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ON GALOIS REPRESENTATIONS VIA
SIEGEL MODULAR FORMS OF GENUS TWO

MICHAEL DETTWEILER †, ULF KÜHN, and STEFAN REITER

Abstract. We study 4-dimensional Galois representations attached to Siegel
modular forms. In some cases we determine the images of the absolute Galois
group. This yields Galois realizations over Q for projective symplectic groups.

1. Introduction

It is well known that to classical modular forms there are attached two-
dimensional l-adic representations of the absolute Galois group GQ := Gal(Q/Q),
see Deligne [6]. Ribet [15] has studied the images of GQ and proved that they are
almost always “as big as possible”. In particular, by considering modular forms
of weight 24, he showed that the groups PSl(2, l2) occur as Galois groups over
Q if l �= 47 and 144169 is a quadratic non-residue modulo l. Reverter and Vila
[14] subsequently realized many other groups PGl(2, l2m−1) and PSl(2, l2m) as
Galois groups over Q by considering modular forms of higher weights.

Results of Weissauer [24] associate four-dimensional Galois representations to
Siegel modular forms of genus two (more generally, to any irreducible cuspidal
automorphic representation of GSp(4, A), A being the ring of adeles of Q, whose
component at infinity belongs to the holomorphic discrete series, see Theorem 4).
We study the Galois representations attached to the unique (up to normalization
and Galois conjugation) Siegel modular eigenform Υ of weight 28 on the full
Siegel modular group Sp(4, Z) which is a cusp form and does not lie in the Maass
Spezialschar. The first Fourier coefficients of Υ were determined by Skoruppa
[18], [19].

The case of weight 28 is the smallest one where non-Maass, non-Eisenstein
eigenforms exist whose Fourier coefficients do not lie completely in Q (see
[18]) – so there is the chance of finding new Galois groups (see Remark 14
for details).

We use the following method to determine the image of GQ : We consider
the image modulo λ, where λ is a prime of some number field. Then we use
the explicitly given characteristic polynomials of the images of the Frobenius
elements, combining the results of Weissauer and Skoruppa, to find semisimple
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elements in the image which do not fit simultaneously into any smaller subgroup
than Sp(4, ln).

We show that infinitely many of the groups PSp(4, l2) and PGSp(4, l′3) (es-
pecially PSp(4, 192) and PGSp(4, 533)) occur as Galois groups over Q, see Thm
13 i) and ii). The corresponding Galois extensions are unramified outside l and
l′, resp.. An argument similar to a result of Serre-Ribet, see Lemma 2, then
implies that the corresponding λ-adic inverse images also occur as Galois groups
over Q.

We thank Professor Weissauer for providing us with his preprints and for valu-
able discussions. Further we thank J. Hartmann, J. Klüners, Professor Kramer
and Professor Matzat for helpful comments.

2. Lifting modular representations and reducing l-adic
representations

In this section we collect some general results about l-adic representations
which will be useful later.

Notation 1. We denote by K an algebraic closure of a field K. By P we denote
the set of primes of N. If p ∈ P, we denote by Frobp a Frobenius element of the
absolute Galois group GQ := Gal(Q/Q), see Serre [16]. If E is a number field
and λ is a place of E, we denote by Eλ the completion of E with respect to λ.
If K is a local field then we denote by OK (resp. mK , kK) its ring of integers
(resp. the maximal ideal of OK , its residue field).

Lemma 2. Let K be a finite extension of Ql, l ≥ 5. Suppose that G is a closed
subgroup of GSp(n, OK) whose image “mod l” contains Sp(n, OK/lOK). Then
G contains the group Sp(n, OK).

Proof. This is analogous to the proof of Thm. 2.1 of Ribet [15]. The argument
of Serre (as given in [15], p. 250) applies, if we can show that the Lie algebra
sp(n, q) “mod λ” of Sp(n, q) is generated by nilpotent elements of degree two
(here λ denotes an extension of l to K such that kK = Fq):

By the Cartan decomposition, see [3], we have

sp(n, q) = t ⊕
∑
α∈Ω

xα,

where t is the Lie algebra of a maximally split torus T , Ω denotes the root system
and xα is the root space of α (“mod λ”). Any element of xα, α ∈ Ω, is nilpotent
of degree two. Thus it suffices to prove the claim for the elements of t, which
are of the form diag(D,−D), where D ∈ Matn/2(q) is a diagonal matrix. These
elements can be written as(

