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LACUNARY PARTITION FUNCTIONS

Jeremy Lovejoy

Abstract. We combine the theory of Bailey chains and the theory of binary
quadratic forms to show that there are large classes of q-series which are not theta
series but whose coefficients are almost all 0. We interpret some examples in terms
of simple partition functions.

1. Introduction

A partition of n into distinct parts is a decreasing sequence of natural numbers
whose sum is n. The rank of such a partition is the largest part minus the number
of parts. Let E(n) (resp. O(n)) denote the number of partitions of n into an
even (resp. odd) number of distinct parts. It is a celebrated fact in the theory
of partitions that

E(n) − O(n) =




1, n = k(6k + 1)
−1, n = (2k + 1)(3k + 2)
0, otherwise

This can be proven combinatorially [10] and is equivalent to Euler’s pentag-
onal number theorem,

∞∏
n=1

(1 − qn) =
∞∑

n=−∞
(−1)nqn(3n+1)/2.(1.1)

In particular, we have E(n) − O(n) = 0 for almost all natural numbers. There
are, in fact, numerous examples like (1.1) of simple partition functions given by
theta functions or false theta functions (see [3], for instance) which are trivially
almost always 0. A function on N which is almost always 0 is called lacunary, and
the modern study of lacunary q-series has its origins in the work of Ramanujan
on eta functions.

If one asks for lacunary q-series and partition functions which are not simply
theta or false theta series, then one can identify several examples by using the
theory of complex multiplication [14]. For instance, Serre [15] and Gordon and
Robins [12] have continued the work of Ramanujan and identified approximately
60 pairs (r, s) for which

∞∏
n=1

(1 − qn)r(1 − q2n)s
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is lacunary. Unfortunately, the associated partition functions can be rather
unnatural. (See also [16, 17].)

It turns out that lacunary partition functions can also arise from q-series with
“real multiplication.” In a more combinatorially relevant example, Andrews,
Dyson, and Hickerson [6] used the arithmetic of Q(

√
6) to show that the number

of partitions into distinct parts with even rank minus the number of partitions
into distinct parts with odd rank is almost always 0 (and, in fact, is equal to
any given integer infinitely often). (See also [9].)

Here we shall observe how a theorem on quadratic forms can be combined
with the theory of Bailey chains [4] to give a general technique for producing
families of lacunary q-series which correspond to natural and reasonably simple
partition functions. Theorems 1 and 2 below are just two such examples. We
employ the standard q-series notation,

(a1, ..., aj ; q)n =
n−1∏
k=0

(1 − a1q
k)...(1 − ajq

k).

Theorem 1. For k ≥ 1 we have
∞∑

n=0

n∑
j=−n

(−1)n+jqkn2+(k−1)n+j2
(1 − q2n+1)

= 2
∑

nk≥...≥n1≥0

(q; q)nk
(−1)nkqnk(nk+1)/2+nk−1(nk−1+1)+...+n1(n1+1)

(q; q)nk−nk−1 ...(q; q)n2−n1(q; q)n1(1 + qn1)
.

Theorem 2. For k ≥ 1 we have
∞∑

n=0

n∑
j=−n

(−1)n+jq((2k+3)n2+(2k+1)n)/2−j(3j+1)/2(1 − q2n+1)

=
∑

nk≥...≥n1≥0

(q; q)nk
(−1)nkqnk(nk+1)/2+nk−1(nk−1+1)+...+n1(n1+1)

(q; q)nk−nk−1 ...(q; q)n2−n1

.

The lacunarity of each series in Theorem 1 and almost every series in Theorem
2 will follow immediately from

Theorem 3. Take a set S ⊂ Z × Z and a function ω : Z × Z → Z. If∑
a(n)qn =

∑
(x,y)∈S

ω(x, y)qax2+bx+cy2+dy(1.2)

converges in some disk around q = 0 and −ac is not a square, then

|{n ≤ N : a(n) 
= 0}| � N√
log N

.

