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MINIMAL HYPERSURFACES WITH FINITE INDEX

Peter Li1 and Jiaping Wang2

§0 Introduction

In an article of Cao-Shen-Zhu [C-S-Z], they proved that a complete, immersed,
stable minimal hypersurface Mn of R

n+1 with n ≥ 3 must have only one end.
When n = 2, it was proved independently by do Carmo-Peng [dC-P] and Fischer-
Colbrie-Schoen [FC-S] that a complete, immersed, oriented stable minimal sur-
face in R

3 must be a plane. Later Gulliver [G] and Fischer-Colbrie [FC] proved
that if a complete, immersed, minimal surface in R

3 has finite index, then it
must be conformally equivalent to a compact Riemann surface with finitely
many punctures. Fischer-Colbrie actually proved this for minimal surfaces in
a complete three dimensional manifold with non-negative scalar curvature. In
any event, a corollary is that if a complete, immersed, oriented minimal surface
in R

3 has finite index then it must have finitely many ends. The purpose of this
paper is to generalize this result for finitely many ends to higher dimensional
minimal hypersurfaces in Euclidean space (see Theorem 5). In fact, we will also
show that the first L2-Betti number of such a manifold must be finite.

The strategy of Cao-Shen-Zhu was to utilize a result of Schoen-Yau [S-Y]
asserting that a complete, stable minimal hypersurface of R

n+1 cannot admit
a non-constant harmonic function with finite Dirichlet integral. Assuming that
M has more than one end, Cao-Shen-Zhu constructed a non-constant harmonic
function with finite Dirichlet integral. This approach very much fits into the
scheme studied by the first author and Tam in [L-T2]. In fact, the authors showed
that the number of non-parabolic ends of any complete Riemannian manifold is
bounded above by the dimension of the space of bounded harmonic functions
with finite Dirichlet integral. The proof of Cao-Shen-Zhu can be modified to
show that each end of a complete, immersed, minimal submanifold must be non-
parabolic. Due to this connection with harmonic functions, our approach is to
refine the argument of Schoen-Yau to obtain an estimate of the dimension of the
space of harmonic functions with finite Dirichlet integral. Unfortunately, our
estimate depends on the geometry of M on a compact subset, whose existence
is guaranteed by the finite index assumption. While we succeeded in proving
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finite index implies finitely many ends, it is unclear if one can actually estimate
the number of ends by the index directly. This will be an interesting issue to
investigate in the future.

§1 Preliminaries

Let us first recall (see [L-T2] and [L3]) that an end E of a complete manifold M
is non-parabolic means that E admits a positive Green’s function with Neumann
boundary condition. First, we will recall a theorem of the first author and Tam
in [L-T2].

Theorem 1 (Li-Tam). Let M be a complete Riemannian manifold. Let
H0

D(M) denote the space of bounded harmonic functions with finite Dirichlet
integral. Then the number of non-parabolic ends of M is at most the dimension
of H0

D(M).

Observe that if u is a harmonic function with finite Dirichlet integral then its
exterior differential du is an L2 harmonic 1-form. Moreover, du = 0 if and only
if u is identically constant. Hence

dimH0
D(M) ≤ dimH1(L2(M)) + 1.

Using this inequality, we can state Theorem 1 in terms of the first L2 Betti
number.

Corollary 2. Let M be a complete Riemannian manifold. Let H1(L2(M)) be
the first L2-cohomology of M. Then the number of non-parabolic ends of M is
bounded from above by dimH1(L2(M)) + 1.

This corollary enables us to estimate the number of ends of a minimal hyper-
surface if we can show that all its ends are non-parabolic. In fact, it was proved
in [C-S-Z] that this is the case for minimal submanifolds of dimension at least
three in R

N . For completeness sake, we provide a presentation which extracts
the main points of the proof and state it for more general situations (Corollary
4) in terms of non-parabolicity.

Theorem 3 (Cao-Shen-Zhu). Let Mn be a complete, immerse, minimal sub-
manifold of R

N . If n ≥ 3, then each end of M must be non-parabolic.

Proof. Let E be an end of M . For R sufficiently large, let us consider the set
ER = E ∩Bp(R), where Bp(R) is the geodesic ball of radius R in M centered at
some point p ∈ M. Let us denote by r the distance function of M to the point
p. Suppose the function fR is the solution of the equation

∆fR = 0 on ER,

fR = 1 on ∂E,
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and
fR = 0 on E ∩ ∂Bp(R).

By the maximum principle, fR is uniformly bounded between 0 and 1. This
bound and the gradient estimate imply that the sequence fR converges uniformly
on compact subsets of E to a harmonic function f with boundary condition

f = 1 on ∂E.

Moreover, f will satisfy the bounds

0 ≤ f ≤ 1.

If we can show that f is non-constant, then E will be non-parabolic (see [L-T1]
and [L3]).

