1. Introduction

It is well-known that for a rational map $f: \mathbf{P}^1 \to \mathbf{P}^1$ of degree d > 1, there is a natural f-invariant measure μ_f supported on the Julia set of f [B],[Ly]. This measure can be described as the weak limit of purely atomic measures,

$$\mu_f = \lim_{n \to \infty} \frac{1}{d^n} \sum_{\{z: f^n(z) = a\}} \delta_z,$$

for any $a \in \mathbf{P}^1$ (with at most two exceptions).

There is also a potential-theoretic description of μ_f , defined in terms of a homogeneous polynomial lift $F: \mathbb{C}^2 \to \mathbb{C}^2$ of f. The potential function on \mathbb{C}^2 is given by

(1)
$$h(z) = \lim_{m \to \infty} \frac{1}{d^m} \log ||F^m(z)||,$$

and the (1,1)-current $\partial \partial h$ satisfies

$$\pi^* \mu_f = \frac{i}{\pi} \partial \bar{\partial} h$$

where π is the canonical projection $\mathbf{C}^2 - \{0\} \to \mathbf{P}^1$ [HP]. In particular, when f is a monic polynomial, this definition reduces to

$$\mu_f = \frac{i}{\pi} \partial \bar{\partial} G = \frac{1}{2\pi} \Delta G \, dx \wedge dy,$$

where $G: \mathbf{C} \to [0, \infty)$ is the Green's function for the complement of the filled Julia set $K(f) = \{z: f^n(z) \not\to \infty \text{ as } n \to \infty\}.$

Received March 2, 2000.

In this paper, we construct a (1,1)-current on the **parameter space** of a holomorphic family of rational maps, supported exactly on the bifurcation locus (just as μ_f is supported exactly on the Julia set).

Let X be a complex manifold. A **holomorphic family of rational maps** f **over** X is a holomorphic map $f: X \times \mathbf{P}^1 \to \mathbf{P}^1$. For each parameter $\lambda \in X$, we obtain a rational map $f_{\lambda}: \mathbf{P}^1 \to \mathbf{P}^1$ with Julia set $J(f_{\lambda})$. The **bifurcation locus** B(f) of the family f over X is the set of all $\lambda_0 \in X$ for which $\lambda \mapsto J(f_{\lambda})$ is a discontinuous function (in the Hausdorff topology) in any neighborhood of λ_0 (§2).

Theorem 1.1. Let $f: X \times \mathbf{P}^1 \to \mathbf{P}^1$ be a holomorphic family of rational maps on \mathbf{P}^1 of degree d > 1. Then there exists a canonical closed, positive (1,1)-current T(f) on X such that the support of T(f) is B(f), the bifurcation locus of f.

By general properties of positive currents (Lemma 3.3), we have

Corollary 1.2. If X is a Stein manifold, then X - B(f) is also Stein.

Let Rat_d and Poly_d denote the "universal families" of all rational maps and of all monic polynomials of degree exactly d>1. We have $\operatorname{Poly}_d\simeq \mathbf{C}^d$ and $\operatorname{Rat}_d\simeq \mathbf{P}^{2d+1}-V$, where V is a resultant hypersurface. In particular, Rat_d and Poly_d are Stein manifolds.

Corollary 1.3. Every stable component in Rat_d and Poly_d is a domain of holomorphy (i.e. a Stein open subset).

Corollary 1.3 answers a question posed by McMullen in [M2], motivated by analogies between rational maps and Teichmüller space. Bers and Ehrenpreis showed that finite-dimensional Teichmüller spaces are domains of holomorphy [BE].

