A SATURATED STATIONARY SUBSET OF $\mathcal{P}_{\kappa}\kappa^{+}$

Masahiro Shioya

ABSTRACT. Somewhere saturation of the club filter on $\mathcal{P}_{\kappa}\kappa^{+}$ is shown consistent relative to a κ^{+} -supercompact cardinal κ .

1. Introduction

Let $\kappa > \omega$ be a regular cardinal and $\lambda > \kappa$ a cardinal. In [15] Solovay established that a stationary subset of κ splits into κ stationary sets. Solovay's theorem led Menas [13] to conjecture that a stationary subset S of $\mathcal{P}_{\kappa}\lambda$ splits into $\lambda^{<\kappa}$ stationary sets. Menas' conjecture holds in the constructible universe L (see [12]). In fact L satisfies $\diamondsuit_{\kappa,\lambda}^*$ in the sense of [5] (see [10]), which implies the conjecture via $\diamondsuit_{\kappa,\lambda}(S)$. On the other hand the case $\lambda = \kappa^+$ of the conjecture implies $(\kappa^+)^{<\kappa} = \kappa^+$, hence is independent of ZFC, since some stationary subset of $\mathcal{P}_{\kappa}\kappa^+$ has size κ^+ (see [4]).

The last observation suggests that $\lambda^{<\kappa}$ in the conjecture should be replaced by the smallest size of $S \cap C$ for C a club subset of $\mathcal{P}_{\kappa}\lambda$. Two results support the revised conjecture: First an unbounded subset X of $\mathcal{P}_{\kappa}\lambda$ splits into $\min\{|X \cap C|:$ $C \subset \mathcal{P}_{\kappa}\lambda$ is cobounded} unbounded sets (see [1]). Second $\mathcal{P}_{\kappa}\lambda$ splits into λ^{ω} stationary sets (see [14]). By [3] and [11], λ^{ω} is the best lower bound of the size of club sets in terms of cardinal arithmetic.

In [6] Gitik constructed a model in which even the revised conjecture fails, assuming a κ^{+3} -supercompact cardinal κ exists. Indeed some stationary subset of $\mathcal{P}_{\kappa}\kappa^{+}$ cannot split into κ^{+} stationary sets in his model. It was basically a modification of the Jech–Woodin model [8], in which the club filter on κ is somewhere κ^{+} -saturated. Unfortunately Gitik's proof involved a difficult construction of the intermediate model. Incorporating a variation of the Jech–Shelah forcing [7] for shooting a club subset of $\mathcal{P}_{\kappa}\kappa^{+}$, we resolve the difficulty as well as reduce the assumption:

Theorem. Assume κ is κ^+ -supercompact and GCH. Then some poset with the κ^+ -cc forces that κ is Mahlo and the club filter on $\mathcal{P}_{\kappa}\kappa^+$ is somewhere κ^+ -saturated.

Received August 13, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 03E05, 03E35, 03E55.

This work was partially supported by Grant-in-Aid for Scientific Research (No.12740056), Ministry of Education, Science and Culture.

2. Preliminaries

Our reference book is [9]. See [2] for the basics of iterated forcing. We understand that a limit ordinal is even. We call a set x of ordinals σ -closed if $\sup a \in x$ for $a \in [x]^{\omega}$. An infinite set of ordinals has the σ -closure, i.e. the smallest σ -closed superset, of the same size.

Throughout the paper κ denotes a regular uncountable cardinal. Let S_{κ} be the set $\{x \in \mathcal{P}_{\kappa}\kappa^{+} : x \text{ is } \sigma\text{-closed} \land x \cap \kappa \text{ is a limit ordinal } \land \text{ot } x = (x \cap \kappa)^{+}\}$. By an argument of [3], S_{κ} agrees with the set $\{x \in \mathcal{P}_{\kappa}\kappa^{+} : \text{cf}(x \cap \kappa) > \omega \land \text{ot } x = (x \cap \kappa)^{+}\}$ on some club set.

For a poset P let $\mathcal{G}_{\kappa}(P)$ be the following game: Players I and II play conditions of P at odd and even stages respectively, where the move at stage 0 is trivial, and produce a descending sequence as long as they can. II wins iff the resulting sequence has length at least κ . We call P weakly κ -closed if II has a winning strategy in $\mathcal{G}_{\kappa}(P)$. A weakly κ -closed poset is κ -Baire, preserves the stationarity of subsets of κ , and has an M-generic filter if M has at most κ maximal antichains. Assume $\langle P_{\alpha} : \alpha \leq \gamma \rangle$ is a forcing iteration with Easton support, $\kappa < \gamma$, P_{κ} has the κ -cc and P_{α} forces that $P_{\alpha+1}/\dot{G}_{\alpha}$ is weakly κ -closed for $\kappa \leq \alpha < \gamma$, where \dot{G}_{α} is the P_{α} -name for the generic filter. Then P_{κ} forces that $P_{\gamma}/\dot{G}_{\kappa}$ is weakly κ -closed.

3. Shooting club subsets of $\mathcal{P}_{\kappa}\kappa^+$

This section is devoted to our variation of the Jech-Shelah forcing [7].