For a fixed 0 < R0 < R such that ER0 �= ∅, let φ be a non-negative cut-off
function satisfying the properties that

φ = 1 on ER \ ER0 ,

φ = 0 on ∂E,

and
|∇φ| ≤ C1.

The Sobolev inequality of Michael-Simon [M-S], integration by parts, and the
fact that fR is harmonic, imply that

(∫
ER

(φ fR)
2n

n−2

)n−2
n

≤ C

∫
ER

|∇(φ fR)|2

= C

(∫
ER

|∇φ|2 f2
R + 2

∫
ER

φ fR 〈∇φ,∇fR〉

+
∫

ER

φ2 |∇fR|2
)

= C

(∫
ER

|∇φ|2 f2
R +

1
2

∫
ER

〈∇(φ2),∇(f2
R)〉

+
∫

ER

φ2 |∇fR|2
)

= C

∫
ER

|∇φ|2 f2
R.

In particular, for a fixed R1 satisfying R0 < R1 < R, we have

(∫
ER1\ER0

f
2n

n−2
R

)n−2
n

≤ C2

∫
ER0

f2
R.
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If the limiting function f is identically constant, then f must be identically 1
because of its boundary condition. Letting R → ∞, we obtain

(VE(R1) − VE(R0))
n−2

n ≤ C VE(R0),

where VE(r) denotes the volume of the set Er. Since R1 > R0 is arbitrary, this
implies that E must have finite volume. However, since an end of a minimal
submanifold must have infinite volume, this contradicts the assumption that
f = 1, and the theorem is proved. �

It is clear in the above argument that this theorem can be generalized to an
arbitrary Riemannian manifold.

Corollary 4. Let E be an end of a complete Riemannian manifold. Suppose
for some ν ≥ 1, E satisfies a Sobolev type inequality of the form

(∫
E

|u|2ν

) 1
ν

≤ C

∫
E

|∇u|2

for all compactly supported function u ∈ W1,2(E) defined on E, then E must
either have finite volume or be non-parabolic.

We would like to remark that it was proved independently by Grigor’yan [Gr]
and Varopoulos [V] that if a manifold is non-parabolic then its volume growth
must satisfy

(1.1)
∫ ∞

1

t dt

Vp(t)
< ∞.

In particular, when combined with Corollary 4, this implies that if an end satisfies
a Sobolev type inequality as hypothesized in Corollary 4, then it must either have
finite volume or its volume growth must be at least quadratic satisfying (1.1).

§2 Proof of Main Theorem

We are now ready to prove our main result.

Theorem 5. Let Mn be a complete, immersed, oriented minimal hypersurface
in R

n+1 with n ≥ 3. Suppose M has finite index. Then M must have finite first
L2-Betti number, i.e. dimH1(L2(M)) < ∞. In particular, M must have finitely
many ends.

Proof. The assumption that M has finite index implies that there exists a com-
pact set Ω ⊂ M such that M \ Ω is stable. In particular, we may assume that
Ω ⊂ Bp(R0) for some geodesic ball centered at p ∈ M of radius R0. The mono-
tonicity of eigenvalues implies that M \ Bp(R0) is stable. In particular, if |A|2
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denotes the square of the length of the second fundamental form of M , then the
stability inequality [S-Y] asserts that

(2.1)
∫

M\Bp(R0)

ψ2 |A|2 ≤
∫

M\Bp(R0)

|∇ψ|2

for all compactly supported function ψ on M \ Bp(R0).
For any L2 harmonic 1-form ω defined on M , let us denote

h = |ω|

to be the length of the ω. The Bochner formula (see [L2]) asserts that

(2.2) ∆h2 ≥ 2Ric(ω, ω) + 2|∇ω|2,

where Ric denotes the Ricci curvature of M and ∇ω is the covariant derivative
of ω. Using the Gauss curvature equation, we conclude that

(2.3) Ric(ω, ω) ≥ −|A|2 h2.

Since ω is an L2 harmonic 1-form, it must be both closed and co-closed. In
particular, in terms of an orthonormal co-frame {ω1, . . . , ωn}, we can write ω =
aiωi. Then the closed condition is given by

ai,j = aj,i

and the co-closed condition is given by

n∑
i=1

ai,i = 0.

On the other hand,

|∇ω|2 =
∑
i,j

a2
i,j

≥
n∑

j=1

a2
1,j +

n∑
α=2

a2
α,1 +

n∑
α=2

a2
α,α

≥
n∑

j=1

a2
1,j +

n∑
α=2

a2
α,1 +

1
n − 1

(
n∑

α=2

aα,α

)2

.

Using both the closed and co-closed conditions, we conclude that

(2.4) |∇ω|2 ≥ n

n − 1

n∑
j=1

a2
1,j .
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However, at any fixed point x ∈ M , if we choose an orthonormal co-frame such
that |ω|ω1 = ω, then

|∇(h2)|2 = 4
n∑

j=1

(a1 a1,j)2

≤ 4h2
n∑

j=1

a2
1,j .