Sketch proof of Theorem 1.1. Consider a holomorphic family of homogeneous polynomial maps $\{F_{\lambda}\}$ on \mathbb{C}^2 , locally lifting the holomorphic family f over X. Let $\{h_{\lambda}\}$ be the corresponding potential functions on \mathbb{C}^2 defined by equation (1). The function $h_{\lambda}(z)$ is plurisubharmonic in both $\lambda \in X$ and $z \in \mathbb{C}^2$, and it is pluriharmonic in z away from $\pi^{-1}(J(f_{\lambda}))$. Suppose for simplicity that we have holomorphic functions $c_j : X \to \mathbb{P}^1$, $j = 1, \ldots, 2d - 2$, parametrizing the critical points of f_{λ} in \mathbb{P}^1 . We choose lifts \tilde{c}_j from a neighborhood in X to \mathbb{C}^2 so that $c_j = \pi \circ \tilde{c}_j$ and define the plurisubharmonic function

$$H(\lambda) = \sum_{j} h_{\lambda}(\tilde{c}_{j}(\lambda)).$$

The desired (1,1)-current on X is defined by

$$T(f) = \frac{i}{\pi} \partial \bar{\partial} H,$$

independent of the choices of $\{F_{\lambda}\}$ and \tilde{c}_{j} . It is supported on B(f) since H fails to be pluriharmonic exactly when a critical point $c_{j}(\lambda)$ passes through the Julia set $J(f_{\lambda})$.

I would like to thank C. McMullen, J.E. Fornaess, and X. Buff for helpful comments and ideas.

2. Stability

Let $f: X \times \mathbf{P}^1 \to \mathbf{P}^1$ be a holomorphic family of rational maps of degree d > 1. The Julia sets of such a family are said to **move holomorphically** at a point $\lambda_0 \in X$ if there is a family of injections $\phi_{\lambda}: J_{\lambda_0} \to \mathbf{P}^1$, holomorphic in λ near λ_0 with $\phi_{\lambda_0} = \mathrm{id}$, such that $\phi_{\lambda}(J_{\lambda_0}) = J_{\lambda}$ and $\phi_{\lambda} \circ f_{\lambda_0}(z) = f_{\lambda} \circ \phi_{\lambda}(z)$. In other words, ϕ_{λ} provides a conjugacy between f_{λ_0} and f_{λ} on their Julia sets. The family of rational maps f over X is **stable** at $\lambda_0 \in X$ if any of the following equivalent conditions are satisfied [M1, Theorem 4.2]:

- (1) The number of attracting cycles of f_{λ} is locally constant at λ_0 .
- (2) The maximum period of an attracting cycle of f_{λ} is locally bounded at λ_0 .
- (3) The Julia set moves holomorphically at λ_0 .
- (4) For all λ sufficiently close to λ_0 , every periodic point of f_{λ} is attracting, repelling, or persistently indifferent.
- (5) The Julia set J_{λ} depends continuously on λ (in the Hausdorff topology) in a neighborhood of λ_0 .

Suppose also that each of the 2d-2 critical points of f_{λ} are parametrized by holomorphic functions $c_j: X \to \mathbf{P}^1$. Then the following conditions are equivalent to those above:

- (6) For each j, the family of functions $\{\lambda \mapsto f_{\lambda}^n(c_j(\lambda))\}_{n\geq 0}$ is normal in some neighborhood of λ_0 .
- (7) For all nearby λ , $c_i(\lambda) \in J_{\lambda}$ if and only if $c_i(\lambda_0) \in J_{\lambda_0}$.

We let $S(f) \subset X$ denote the set of stable parameters and define the **bifurcation** locus B(f) to be the complement X - S(f). Mañé, Sad, and Sullivan showed that S(f) is open and dense in X [MSS, Theorem A].

Example. In the family $f_c(z) = z^2 + c$, the bifurcation locus is $B(f) = \partial M$, where $M = \{c \in \mathbf{C} : f_c^n(0) \neq \infty \text{ as } n \to \infty\}$ is the Mandelbrot set [M1, Theorem 4.6].

Lemma 2.1. If B(f) is contained in a complex hypersurface $D \subset X$, then B(f) is empty.