The partition theoretic interpretation of the generating functions in Theorems
1 and 2 for arbitrary k is detailed in §3 and relies on the Durfee dissection of
a partition [2]. The case k = 1 of Theorem 1 is a classical result which says
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that the number of pairs of natural numbers (x, y) such that x2 + y2 = n is
equal to the number of ways to write the even (odd) natural number n as the
sum of consecutive positive integers with even (odd) largest summand minus the
number of ways to write to write n as the sum of consecutive positive integers
with odd (even) largest summand.

To interpret the generating function for the k = 1 case of Theorem 2, let A(n)
denote the number of partitions of n into distinct parts which differ by at most
2 and whose smallest part is at most 2. The difference condition is the opposite
of that occurring in the famous Rogers-Ramanujan identities. These partitions
are enumerated by one of Ramanujan’s fifth order mock theta functions [5],

ψ1(q) =
∞∑

n=0

qn(n+1)/2(−q; q)n,

and the right hand side of Theorem 2 for k = 1 is then the generating function
for the number of partitions counted by A(n) with largest part even minus the
number of partitions counted by A(n) with largest part odd.

If one investigates the values of the relevant partition functions, it quickly
becomes apparent that there is little hope of finding a combinatorial explanation
for their lacunarity. This property arises instead from estimates involving norm
functions in quadratic fields which imply Theorem 3. These estimates and Bailey
chains are considered in the following section before the main theorems are
established in §3.

2. Quadratic forms and Bailey chains

The following theorem seems to have first appeared in print in [13] and is
credited there to one P. Bernays [8].

Theorem 4. Let Q(x, y) = Ax2 + Bxy + Cy2 be a quadratic form which is not
negative-definite and whose discriminant is not a square. If P (N) denotes the
number of positive integers less than N which are integrally representable by Q,
then

P (N) � N√
log N

.

Proof of Theorem 3. Multiplying by appropriate powers of q and making substi-
tutions of the form q → q� in (1.2) allows one to complete the square and apply
the above theorem.

In order to use Theorem 3 to establish the lacunarity of q-series and parti-
tion functions, we need to produce representations for q-series which resemble
counting functions for binary quadratic forms. Below we give details about one
general method by which this can be accomplished.
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Two sequences (αn, βn) form a Bailey pair with respect to a if the follwing
two equivalent conditions hold:

βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r
,(2.1)

αn =
(1 − aq2n)(a; q)n(−1)nqn(n−1)/2

(1 − a)(q; q)n

n∑
j=0

(q−n; q)j(aqn; q)jq
jβj .(2.2)

The condition (2.1) is the original definition of a Bailey pair, while the equiv-
alent form (2.2) is demonstrated in [1].

Proposition 5. If (αn, βn) form a Bailey pair with respect to a, then so do

α
′
n =

(b1, c1; q)n(aq/b1c1)nαn

(aq/b1, aq/c1; q)n
(2.3)

and

β
′
n =

1
(aq/b1, aq/c1; q)n

n∑
j=0

(b1, c1; q)j(aq/b1c1; q)n−j(aq/b1c1)jβj

(q; q)n−j
.(2.4)

Since each Bailey pair leads to a new Bailey pair, we can indefinitely iterate
to obtain the so-called Bailey chain.

Theorem 6 (Andrews, [3]). If (αn, βn) form a Bailey pair with respect to a,
then

(aq
bk

, aq
ck

; q)n

(aq, aq
bkck

; q)n

∑
r≥0

(b1, c1, ..., bk, ck, q−n; q)r

(aq
b1

, aq
c1

, ...aq
bk

, aq
ck

, aqn+1; q)r

( −akqk+n

b1c1...bkck

)r

qr(r−1)/2αr

=
∑

nk≥nk−1≥...≥n1≥0

(q−n; q)nk
(bk, ck; q)nk

...(b1, c1; q)n1

( bkckq−n

a )nk
( aq

bk−1
, aq

ck−1
; q)nk

...(aq
b1

, aq
c1

; q)n2

×
( aq

bk−1ck−1
; q)nk−nk−1 ...(

aq
b1c1

; q)n2−n1

(q; q)nk−nk−1 ...(q; q)n2−n1

(
aq

bk−1ck−1

)nk−1

...