D 0
0 −D

)
= 1/2

(
D D
−D −D

)
+ 1/2

(
D −D
D −D

)
,

where the summands on the right hand side lie in sp(n, q) and are nilpotent of
degree two.
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Lemma 3. Let K̃ be a finite extension of Ql and ρ : GQ �→ Gl(n, K̃) be a con-
tinuous representation which is unramified outside a finite set S ⊆ P of primes.
Let K ⊆ K̃ be the field which is generated over Ql by the coefficients of the
characteristic polynomials of all ρ(Frobp), p ∈ P \ S. Let further

¯: OK̃ −→ kK̃ ⊆ Fl

denote the reduction modulo mK̃ . Set Fq = kK ⊆ kK̃ . Then there exists a repre-
sentation

ρ̂ : GQ −→ Gl(n, Fq),

such that ρ factors through it and

det(1 − X · ρ(Frobp)) = det(1 − X · ρ̂(Frobp)).

Proof. By compactness, we can assume that the image of ρ is contained in
Gl(n, OK̃). Let ρ : GQ → Gl(n, Fl) be the composition of ρ with the reduc-
tion modulo mK̃ . Let ρss be the semisimplification of ρ in the sense of Serre
[16], I-10. The character tr(ρss) decomposes over Fl into the sum of irreducible
characters χ1 + . . . + χr. The operation of the standard Frobenius F : x �→ xq,
permutes the χ1, . . . , χr (it follows from the Brauer-Nesbitt theorem, see Curtis
and Reiner [5], Thm 30.16, that ρss and ρF

ss have the same composition series
because the characteristic polynomials of the Frobenius elements ρss(Frobp) re-
main unchanged). Now the theorem of Lang-Steinberg (see Carter [3], p. 32)
implies that ρss is equivalent to a representation ρ̂ : GQ → Gl(n, Fq).

3. Galois representations attached to Siegel modular forms

The following theorem will be essential for our considerations:

Theorem 4. (Weissauer [24]) Suppose that Π is a unitary cuspidal irreducible
automorphic representation of GSp(4, A) (A denotes the ring of adeles of Q)
such that Π∞ belongs to the holomorphic discrete series of weight (k1, k2). Set
w := k1 +k2 − 3. Let S denote the set of ramified places of the representation Π.
Then there exists a number field E such that for primes p /∈ S the local L-factor

Qp(p−s) = Lp(Πp, s − w

2
), Lp(X)−1 ∈ E[X],

of the degree 4 spinor L-series (suitably normalized) has coefficients in E, and
such that for any prime number l and any extension λ of l to E there exists a
four dimensional semisimple Galois representation

ρΠ,λ : GQ → Gl(4, Eλ),

which is unramified outside S ∪ {l} and for p /∈ S ∪ {l} the following holds

Lp(Πp, s − w

2
) = det(1 − ρΠ,λ(Frobp)p−s)−1.
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First we want to reformulate the above theorem according to our situation:

Let f be a classical Siegel modular form of even weight k on the full Siegel
modular group Sp(4, Z) which is a cusp form and a simultaneous eigenform for
all Hecke operators T (n), n ∈ N (in the notation of Andrianov [1]).

One has a decomposition

GSp(4, A) = GSp(4, Q)GSp(4, R)+
∏

p<∞
Kp,

where GSp(4, R)+ denotes the subgroup of elements of GSp(4, R) having positive
determinant and Kp := GSp(4, Zp), see, e.g., Weissauer [23]. One defines an
automorphic form φ = φf on GSp(4, A) via

φ(g) = φ(γg∞k0) = f(g∞(i · Id2)) · det(g∞(i · Id2))k

det(C · i · Id2 + D)k
,

where

g∞ :=
(

A B
C D

)
∈ GSp(4, R)+

acts via linear fractional transformations, γ ∈ GSp(4, Q) and k0 ∈ ∏
p<∞ Kp.

Then φ gives rise to a cuspidal irreducible automorphic representation Π = Πf

of GSp(4, A) whose ramification set is empty, see Asgari and Schmidt [2]. More-
over, Π∞ is in the holomorphic discrete series of weight (k, k) (see
[2], [8] or [25]).