Proof. Suppose there exists $\lambda_0 \in B(f)$. By characterization (4) of stability, any neighborhood U of λ_0 must contain a point λ_1 at which the multiplier $m(\lambda)$ of a periodic cycle for f_{λ} is passing through the unit circle. In other words, the holomorphic function $m(\lambda)$ defined in a neighborhood N of λ_1 is non-constant with $|m(\lambda_1)| = 1$. The set $\{\lambda \in N : |m(\lambda)| = 1\}$ lies in the bifurcation locus and cannot be completely contained in a hypersurface.

3. Stein manifolds and positive currents

Let X be a paracompact complex manifold and $\mathcal{O}(X)$ its ring of holomorphic functions. Then X is a **Stein manifold** if the following three conditions are satisfied:

- for any $x \in X$ there exists a neighborhood U of x and $f_1, \ldots, f_n \in \mathcal{O}(X)$ defining local coordinates on U;
- for any $x \neq y \in X$, there exists an $f \in \mathcal{O}(X)$ such that $f(x) \neq f(y)$; and
- for any compact set K in X, the holomorphic hull

$$\hat{K} = \{ x \in X : |f(x)| \le \sup_{K} |f| \text{ for all } f \in \mathcal{O}(X) \}$$

is also compact in X.

An open domain Ω in X is **locally Stein** if every boundary point $p \in \partial \Omega$ has a neighborhood U such that $U \cap \Omega$ is Stein.

Properties of Stein manifolds. The Stein manifolds are exactly those which can be embedded as closed complex submanifolds of \mathbb{C}^N . If Ω is an open domain in \mathbb{C}^n then Ω is Stein if and only if Ω is pseudoconvex if and only if Ω is a domain of holomorphy. An open domain in a Stein manifold is Stein if and only if it is locally Stein. Also, an open domain in complex projective space \mathbb{P}^n is Stein if and only if it is locally Stein and not all of \mathbb{P}^n . See, for example, [H] and the survey article by Siu [S].

Examples. (1) \mathbf{C}^N is Stein. (2) The space of all monic polynomials of degree d, $\operatorname{Poly}_d \simeq \mathbf{C}^d$, is Stein. (3) $\mathbf{P}^n - V$ for a hypersurface V is Stein. If V is the zero locus of degree d homogeneous polynomial F and $\{g_j\}$ a basis for the vector space of homogeneous polynomials of degree d, then the map $(g_1/F, \ldots, g_N/F)$ embeds $\mathbf{P}^n - V$ as a closed complex submanifold of \mathbf{C}^N . (4) The space Rat_d of all rational maps f(z) = P(z)/Q(z) on \mathbf{P}^1 of degree exactly d is Stein. Indeed, parameterizing f by the coefficients of P and Q defines an isomorphism $\operatorname{Rat}_d \simeq \mathbf{P}^{2d+1} - V$, where V is the resultant hypersurface given by the condition $\gcd(P,Q) \neq 1$.

A (p,q)-current T on a complex manifold of dimension n is an element of the dual space to smooth (n-p,n-q)-forms with compact support. See [HP], [Le], and [GH] for details. The wedge product of a (p,q)-current T with any smooth (n-p,n-q)-form α defines a distribution by $(T \wedge \alpha)(f) = T(f\alpha)$ for $f \in C_c^{\infty}(X)$. Recall that a distribution δ is positive if $\delta(f) \geq 0$ for functions $f \geq 0$. A (p,p)-current is **positive** if for any system of n-p smooth (1,0)-forms with compact support, $\{\alpha_1, \ldots, \alpha_{n-p}\}$, the product

$$T \wedge (i\alpha_1 \wedge \bar{\alpha}_1) \wedge \cdots \wedge (i\alpha_{n-n} \wedge \bar{\alpha}_{n-n})$$

is a positive distribution.

An upper-semicontinuous function h on a complex manifold X is **plurisub-harmonic** if $h|\mathbf{D}$ is subharmonic for any complex analytic disk \mathbf{D}^1 in X. The current $T=i\partial\bar{\partial}h$ is positive for any plurisubharmonic h, and $T\equiv 0$ if and only

if h is pluriharmonic. The " $\partial\bar{\partial}$ -Poincaré Lemma" says that any closed, positive (1,1)-current T on a complex manifold is locally of the form $i\partial\bar{\partial}h$ for some plurisubharmonic function h [GH].