Let κ be an inaccessible cardinal. Order $R = \{p : d \times (d \cap \kappa) \to d : d \in \mathcal{P}_{\kappa}\kappa^{+} \text{ is } \sigma\text{-closed } \wedge d \cap \kappa \in \kappa \wedge \forall \alpha \in d(p^{*}\{\alpha\} \times (d \cap \kappa) = d \cap (\alpha \cup \kappa))\}$ by reverse inclusion. For a condition $p : d \times (d \cap \kappa) \to d$, set d(p) = d and $C(p) = \{x \subset d : \forall \alpha \in x(p^{*}\{\alpha\} \times (x \cap \kappa) = x \cap (\alpha \cup \kappa))\}$. For $d \in \mathcal{P}_{\kappa}\kappa^{+}$ σ -closed with $d \cap \kappa \in \kappa$, d = d(p) for some $p \in R$ iff of $d \leq (d \cap \kappa)^{+}$. For $X \subset S_{\kappa}$ let R(X) be the suborder $\{p \in R : S_{\kappa} \cap C(p) \subset X\}$ of R.

Lemma 1. $\{q \in R(X) : z \subset d(q)\}\ is\ dense\ for\ z \in \mathcal{P}_{\kappa}\kappa^+.$

Proof. We can assume z is σ -closed. Let $p \in R(X)$. Take a cardinal $\delta < \kappa$ greater than $\sup(z \cap \kappa)$, |z| and $d(p) \cap \kappa$. We have $p \subset q \in R$ such that $d(q) = (\delta + 1) \cup z \cup d(p)$ and $q(\alpha, 0) = \delta$ for $\alpha \in d(q) - d(p)$. We show $S_{\kappa} \cap C(q) \subset C(p)$, which implies $q \in R(X)$.

Fix $x \in S_{\kappa} \cap C(q)$. Then $x \subset d(p)$: Otherwise we would have $\alpha \in x - d(p)$. Then $q(\alpha, 0) = \delta$ by the choice of q. Hence $\delta \in x \cap \kappa \subset d(q) \cap \kappa = \delta + 1$, since $\alpha \in x$, $0 \in x$ by $x \in S_{\kappa}$, and $x \in C(q)$. Thus $x \cap \kappa$ is not a limit ordinal, which contradicts $x \in S_{\kappa}$, as desired. Hence $x \in C(p)$ by $x \in C(q)$ and $p \subset q$.

Lemma 2. R(X) has the κ^+ -cc.

Proof. Let $A \subset R(X)$ have size κ^+ . We have $B \subset A$ of size κ^+ such that $\{d(p) : p \in B\}$ forms a Δ -system with root $d \in \mathcal{P}_{\kappa} \kappa^+$ and $d(p) \cap \kappa = \delta \in \kappa$ for

 $p \in B$. Then $p "d \times \delta \subset \sup d < \kappa^+$ for $p \in B$. Take $p \neq q$ from B which agree on $d \times \delta$. We claim $p \parallel q$.

We have $p \cup q \subset r \in R$ such that $d(r) = (\delta + \delta + 1) \cup d(p) \cup d(q)$ and $r(\alpha, 0) = \delta + \delta$ for $\alpha \in d(r) - (d(p) \cup d(q))$. We show $S_{\kappa} \cap C(r) \subset C(p) \cup C(q)$, which implies $r \in R(X)$.

Fix $x \in S_{\kappa} \cap C(r)$. Then $x \subset d(p) \cup d(q)$ by the proof of Lemma 1. Hence $x \cap d(p)$ or $x \cap d(q)$ is unbounded in x. We can assume the former by symmetry. Then $x \subset d(p)$: Fix $\gamma \in x$. Take $\gamma < \alpha \in x \cap d(p)$. Then $\gamma = r(\alpha, \beta)$ for some $\beta \in x \cap \kappa$ by $x \in C(r)$. Hence $\gamma = p(\alpha, \beta) \in d(p)$, since $\alpha \in d(p)$, $\beta \in x \cap \kappa \subset (d(p) \cup d(q)) \cap \kappa = d(p) \cap \kappa$ and $p \subset r$, as desired. Thus $x \in C(p)$ by $x \in C(r)$ and $p \subset r$.

Lemma 3. R(X) is weakly κ -closed.

Proof. We give a strategy τ for II in the game $\mathcal{G}_{\kappa}(R)$, which works uniformly for $\mathcal{G}_{\kappa}(R(X))$. Let $\langle p_{\zeta} : \zeta < \xi \rangle$ be a partial run of $\mathcal{G}_{\kappa}(R)$ according to τ with $0 < \xi < \kappa$ even. Set $\tau(\langle p_{\zeta} : \zeta < \xi \rangle) = p$ as follows:

When $\xi = \zeta + 1$, take $p_{\zeta} \subset p \in R$ as in the proof of Lemma 1 so that $|d(p_{\zeta})| < |d(p) \cap \kappa|$. Then $p \in R(X)$ if $p_{\zeta} \in R(X)$ by the proof of Lemma 1.