We will denote the corresponding Galois representations (given by the above
theorem) by ρf,λ.

Let λn denote the eigenvalue of T (n) and let

Lf (s) := ζ(2s − 2k + 4)
∞∑

n=1

λn

ns

be the spinor L-function. Then Lf has an Euler product of the form

Lf (s) =
∏
p∈P

Qp(p−s)−1,

where Qp is the following polynomial:

Qp(X) = 1 − λpX + (λ2
p − λp2 − p2k−4)X2 − λpp

2k−3X3 + p4k−6X4(1)

= (1 − (λp/2 +
√

dp)X + p2k−3X2)(1 − (λp/2 − √
dp)X + p2k−3X2),

with dp = −3/4λp
2 + λp2 + p2k−4 + 2p2k−3, see [18], p. 387.

As a corollary to Theorem 4 we get:

Proposition 5. Let f be a Siegel modular form of even weight k on the full
Siegel modular group Sp(4, Z) which is a cusp form and a simultaneous eigenform
for all Hecke operators T (n), n ∈ N. Let E be the number field generated over
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Q by all the eigenvalues λn, f |T (n) = λnf. For any prime number l and any
extension λ of l to E there exists a continuous Galois representation

ρf,λ : GQ → Gl(4, Eλ)

such that the following holds: The representation ρf,λ is unramified outside l
and

det(Id4 − X · ρf,λ(Frobp)) = Qp(X), (p �= l).

If ρf,λ is absolutely irreducible, then the representation ρf,λ is defined over Eλ.

Proof. All the statements except the last follow from the above discussion. The
last statement can be found in Weissauer [24], App. D (alternatively one could
use a result of Carayol [4]).

Remark 6. (i) If Πf has multiplicity one (that means f is uniquely determined
by its weight and its Hecke eigenvalues), the image of ρf,λ is contained in a
general symplectic group. See [24], Thm. IV.

ii) In the above proposition, it suffices to adjoin a Hecke eigenvalue of one
element T (p) (to obtain the field E) if the characteristic polynomial of T (p) on
the space spanned by the Galois translates of f is irreducible over Q. This follows
from the existence of a basis of the space of Siegel modular forms of genus two
of fixed weight whose elements have Fourier coefficients in Q (given by Igusa’s
theorem [9]).

4. Computation of Hecke eigenvalues

As in Skoruppa [18], [19], let

Υ = Υ28 =
∑

r, n, m ∈ Z

r2 − 4mn ≤ 0
n, m ≥ 0

a(n, r, m) · en·2πiτ · er·2πiz · em·2πiτ ′
, τ, τ ′ ∈ H, z ∈ C

be the Hecke eigenform of weight 28 which is orthogonal to the space of Klingen-
Eisenstein series and the Maass-Spezialschar (an “interesting” formin the nota-
tion of Skoruppa [18]).

The Fourier coefficients depend only on the binary quadratic form nX2 +
rXY +mY 2, see Andrianov [1]. Skoruppa [19] computed the Fourier coefficients
of Υ up to discriminant (of the corresponding quadratic form) −100. Using
this, one can compute the values λ2, λ4, λ3, λ9 and λ5, λ25, which determine the
polynomials Q2, Q3, Q5 of the previous section (Formula (1)).

As Υ is a Hecke eigenform we have the following identities, compare to [18],
pp. 386-387:
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λpa(1, 1, 1) = a(p, p, p) + pk−2(1 + (p
3 ))a(1, 1, 1)

λpa(p, p, p) = a(p2, p2, p2) + p2k−3a(1, 1, 1) + pk−2a(1, p, p2)+
pk−2

∑
ν mod p a(1 + ν + ν2, p(1 + 2ν), p2)

λp2a(1, 1, 1) = a(p2, p2, p2) + p2k−4((p
3 ) + (p2

3 ))a(1, 1, 1)+
pk−2

∑
ν mod p:p|1+ν+ν2 a(1 + ν + ν2, p(1 + 2ν), p2) .