The next three Lemmas show that the "region of pluriharmonicity" of a plurisubharmonic function is locally Stein. See [C, Theorem 6.2], [U, Lemma 2.4], [FS, Lemma 5.3], and [R, Theorem II.2.3] for similar statements.

Lemma 3.1. Suppose h is plurisubharmonic on the open unit polydisk \mathbf{D}^2 in \mathbf{C}^2 and h is pluriharmonic on the "Hartogs domain"

$$\Omega_{\delta} = \{(z, w) : |z| < 1, |w| < \delta\} \cup \{(z, w) : 1 - \delta < |z| < 1, |w| < 1\}.$$

Then h is pluriharmonic on \mathbf{D}^2 .

Proof. Let H be a holomorphic function on Ω_{δ} such that $h = \operatorname{Re} H$. Any holomorphic function on Ω_{δ} extends to \mathbf{D}^2 , and extending H we have $h \leq \operatorname{Re} H$ on \mathbf{D}^2 since h is plurisubharmonic. The set $A = \{z \in \mathbf{D}^2 : h = \operatorname{Re} H\}$ is closed by upper-semi-continuity of h. If A has a boundary point $w \in \mathbf{D}^2$, then for any ball B(w) about w, we have

$$h(w) = \operatorname{Re} H(w)$$

$$= \frac{1}{|B(w)|} \int_{B(w)} \operatorname{Re} H$$

$$> \frac{1}{|B(w)|} \int_{B(w)} h$$

since $\operatorname{Re} H > h$ on a set of positive measure in B(w). This inequality, however, contradicts the sub-mean-value property of the subharmonic function h. Therefore $A = \mathbf{D}^2$ and h is pluriharmonic on the polydisk.

Lemma 3.2. Let X be a complex manifold. If an open subset $\Omega \subset X$ is not locally Stein, there is a $\delta > 0$ and an embedding

$$e: \mathbf{D}^2 \to X$$

so that $e(\Omega_{\delta}) \subset \Omega$ but $e(\mathbf{D}^2) \not\subset \Omega$.

Proof. Suppose Ω is not locally Stein at $x \in \partial \Omega$. By choosing local coordinates in a Stein neighborhood U of x in X, we may assume that U is a pseudoconvex domain in \mathbb{C}^n . Then $\Omega_0 = U \cap \Omega$ is not pseudoconvex and the function $\phi(z) = -\log d_0(z)$ is not plurisubharmonic near $x \in \partial \Omega$. Here, d_0 is the Euclidean distance function to the boundary of Ω_0 .

If ϕ is not plurisubharmonic at the point $z_0 \in U \cap \Omega$, then there is a onedimensional disk $\alpha : \mathbf{D}^1 \to \Omega$ centered at z_0 such that $\int_{\partial \mathbf{D}^1} \phi < \phi(z_0)$ (identifying the disk with its image $\alpha(\mathbf{D}^1)$). Let ψ be a harmonic function on \mathbf{D}^1 so that $\psi = \phi$ on $\partial \mathbf{D}^1$. Then $\psi(z_0) < \phi(z_0)$. Let Ψ be a holomorphic function on \mathbf{D}^1 with $\psi = \operatorname{Re} \Psi$.

Now, let $p \in \partial \Omega$ be such that $d_0(z_0) = |z_0 - p|$. Let $e : \mathbf{D}^2 \to U$ be given by

$$e(z_1, z_2) = \alpha(z_1) + z_2(1 - \varepsilon)e^{-\Psi(z_1)}(p - z_0).$$

That is, the two-dimensional polydisk is embedded so that at each point $z_1 \in \mathbf{D}^1$ there is a disk of radius $|(1-\varepsilon)\exp(-\Psi(z_1))|$ in the direction of $p-z_0$. If ε is small enough we have a Hartogs-type subset of the polydisk contained in Ω but the polydisk is not contained in Ω since $d_0(z_0,\partial\Omega) = \exp(-\phi(z_0)) < \exp(-\psi(z_0))$.