(
aq

b1c1

)n1

qnkβn1 .

All general statements about q-series such as Theorem 6 are subject to con-
vergence conditions, though we shall not state them explicitly.

Theorem 7. If

βn =
(d, a/bc; q)n

(q, dq, a/b, a/c; q)n
(2.5)

and

αn =
(a/d; q)n(1 − aq2n)(−d)nqn(n−1)/2

(1 − a)(dq; q)n

n∑
j=0

(a; q)j−1(b, c, d; q)j(1 − aq2j−1)aj

(q, a/b, a/c, a/d; q)j(bcd)j
,

(2.6)

then (αn, βn) form a Bailey pair with respect to a.
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Proof. In Watson’s q-analogue of Whipple’s transformation [11, p. 242, Eq.
(III.18)], let a = a/q and then let e = aqn. The theorem then follows from
the second definition of a Bailey pair (2.2).

Theorem 8. If

βn =
(adq/bc; q)n

(bq, cq, dq; q)n
(2.7)

and

αn =
(a/b, a/c, a/d; q)n(1 − aq2n)(−bcdq)nqn(n−1)/2

(1 − a)(bq, cq, dq; q)nan
(2.8)

×
n∑

j=0

(a; q)j−1(b, c, d; q)j(1 − aq2j−1)aj

(q, a/b, a/c, a/d; q)j(bcd)j
,

then (αn, βn) form a Bailey pair with respect to a.

Proof. Apply Proposition 5 to the Bailey pair from the previous theorem with
b1 = a/b and c1 = a/c. Then (2.8) is straightforward. To get (2.7), notice that
if [zn]

∑
a(j)zj := a(n), then we can write (2.4) as

β
′
n =

1
(bq, cq; q)n

[zn]
∑

j

(d, a/bc; q)(bcqz/a)j

(q, dq; q)j

∑
j

(bcq/a; q)jz
j

(q; q)j

= [zn]
(bcqz/a; q)∞

(bq, cq; q)n(z; q)∞

∑
j

(d, a/bc; q)(bcqz/a)j

(q, dq; q)j

(by [11, p. 236 Eq. (II.3)])

=
1

(bq, cq; q)n
[zn]

∑
j

(dqa/bc; q)jz
j

(dq; q)j
(by [11, p. 241 Eq. (III.3)])

Theorems 7 and 8 can now be employed to give numerous Bailey pairs which
are related to quadratic forms. The case d = 0 has been useful in establishing
relationships between Ramanujan’s fifth, sixth, and seventh order mock theta
functions and indefinite quadratic forms, and several examples of Bailey pairs
corresponding to indefinite forms are given in [5, 7]. By letting some of the
variables tend to ∞ we instead find Bailey pairs with positive definite quadratic
forms. The following lemmas give two examples, the positive definite form used
to prove Theorem 1 and the indefinite form which leads to Theorem 2.

Lemma 9. If

βn =
2

(q; q)n(1 + qn)
and

αn =
(1 − q2n+1)qn(n−1)/2

(1 − q)

n∑
j=−n

(−1)jqj2
,
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then (αn, βn) is a Bailey pair with respect to q.

Proof. Let d = −1, a = q, and b, c → ∞ in Theorem 7.

Lemma 10. If
βn = 1

and

αn =
q2n2+n(1 − q2n+1)

(1 − q)

n∑
j=−n

(−1)jq−j(3j+1)/2,

then (αn, βn) is a Bailey pair with respect to q.

Proof. Let a = q and d = 0 in Theorem 8, and then let b, c → 0. (See also [5,
p.121, (5.11)].)

3. Durfee dissection and proofs of the main theorems

Proof of Theorems 1 and 2. Simply insert the Bailey pairs from Lemmas 9 and
10 into the Bailey chain (Theorem 6), let a, bk = q, and let ck, bk−1, ck−1,
..., b1, c1, n → ∞.