Moreover, since a(1, 3, 9) = a(7, 15, 9) = a(1, 1, 7), a(1, 5, 25) = a(21, 45, 25) =
a(1, 1, 19) and a(3, 15, 25) = a(7, 25, 25) = a(13, 35, 25) = a(3, 3, 7) we get

λ2 = a(2,2,2)
a(1,1,1) , λ4 = a(4,4,4)

a(1,1,1) ,

λ3 = a(3,3,3)
a(1,1,1) + 3(k−2), λ9 = λ3a(3,3,3)−3·3(k−2)a(1,1,7)

a(1,1,1) − 3(2k−3),

λ5 = a(5,5,5)
a(1,1,1) , λ25 = λ5a(5,5,5)−3·5(k−2)a(3,3,7)−3·5(k−2)a(1,1,19)

a(1,1,1)

−5(2k−3) .

The following Fourier coefficients of Υ of can be found in [19]. Here α denotes
some root of the polynomial x3 − x2 − 294086x − 59412960 :

a(1, 1, 1) = 12171273932394959959617937200α2−
3002035657179872135332112844312α−
70266648287313346458671196175512

a(2, 2, 2) = 1677984573470531610324138952787599750α2−
414092621616401798555119241378212012691α−
34880020443365867172742066190931257658045/2

a(3, 3, 3) = 40528677650362308810917276328829759765008α2−
9993582071950239096074929506242070406773384α−
387701121613685136327008010073629284610690936

a(4, 4, 4) = 235161576926603374184625090654858223519273152α2−
57970607100638211602375544449739660532651092576α−
2600292663047595132144160876702679248518781706064

a(5, 5, 5) = 78394728033906461782765030942313953784960201600α2−
19381896022485847701310751066183248396173872804800α−
623881080184953876774684605318302039569534324591600

a(1, 1, 7) = −52284558237596655158824348611551189871168α2+
12898733485281936189063574256312016862462752α+
148124054844534130486331188574142123721611552

a(3, 3, 7) = −12288329366640591505065134861374984329216565680α2+
2985012596172125045826302405366210464924189513560α−
100353753844574955659177552284091544322106595000840

a(1, 1, 19) = −12288329366640617801983929133125597308410762800α2+
2985012596172134938094666101146896613153666927000α−
100353753844571476278158160325640019107500992436200

Table 4.1: Fourier coefficients of Υ28
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Remark 7. The polynomial

F (x) := x3 + 137681664x2 + 4794374687293440x + 4100431555335920025600

is the characteristic polynomial of the Hecke operator T (2) on the space spanned
by the Galois translates of Υ. This space is exactly the complement of the space
spanned by the Klingen-Eisenstein series and the Maass Spezialschar, see [18].
Thus the automorphic representation ΠΥ has multiplicity one.

5. Some results on GSp(4, q)

Consider β1, β2, η ∈ Fq, such that ηq = η and such that the following equality
holds:

{β1, ηβ−1
1 , β2, ηβ−1

2 } = {β1
q, ηβ1

−q, β2
q, ηβ2

−q}.
The following table lists (up to conjugation) the tori in Gl(4, q) which are max-
imal with respect to the condition that their elements have a set of eigenvalues

S(t) = {β1, ηβ−1
1 , β2, ηβ−1

2 }.

torus order eigenvalues

T0 (q − 1)3 {β1, ηβ−1
1 , β2, ηβ−1

2 }, βq
i = βi

T1 (q + 1)2(q − 1) {β1, ηβ−1
1 , β2, ηβ−1

2 }, βq
i = ηβ−1

i

T2 (q − 1)2(q + 1) {β1, ηβ−1
1 , β2, ηβ−1

2 }, βq
1 = β1, βq

2 = ηβ−1
2

T3 (q2 − 1)(q − 1) {β1, β
q
1 , ηβ−1

1 , ηβ−q
1 }, βq2

1 = β1

T4 (q2 + 1)(q − 1) {β1, β
q
1 , ηβ−1

1 , ηβ−q
1 }, βq2

1 = ηβ−1
1

Table 5.1
Note that these tori are (up to conjugation in Gl(4, q)) maximal tori in

GSp(4, q) and CO±
4 (q), resp.. Thus if S(t) �= −S(t), we get S(tσ) = η−1S(t), σ

denoting the inverse-transpose map. If S(t) = −S(t), we get S(tσ) = η−1S(t)
or S(tσ) = −η−1S(t).