Lemma 3.3. Let T be a closed, positive (1,1)-current on a complex manifold X. Then $\Omega = X - \text{supp}(T)$ is locally Stein.

Proof. Let p be a boundary point of Ω . Choose a Stein neighborhood U of p in X so that $T=i\partial\bar{\partial}h$ for some plurisubharmonic function h on U. By definition of Ω , h is pluriharmonic on $U\cap\Omega$.

If Ω is not locally Stein at p, then by Lemma 3.2, we can embed a twodimensional polydisk into U so that a Hartogs-type domain Ω_{δ} lies in Ω , but the polydisk is not contained in Ω . By Lemma 3.1, h must be pluriharmonic on the whole polydisk, contradicting the definition of Ω .

Corollary 3.4. If X is Stein, then so is $X - \operatorname{supp} T$.

Example. If X is a Stein manifold and V a hypersurface, then $V = \operatorname{supp} T$ for a positive (1,1)-current T given locally by $T = \frac{i}{\pi} \partial \bar{\partial} \log |f|$, where V is the zero set of f. Lemma 3.3 shows that X - V is locally Stein, and thus Stein. Similarly, $\mathbf{P}^n - V$ is Stein for any hypersurface V.

4. The potential function of a rational map

Let $f: \mathbf{P}^n \to \mathbf{P}^n$ be a holomorphic map. Let $F: \mathbf{C}^{n+1} \to \mathbf{C}^{n+1}$ be a lift of f to a homogeneous polynomial, unique up to scalar multiple, so that $\pi \circ F = f \circ \pi$ where π is the projection $\mathbf{C}^{n+1} \setminus 0 \to \mathbf{P}^n$. Let d be the degree of the components of F; then f has topological degree d^n .

Assume that d > 1. Following [HP], we define the **potential function** of F by

$$h_F(z) = \lim_{m \to \infty} \frac{1}{d^m} \log ||F^m(z)||.$$

The limit converges uniformly on compact subsets of $\mathbf{C}^{n+1} - 0$, and $h_F(z)$ is plurisubharmonic on \mathbf{C}^{n+1} since $\log \|\cdot\|$ is plurisubharmonic. Let $\Omega_F \subset \mathbf{C}^{n+1}$ be the basin of attraction of the origin for F; that is,

$$\Omega_F = \{ x \in \mathbf{C}^{n+1} : F^m(x) \to 0 \text{ as } m \to \infty \}.$$

Note that Ω_F is open and bounded.

From the definition, we obtain the following properties of the potential function h_F [HP]:

- (1) $h_F(\alpha z) = h_F(z) + \log |\alpha|$ for $\alpha \in \mathbb{C}^*$;
- (2) $\Omega_F = \{z : h_F(z) < 0\}$; and
- (3) h_F is independent of the choice of norm $\|\cdot\|$ on \mathbb{C}^{n+1} .

Theorem 4.1. (Hubbard-Papadopol, Ueda, Fornaess-Sibony) The support of the positive (1,1)-current

$$\omega_f = \frac{i}{\pi} \partial \bar{\partial} h_F$$

on \mathbb{C}^{n+1} – 0 is equal to the preimage of the Julia set $\pi^{-1}(J(f))$. If n=1, then the Brolin-Lyubich measure μ_f satisfies $\pi^*\mu_f = \omega_f$.

Proof. See [HP, Theorem 4.1] for n=1 and [U, Theorem 2.2], [FS, Theorem 2.12] for n>1.

From Corollary 3.4, we obtain the following ([U, Theorem 2.3], [FS, Theorem 5.2]):

Corollary 4.2. (Ueda, Fornaess-Sibony) The Fatou components of $f: \mathbf{P}^n \to \mathbf{P}^n$ are Stein.