To establish the partition-theoretic interpretation of Theorems 1 and 2, we
require the Durfee rectangle dissection of a partition [2]. In the Ferrers diagram
of a partition λ, we call the largest n× (n+1) rectangle (upper left justified) the
Durfee rectangle. To obtain the Durfee rectangle dissection of λ, notice that to
the right of the Durfee rectangle will be another partition, and we call its Durfee
rectangle the second Durfee rectangle of λ. Clearly we can continue until we run
out of rectangles.

Definition 11. A partition λ is called k-admissible provided
(i) If there are less than k Durfee rectangles, then there is nothing to the right

of the final rectangle.
(ii) For 1 ≤ j ≤ k, there is nothing directly below the lower right dot of the jth

Durfee rectangle.

The Durfee rectangle dissection of a partition which is 1−, 2−, and 3−
admissible, but not k−admissible for k ≥ 4, is shown in Figure 1. We should
point out that to facilitate our discussion the definition of admissibility differs
slightly from that in [2].

For any partition λ into j distinct parts, let the associated partition be that
which is obtained by subtracting i from the ith part for 1 ≤ i ≤ j. Let the
k-largest part of λ denote the number of parts plus the number of columns to
the right of the kth Durfee rectangle in the associated partition. The 0-largest
part is just the largest part.

We begin with the partitions enumerated in Theorem 2. Let Ak(n) denote
the number of partitions λ of n into distinct parts whose associated partition is
k-admissible and such that the columns to the right of the kth Durfee rectangle
of the associated partition form a partition into distinct parts. Let A+

k (n) (resp.
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Figure 1. A Durfee rectangle dissection

A−
k (n)) be the number of partitions counted by Ak(n) with even (resp. odd)

k-largest part.

Theorem 12. When 3(2k + 5) is not a square, we have

|{n ≤ N : A+
k (n) 
= A−

k (n)}| � N√
log N

.

Proof. From Andrews [2], we know that the generating function for k-admissible
partitions with at most N parts and nothing to the right of the final rectangle
is

∑
N≥nk≥nk−1≥...n1≥0

(q; q)Nqnk(nk+1)+...+n1(n1+1)

(q; q)N−nk
(q; q)nk−nk−1 ...(q; q)n2−n1(q; q)n1

(3.1)

To make a partition into N distinct parts with a k-admissible associated partition
and track the parity of the number of parts, we multiply by (−1)NqN(N+1)/2.
Then we multiply by (q; q)n1 to ensure that the columns to the right of the
kth Durfee rectangle form a partition into distinct parts and to track the parity
of the number of such columns. If we sum over all N , then we find that the
k-fold summation on the right side of Theorem 2 is the generating function for
A+

k−1(n) − A−
k−1(n). To complete the proof, invoke Theorem 3.

A similar argument reveals the nature of the partitions generated by the q-
series in Theorem 1. Let Rk(n) denote the number of partitions λ of n into
distinct parts whose associated partition is k-admissible with less than k Durfee
rectangles plus twice the number of partitions λ of n into distinct parts whose
associated partition is k-admissible with exactly k Durfee rectangles such that
the first n1 parts of λ are n1 consecutive integers, where n1 is the size of the kth
Durfee rectangle in the associated partition. Let R+

k (n) (resp. R−
k (n)) be the

number of partitions counted by R(n) with even (resp. odd) k-largest part.
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Theorem 13. We have

|{n ≤ N : R+
k (n) 
= R−

k (n)}| � N√
log N

.

Proof. The argument is nearly the same as in Theorem 12, a notable difference
being that the positive-definite forms require no restrictions on values of k to
guarantee lacunarity. After multiplying (3.1) by (−1)NqN(N+1)/2, we multiply
by by 2/(1 + qn1), which is 1 if there aren’t k Durfee rectangles. If there are
k Durfee rectangles this ensures that the first n1 parts are consecutive integers,
tracks the parity of the number of columns to the right of the final rectangle in
the associated partition, and counts the partition twice.
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Dissertation, Göttingen, 1912.

[9] H. Cohen, q-identities for Maass waveforms, Invent. Math. 91 (1988), no. 3, 409–422.
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