Remark 8. The numbers ri of irreducible factors (over Fq) of the character-
istic polynomial of a regular element of Ti, i = 0, 1, . . . , 4, are 4, 2, 3, 2, 1,
respectively. Hence we can uniquely associate to a regular element t (which
has a set of eigenvalues S(t) as above) a torus Ti, except in the case t ∼
diag(β,−ηβ−1, ηβ−1,−β), βq = −ηβ−1.

For ρf,λ : GQ → Gl(4, Eλ) as in Prop. 5, let G := im(ρf,λ). Then, let G be
the Zariski closure of G in Gl(4, Eλ), G0

be the identity component of G and
G0 := G0 ∩ G. Let

ρ̂f,λ : GQ → Gl(4, q), Fq = kEλ
,

be as in Lemma 3, G be the image of ρ̂f,λ and G0 = ρ̂f,λ(ρ−1
f,λ(G0)).

From the list of Taylor [20], bottom of page 298, we deduce that G0 is con-
tained in one of the groups listed below:
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overgroups of G0 tori |G/G0|

CO+
4 (q) = Gl(2, q) ◦ Gl2(q) = {X ⊗ Y | X, Y ∈ Gl(2, q)} T0, T1, T3 ≤ 2

CO−
4 (q) ∼= Gl(2, q2) = {X ⊗ XFq | X ∈ Gl(2, q2)} T2, T4 ≤ 2

GSp(4, q)

Gl(2, q) = {diag(X, X) | X ∈ Gl(2, q)} T1, T2 ≤ 2
Gl(2, q) = {diag(Y, X, det(X)Y −1) | Y ∈ Gl1(q), X ∈ Gl(2, q)} T0, T2 ≤ 2
Gl(2, q) = {diag(Y, X, det(X)Y −1) | Y ∈ GU1(q), X ∈ Gl(2, q)} T1, T2 ≤ 2
Gl(2, q) × Gl1(q) = {diag(X, ηXσ) | X ∈ Gl(2, q), η ∈ Fq} T0, T3 ≤ 2
GU2(q) × Gl1(q) = {diag(X, ηXσ) | X ∈ GU2(q), η ∈ Fq} T1, T3 ≤ 2
{(X, Y ) | X, Y ∈ Gl(2, q), det(X) = det(Y )} T0, T1, T2 ≤ 2
{(X, XFq ) | X ∈ Gl(2, q2), det(X) ∈ Fq} T3, T4 ≤ 2
Ti, i = 0, . . . , 4 ≤ 8

Table 5.2

Remark 9. Let s ∈ NGl(4,q)(H) \H, where H �= GSp(4, q) is one of the groups
of the above list. Then s has a pair of eigenvalues (β1,−β1).

Proof. First, let s2 ∈ CO±
4 (q) and s �∈ CO±

4 (q). Then s ∼ diag(β1, β2, ηβ2
−1,

−β1), β1
2 = η ∈ Fq, β2 ∈ Fq2 (see [13]). In any other case NGl(4,q)(H) is an

imprimitive group, where s permutes 2 or 4 blocks. Hence s2 is not a regular
element and the claim follows.

Proposition 10. Let l be an odd prime such that the residue field Fq = kEλ
is

not a prime field and let G = im(ρ̂f,λ). Further assume that Fq is generated over
Fl by the reduced coefficients of the characteristic polynomials of the Frobenius
elements. If G contains elements t0, t4, resp. t1, t4, resp. t2, t3, where ti is
contained up to conjugation in the maximal torus Ti (Ti as in Table 5.1) and
the element t2i is regular, then Sp(4, q) ≤ G.

Proof. We exclude all the possible overgroups H �= GSp(4, q) of G0 (H as in
Table 5.2) by considering the maximal tori contained in H, together with Remark
9.

To treat the group GSp(4, q) note that the above list contains all maximal
subgroups of GSp(4, q) with the possible exception GSp(4, q0), q = qr

0, r a prime,
and maximal subgroups of type S (in the notation of Kleidman and Liebeck [10]).

The maximal subgroups of type S are excluded by noting that the condition
that q is not a prime implies, that one has no maximal subgroups of type S,
compare to Mitchell [12].