5. The bifurcation current

In this section we complete the proof of Theorem 1.1. Let $f: X \times \mathbf{P}^1 \to \mathbf{P}^1$ be a holomorphic family of rational maps on \mathbf{P}^1 of degree d > 1. Let $\{F_{\lambda}\}$ be a holomorphic family of homogeneous polynomials on \mathbf{C}^2 , locally lifting the family f, and let h_{λ} denote the potential function of F_{λ} (§4). The potential function $h_{\lambda}(z)$ is plurisubharmonic as a function of the pair (λ, z) .

Fix $\lambda_0 \in X$. In a neighborhood U of λ_0 , we can choose coordinates on \mathbf{P}^1 so that ∞ is not a critical point of f_{λ} , $\lambda \in U$. For $z \in \mathbf{P}^1 - \{\infty\}$, let $\tilde{z} = (z, 1) \in \mathbf{C}^2$. Define a function H on U by

$$H(\lambda) = \sum_{\{c: f_{\lambda}'(c) = 0\}} h_{\lambda}(\tilde{c}),$$

where the critical points are counted with multiplicity. Now, let $N(\lambda)$ be the number of critical points of the rational map f_{λ} (counted without multiplicity). Let

$$D(f) = \{\lambda_0 \in X : N(\lambda) \text{ does not have a local maximum at } \lambda = \lambda_0\}.$$

Then D(f) is a complex hypersurface in X, since it is defined by the vanishing of a discriminant. If $\lambda_0 \notin D(f)$, there exists a neighborhood U of λ_0 and holomorphic functions $c_j: U \to \mathbf{P}^1, j = 1, \ldots, 2d-2$, parametrizing the critical points of f_{λ} , such that $\infty \notin c_j(U)$ for all j. In this case, we can express H as the sum

$$H(\lambda) = \sum_{j} H_{j}(\lambda)$$

of the plurisubharmonic functions

$$H_{j}(\lambda) = h_{\lambda} \circ \tilde{c}_{j}(\lambda)$$

$$= \lim_{m \to \infty} \frac{1}{d^{m}} \log ||F_{\lambda}^{m}(\tilde{c}_{j}(\lambda))||.$$

For any $\lambda_0 \in X$, then, H is defined and continuous in a neighborhood U of λ_0 and plurisubharmonic on U - D(f); therefore H is plurisubharmonic on U.

The **bifurcation current** T is the positive (1,1)-current on parameter space X given locally by

$$T = \frac{i}{\pi} \partial \bar{\partial} H.$$

The next Lemma shows that T is globally well-defined on X.

Lemma 5.1. The current $T = \frac{i}{\pi} \partial \bar{\partial} H$ is independent of (a) the choice of lifts \tilde{c}_i of c_i and (b) the choice of lifts F_{λ} of f_{λ} .

Proof. Suppose we define a new lift $\hat{c}_j(\lambda) = t(\lambda) \cdot \tilde{c}(\lambda)$ for some holomorphic function t taking values in \mathbb{C}^* . Property (1) of the potential function h_{λ} (§4) implies that $h_{\lambda}(\hat{c}(\lambda)) = h_{\lambda}(\tilde{c}(\lambda)) + \log|t(\lambda)|$ and $i\partial\bar{\partial}H$ is unchanged since $\log|t(\lambda)|$ is pluriharmonic, proving (a). If the lifted family $\{F_{\lambda}\}$ is similarly replaced by $\{t(\lambda) \cdot F_{\lambda}\}$, a computation shows that h_{λ} is changed only by the addition of the pluriharmonic term $\frac{1}{d-1}\log|t(\lambda)|$ where d is the degree of the f_{λ} . This proves (b).

Lemma 5.2. A parameter λ_0 lies in the stable regime $S(f) \subset X$ if and only if the function H is pluriharmonic in a neighborhood of λ_0 .