Combining with (2.2), (2.3), and (2.4), we obtain

(2.5) ∆h ≥ −|A|2h +
|∇h|2

(n − 1)h
.

By choosing ψ = φh with φ being a non-negative compactly supported func-
tion on M \ Bp(R0), (2.1) becomes

∫
M\Bp(R0)

φ2 |A|2 h2 ≤
∫

M\Bp(R0)

|∇φ|2 h2 + 2
∫

M\Bp(R0)

φ h 〈∇φ,∇h〉

+
∫

M\Bp(R0)

φ2 |∇h|2

=
∫

M\Bp(R0)

|∇φ|2 h2 −
∫

M\Bp(R0)

φ2 h ∆h.

Combining with (2.5), we have

(2.6)
∫

M\Bp(R0)

φ2 |∇h|2 ≤ (n − 1)
∫

M\Bp(R0)

|∇φ|2 h2.

On the other hand, the Sobolev inequality for minimal submanifold [M-S] implies
that

(∫
M\Bp(R0)

(φ h)
2n

n−2

)n−2
n

≤ C

∫
M\Bp(R0)

|∇(φ h)|2

≤ 2C

∫
M\Bp(R0)

φ2 |∇h|2 + 2C

∫
M\Bp(R0)

|∇φ|2 h2.

Combining with (2.6), we obtain

(2.7)

(∫
M\Bp(R0)

(φ h)
2n

n−2

)n−2
n

≤ 2nC

∫
M\Bp(R0)

|∇φ|2 h2.
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For R > R0 + 1, let us choose φ satisfying the properties that

φ =




0 on Bp(R0)

1 on Bp(R) \ Bp(R0 + 1)

0 on M \ Bp(2R),

|∇φ| ≤ C3 on Bp(R0 + 1) \ Bp(R0)

and
|∇φ| ≤ C3 R−1 on Bp(2R) \ Bp(R)

for some constant C3 > 0. Applying this to (2.7), we have

(∫
Bp(R)\Bp(R0+1)

h
2n

n−2

)n−2
n

≤ C4

∫
Bp(R0+1)\Bp(R0)

h2

+ C4 R−2

∫
Bp(2R)\Bp(R)

h2.

Using the assumption that h is in L2 and letting R → ∞, the second term tends
to 0 and we conclude that

(2.8)

(∫
M\Bp(R0+1)

h
2n

n−2

)n−2
n

≤ C4

∫
Bp(R0+1)\Bp(R0)

h2.

On the other hand, the Schwarz inequality asserts that

∫
Bp(R0+2)\Bp(R0+1)

h2 ≤ V
2
n

p (R0 + 2)

(∫
Bp(R0+2)\Bp(R0+1)

h
2n

n−2

)n−2
n

.

Together with (2.8), we conclude that there exists a constant C5 > 0 depending
on Vp(R0 + 2) such that

(2.9)
∫

Bp(R0+2)

h2 ≤ C5

∫
Bp(R0+1)

h2.

The fact that h satisfies the differential inequality (2.5) implies that we can
apply the Moser iteration argument (see [L2]) and conclude that

h2(x) ≤ C6

∫
Bx(1)

h2

where C6 > 0 depends only on n and the upper bound of |A|2 on Bx(1). In
particular, if x ∈ Bp(R0 + 1) has the property that

h2(x) = sup
Bp(R0+1)

h2,
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then
sup

Bp(R0+1)

h2 ≤ C6

∫
Bp(R0+2)

h2.

Combining with (2.9), this implies that there exists constant C7 > depending
only on n, Vp(R0 + 2), and supBp(R0+2) |A|2, such that

(2.10) sup
Bp(R0+1)

h2 ≤ C7

∫
Bp(R0+1)

h2.

We are now ready to show that H1(L2(M)) is finite dimensional. It suffices
to show that any finite dimensional subspace K of H1(L2(M)) must have its
dimension bounded by a fixed constant. Let k be the dimension of K. Let us
consider the bilinear form defined on K given by

∫
Bp(R0+1)

〈ω, θ〉.

Note that if ∫
Bp(R0+1)

|ω|2 = 0

for some ω ∈ K, then by the unique continuation property ω must be identically
0. This implies that the bilinear form is an inner product defined on K.

According to Lemma 11 of [L1], there exists an ω ∈ K such that

k

∫
Bp(R0+1)

|ω|2 ≤ Vp(R0 + 1) (min{n, k}) sup
Bp(R0+1)

|ω|2.

However, combining with (2.10) we conclude that

k ≤ C8

with C8 > 0 depending only on n, Vp(R0+2), and supBp(R0+2) |A|2. The theorem
follows by applying Corollary 2 and Theorem 3. �
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