To exclude the case GSp(4, q0) note that we can assume by Formula (1) and
Proposition 5 that G is contained in the group Fl2 · Sp(4, q0). This implies that
the compositum of Fl2 and Fq0 is Fq. So we can assume that [Fq : Fq0 ] = 2.
Now observe that in this case a regular element contained in T2, resp. T4, is not
contained in the group Fl2 · Sp(4, q0).
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Proposition 11. Let G be as above. Suppose Sp(4, q) ≤ G. Then G/Z(G) =
PSp(4, q) if m is even and G/Z(G) = PGSp(4, q) if m is odd.

Proof. By assumption we get G/Z(G) = PSp(4, q) or G/Z(G) = PGSp(4, q).
Let tp = ρ̂f,λ(Frobp). Since G = 〈tp | p ∈ P〉 ≤ GSp(4, q), we find by Prop. 5
that tσp = p2k−3tp. Thus if m is even we get (q − 1)2 > (l − 1)2. Hence G ≤
Z(Gl(4, q))Sp(4, q). Now let m be odd. Then p2k−3 is a non square in Fq if p is
a non square in Fl. Assume (p

l ) = 1 for all p ∈ P. Then (n
l ) = 1 for 1 ≤ n < l

odd. Hence (n
l ) = −1 for 1 ≤ n < l even. Since ( 4

l ) = 1 we have 4 > l, hence
l = 3. On the other hand we have (5

3 ) = −1, a contradiction.

6. The resulting Galois realizations

Definition 12. A profinite group G occurs as Galois group over Q if there exists
a continuous homomorphism of GQ onto G.

Let f be a Siegel modular form of weight k as in Section 3, and let E, λ, and

ρf,λ : GQ → Gl(4, Eλ)

be as in Prop. 5. If Πf has multiplicity one, the groups

Ak
λ := {g ∈ GSp(4, OEλ

) | det(g) ∈ (Z×
l )4k−6}

are natural candidates for the images of ρf,λ by Formula (1) and Remark 6.
In the following, let Υ = Υ28 be the Hecke eigenform of Section 4. Then
E := Q(α), where α is a root of x3 − x2 − 294086x− 59412960 (using Remark 6
ii) and the irreducibility of F (x) over Q, where F (x) is as in Remark 7).

Theorem 13. i) For infinitely many primes numbers l (especially l = 53) there
exists an extension λ of l to E of inertia degree 3 (i.e. kEλ

� Fl3) such that

ρΥ,λ(GQ) = A28
λ .

In particular, the factor groups PGSp(4, OEλ
) and PGSp(4, l3) of A28

λ occur as
Galois groups over Q. The corresponding Galois extensions of Q are unramified
outside l.

ii) For infinitely many primes numbers l′ (especially l′ = 19) there exists an
extension λ′ of l′ to E of inertia degree 2 such that

ρΥ,λ′(GQ) = A28
λ′ .

In particular, the factor groups PSp(4, OEλ′ ) and PSp(4, l′2) of A28
λ′ occur as

Galois groups over Q. The corresponding Galois extensions of Q are unramified
outside l′.

Proof. (i) Let first l = 53. Since 53 does not divide the discriminant of E (=
5 · 13 · 73693 · 1418741) it follows that 53 is unramified. Let λ be an extension of
53 to E. Then, since F (x) modulo λ is irreducible we have kEλ

� F533 .
Let tp denote the image of a Frobenius element Frobp under the image of

ρ̂Υ,λ, where ρ̂Υ,λ is as in Lemma 3. By Lemma 3 we get that tp is contained
in Gl(4, 533). (By the definition of the polynomials Qp, E also coincides with
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the number field which is generated over Q by the coefficients of the character-
istic polynomials of the Frobenii.) Using the results of Section 4 together with
Formula (1) of Section 3 one sees that

Q2(x) ≡ 4(x2 + (45α2 + 19α + 33)x + 28α2 + 47α + 39)
(x2 + (48α2 + 8α + 46)x + 17α2 + 15α) mod λ

Q3(x) ≡ 9(x + 39α2 + 15α + 27)(x + 16α2 + 28α + 9)
(x + 5α2 + 5α + 28)(x + 46α2 + 18α + 39) mod λ

Q5(x) ≡ 1 + 25(27α2 + 51α + 52)x + 25(47α2 + 24 + 26α)x2+
25(29α2 + 43α + 48)x3 + 25x4 mod λ .