Proof. Let us first suppose that $\lambda_0 \in S(f)$ is not in D(f) (in the notation above). By characterization (6) of stability (§2), for each j, the family of functions $\{\lambda \mapsto f_{\lambda}^m(c_j(\lambda))\}$ is normal in a neighborhood V of λ_0 ; hence, there exists a subsequence converging uniformly on compact subsets to a holomorphic function $g_j(\lambda)$. As in [HP, Prop 5.4], we can shrink our neighborhood V if necessary to find a norm $\|\cdot\|$ on \mathbb{C}^2 so that $\log\|\cdot\|$ is pluriharmonic on $\pi^{-1}(g_j(V))$; e.g., if $g_j(V)$ is disjoint from $\{|x| = |y|\}$, we can choose norm $\|(x,y)\| = \max\{|x|,|y|\}$. Then, on any compact set in V, the functions

$$\lambda \mapsto \frac{1}{d^{m_k}} \log \|F_{\lambda}^{m_k}(\tilde{c}_j(\lambda))\|$$

are pluriharmonic if k is large enough. By property (3) of the potential function h_{λ} (§4), this subsequence converges uniformly to H_{j} . Therefore, H is pluriharmonic on V.

If λ_0 lies in $D(f) \cap S(f)$, then H is defined and continuous on a neighborhood V of λ_0 and pluriharmonic on V - D(f). As D(f) has codimension 1, H must be pluriharmonic on all of V.

For the converse, let us suppose again that $\lambda_0 \notin D(f)$ and that H is pluriharmonic in a neighborhood of λ_0 . Each H_j is pluriharmonic and so we may write $H_j = \operatorname{Re} G_j$ in a neighborhood V of λ_0 . In analogy with [U, Prop. 2.1], we define new lifts $\hat{c}_j(\lambda) = e^{-G_j(\lambda)} \cdot \tilde{c}(\lambda)$ of the c_j and compute

$$h_{\lambda}(\hat{c}_{j}(\lambda)) = h_{\lambda}(\tilde{c}(\lambda)) + \log|e^{-G_{j}(\lambda)}|$$

$$= h_{\lambda}(\tilde{c}(\lambda)) - \operatorname{Re} G_{j}$$

$$= H_{j} - H_{j}$$

$$= 0.$$

By property (2) of h_{λ} , this implies that $\hat{c}_{j}(\lambda)$ lies in $\partial\Omega_{\lambda}$ for all $\lambda \in V$. If V is small enough, the set $\bigcup_{\lambda \in V} (\{\lambda\} \times \partial\Omega_{\lambda})$ has compact closure in $X \times \mathbb{C}^{2}$. As the functions F_{λ} preserve $\partial\Omega_{\lambda}$, the family $\{\lambda \mapsto F_{\lambda}^{n}(\hat{c}_{j}(\lambda))\}$ is uniformly bounded and thus normal. Of course, $f_{\lambda}^{n} \circ c_{j} = \pi \circ F_{\lambda}^{n} \circ \hat{c}_{j}$ demonstrating that λ_{0} is a stable parameter by (6) of Section 2.

Finally suppose that H is pluriharmonic in a neighborhood U of parameter $\lambda_0 \in D(f)$. Then U - D(f) lies in the stable regime and Lemma 2.1 shows that all of U must belong to S(f).

Proof of Theorem 1.1. Let T be the bifurcation current defined above for the family of rational maps f over X. By Lemma 5.2, the support of T is the bifurcation locus B(f).

Corollaries 1.2 and 1.3 now follow immediately from Corollary 3.4.

6. Examples

Example 6.1. In the family $\{f_{\lambda}(z) = z^d + \lambda\}$, $\lambda \in \mathbb{C}$, the bifurcation current T takes the form

$$T = \frac{d-1}{d} \left(\frac{i}{\pi} \partial \bar{\partial} G \right)$$

where G is the Green's function for the complement of the "degree d Mandelbrot set" $M_d = \{\lambda : f_{\lambda}^n(0) \neq \infty \text{ as } n \to \infty\}$. That is, T is a multiple of harmonic measure supported on ∂M_d . The T-mass of ∂M_d is (d-1)/d.