From the list of polynomials Q2, Q3, Q5 mod λ, together with Proposition 5
and Lemma 3, we deduce that t2 ∈ T3, t3 ∈ T0, t5 ∈ T4 and t23, t

2
5 are regular

elements. Thus by Proposition 10 the group H := 〈t2, t3, t5〉 contains the group
Sp(4, 533); in particular, H is absolutely irreducible. Using the list of the possible
overgroups in Section 5 (or by multiplicity one, see Remarks 6 i) and 7) we find
that H is contained in the group GSp(4, 533).

Since H is absolutely irreducible, it follows by definition that ρ̂Υ,λ is abso-
lutely irreducible. It follows from the construction of ρ̂Υ,λ that also ρΥ,λ is
absolutely irreducible. Thus the representation ρΥ,λ is defined over E (see Prop.
5). Since H/Z(H) contains PSp(4, l3) it follows Im(ρΥ,λ) = A28

λ , using Lemma
2 and det(Frobp) = p4k−6. The groups PGSp(4, OEλ

) and PGSp(4, l3) are fac-
tor groups of A28

λ by Prop. 11 and the corresponding Galois extensions are
unramified outside l by Prop. 5.

We use Cebotarev’s density theorem in order to show that analogous state-
ments hold for infinitely many primes l : Let E′ be the Galois closure of E
and

Q̃ :=
∏

i=2,3,5

·
∏

σ∈Gal(E′:Q)

Qσ
i ∈ Q[x].

Looking at the case l = 53 one sees (by applying Cebotarev’s density theorem to
Q̃) that there are infinitely many primes l of inertia degree 3 in E such that the
polynomials Qi, i = 2, 3, 5, decompose modulo l as in the 53 case above. Then
continue as in the 53 case.

ii) Let first l′ = 19 : We have

F (x) ≡ (x + 18)(x2 + 8x + 17) mod l′.

Let λ′ be the extension of l′ to E of inertia degree 2 and let α ∈ kEλ′ = F192 be
a root of x2 + 7x + 14. Then

Q2(x) ≡ 1 + 5(17α + 14)x + 5(6 + 13α)x2 + 5(18α + 7)x3 + 5x4 mod λ′

Q3(x) ≡ 17(x2 + (α + 8)x + 3)(x2 + (16α + 4)x + 3) mod λ′

Q5(x) ≡ 16(x + 9α + 12)(x + 1)(x + 5)(x + 14α + 16) mod λ′

Thus t2 ∈ T4, t3 ∈ T1, t5 ∈ T0. The claim on l′ = 19 as well as the claim on the
infinitely many other l′’s follow now analogously as in i).
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Remark 14. i) The Galois representations attached to Hecke eigenforms in the
Maass Spezialschar are related to two dimensional Galois representations; in
particular, they are always reducible, see [24], Thm. II. The Fourier coefficients
of the non-Maass, non-Eisenstein, Hecke eigenforms of smaller weights lie com-
pletely in Q (see [18]) and thus cannot yield anything new from the inverse
Galois theoretic viewpoint (see Malle and Matzat [11], Serre [17] and Völklein
[22] for an introduction to the inverse Galois problem), since it is well known
that the groups PGSp(2n, l) occur as Galois groups over Q (e.g. use [11], Thm.
I.8.6, together with [13], Satz 6.1, 7.1, as in [11], Ex. I.8.2.).

ii) One can realize symplectic groups PSp(n, lm), l odd, for a fixed m ∈ N

(regularly) as Galois groups over Q if n > lm (see [7], extending results of
Thompson and Völklein [21]). It is in general very hard to realize symplectic
groups regularly as Galois groups over Q if n lies below this bound and m > 1,
because the Hurwitz spaces which parametrize the corresponding families of
covers tend to have “few” rational points. This is partly because these Hurwitz
spaces are often varieties of general type, partly because of the action of the
absolute Galois group on the conjugacy classes via the cyclotomic character (see
[11] and [22] for this).

References

[1] Andrianov, A.N., Quadratic forms and Hecke operators, Berlin: Springer Verlag (1987).
[2] Asgari, M., Schmidt, R., Siegel modular forms and representations, Manuscripta Math.

104 (2001), No. 2, 173–200.
[3] Carter, R., Finite Groups of Lie Type: Conjugacy classes and complex characters, New

York: Wiley (1985).
[4] Carayol, H., Formes modulaires et représentations Galoisiennes à valeurs dans un
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