Proof. If G_{λ} denotes the Green's function for the complement of the filled Julia set $K(f_{\lambda}) = \{z : f_{\lambda}^{n}(z) \neq \infty \text{ as } n \to \infty\}$, then $G(\lambda) = G_{\lambda}(\lambda)$ (see e.g. [CG, VIII.4]). By [HP, Prop 8.1], we have

$$h_{\lambda}(x,y) = G_{\lambda}(x/y) + \log|y|$$

where (x, y), $y \neq 0$, is a point of \mathbb{C}^2 . Note that d-1 of the critical points of f_{λ} are at z=0 and the other d-1 are at $z=\infty$. Computing, we find

$$T = \frac{i}{\pi} \sum_{j} \partial \bar{\partial} h_{\lambda}(\tilde{c}_{j}(\lambda))$$

$$= (d-1)\frac{i}{\pi} \partial \bar{\partial} h_{\lambda}(0,1)$$

$$= (d-1)\frac{i}{\pi} \partial \bar{\partial} G_{\lambda}(0)$$

$$= \frac{d-1}{d} \frac{i}{\pi} \partial \bar{\partial} G_{\lambda}(\lambda).$$

Example 6.2. Let f be a polynomial of degree d and G_f the Green's function for the complement of the filled Julia set. The Lyapunov exponent of f (for the Brolin-Lyubich measure) satisfies ([Prz],[Mn])

$$L(f) = \log d + \sum_{\{c \in \mathbf{C}: f'(c) = 0\}} G_f(c).$$

If $\{f_{\lambda}\}\$ is any holomorphic family of polynomials, the Lyapunov exponent as a function of the parameter is a potential function for the bifurcation current; that is.

$$T = \frac{i}{\pi} \partial \bar{\partial} L.$$

In the sequel, we examine further the connection between the bifurcation current and the Lyapunov exponent.

References

- [BE] L. Bers and L. Ehrenpreis, *Holomorphic convexity of Teichmüller spaces*, Bull. Amer. Math. Soc **70** (1964), 761–764.
- [B] H. Brolin, Invariant sets under iteration of rational functions. Ark. Mat. 6 (1965), 103–144.
- [CG] L. Carleson and T. W. Gamelin, Complex dynamics, Springer-Verlag, New York, 1993.
- [C] U. Cegrell, Plurisubharmonic functions, Proc. London Math. Soc. 36 (1978), 310–336.
- [FS] J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension. II. Modern methods in complex analysis (Princeton, NJ, 1992), Princeton Univ. Press, Princeton, NJ, 1995, pp. 135–182.
- [GH] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons Inc., New York, 1994.
- [H] L. Hörmander, An introduction to complex analysis in several variables, North-Holland Publishing Co., Amsterdam, 1990.
- [HP] J. Hubbard and P. Papadopol, Superattractive fixed points in \mathbb{C}^n , Indiana Univ. Math. J. **43** (1994), 321–365.
- [Le] P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris, 1968.
- [Ly] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems 3 (1983), 351–385.
- [Mn] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical systems, Valparaiso 1986, Lecture Notes in Math. 1331, Springer, Berlin, 1988, pp. 86–117.
- [MSS] R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. cole Norm. Sup. 16 (1983), 193–217.
- [M1] C. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies 135, Princeton University Press, Princeton, NJ, 1994.
- [M2] _____, Rational maps and Teichmüller space, Lecture Notes in Mathematics 1574, Springer-Verlag, 1994, pp. 430–433.
- [Prz] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), 161–179.
- [R] R. M. Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics 108, Springer-Verlag, New York, 1986.
- [S] Y.-T. Siu, Pseudoconvexity and the Problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481–512.
- [U] T. Ueda, Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan 46 (1994), 545–555.

Department of Mathematics, Harvard University, One Oxford Street Cambridge, MA 02138.

E-mail address: demarco@math.harvard.edu