If ξ is limit, then $|\bigcup_{\zeta<\xi} d(p_\zeta)| = \bigcup_{\zeta<\xi} |d(p_\zeta)| = \bigcup_{\zeta<\xi} d(p_\zeta) \cap \kappa$, since $|d(p_\zeta)|$, $d(p_\zeta) \cap \kappa < |d(p_\zeta)|^+ \le |d(p_{\zeta+1}) \cap \kappa| \le |d(p_{\zeta+1})|$, $d(p_{\zeta+1}) \cap \kappa$ for $\zeta < \xi$ odd.

When cf $\xi = \omega$, let d be the σ -closure of $\bigcup_{\zeta < \xi} d(p_{\zeta})$ and $\delta = |d|$. Then $\delta = |\bigcup_{\zeta < \xi} d(p_{\zeta})| = \bigcup_{\zeta < \xi} d(p_{\zeta}) \cap \kappa$. Hence $d \cap \kappa = \delta + 1$ by cf $\delta = \omega$. We have $\bigcup_{\zeta < \xi} p_{\zeta} \subset p \in R$ such that $d(p) = (\delta + \delta + 1) \cup d$ and $p(\alpha, 0) = \delta + \delta$ for $\alpha \in d(p) - \bigcup_{\zeta < \xi} d(p_{\zeta})$. We show $S_{\kappa} \cap C(p) \subset \bigcup_{\zeta < \xi} C(p_{\zeta})$, which implies $p \in R(X)$ if $\{p_{\zeta} : \zeta < \xi\} \subset R(X)$.

Fix $x \in S_{\kappa} \cap C(p)$. Then $x \subset \bigcup_{\zeta < \xi} d(p_{\zeta})$ by the proof of Lemma 1. Hence $x \cap \kappa < \text{ot } x = |x| \leq |\bigcup_{\zeta < \xi} d(p_{\zeta})| = \bigcup_{\zeta < \xi} d(p_{\zeta}) \cap \kappa$ by $x \in S_{\kappa}$. Thus we have $\zeta < \xi$ such that $x \cap \kappa \subset d(p_{\zeta}) \cap \kappa$ and $x \cap d(p_{\zeta})$ is unbounded in x, since $x \subset \bigcup_{\zeta < \xi} d(p_{\zeta})$, and cf $\xi = \omega < \text{cf ot } x$ by $x \in S_{\kappa}$. Hence $x \subset d(p_{\zeta})$ and $x \in C(p_{\zeta})$ by the proof of Lemma 2.

When cf $\xi > \omega$, $\bigcup_{\zeta < \xi} d(p_{\zeta})$ is σ -closed. Set $p = \bigcup_{\zeta < \xi} p_{\zeta} \in R$. We show $S_{\kappa} \cap C(p) \subset \bigcup_{\zeta < \xi} C(p_{\zeta})$, which implies $p \in R(X)$ if $\{p_{\zeta} : \zeta < \xi\} \subset R(X)$.

Fix $x \in S_{\kappa} \cap C(p)$. Then $x \subset d(p) = \bigcup_{\zeta < \xi} d(p_{\zeta})$. Hence $x \cap \kappa < \bigcup_{\zeta < \xi} d(p_{\zeta}) \cap \kappa$ as in the last case. Thus $x \cap \kappa \subset d(p_{\zeta_0}) \cap \kappa$ for some $\zeta_0 < \xi$. We have $\zeta < \xi$ such that $x \cap d(p_{\zeta})$ is unbounded in x: Otherwise we would have increasing sequences $\{\zeta_n : n < \omega\} \subset \xi$ and $\{\alpha_n : n < \omega\} \subset x$ such that $\sup(x \cap d(p_{\zeta_n})) < \alpha_n \in d(p_{\zeta_{n+1}})$. Then $\zeta = \sup_{n < \omega} \zeta_n < \xi$ by cf $\xi > \omega$. Since $\alpha_n \in x \cap d(p_{\zeta_n}) \subset x \cap d(p_{\zeta})$ for $n < \omega$, and $x \cap d(p_{\zeta})$ is σ -closed by $x \in S_{\kappa}$ and $p_{\zeta} \in R$, $\alpha = \sup_{n < \omega} \alpha_n \in x \cap d(p_{\zeta})$. Since $\sup(x \cap d(p_{\zeta_n})) < \alpha_n < \alpha \in x$ for $n < \omega$, $\alpha \notin \bigcup_{n < \omega} d(p_{\zeta_n})$. Set $\delta = \bigcup_{n < \omega} d(p_{\zeta_n}) \cap \kappa \in \kappa$. Then $p_{\zeta}(\alpha, 0) = \delta + \delta$ by the choice of p_{ζ} . Hence $\delta + \delta = p(\alpha, 0) \in x \cap \kappa$ by $p_{\zeta} \subset p$ and $\alpha, 0 \in x \in C(p)$, which contradicts $x \cap \kappa \subset d(p_{\zeta_0}) \cap \kappa \subset \delta$, as desired. Thus $x \cap \kappa \subset d(p_{\zeta}) \cap \kappa$ and

 $x \cap d(p_{\zeta})$ is unbounded in x for some $\zeta < \xi$. Hence $x \subset d(p_{\zeta})$ and $x \in C(p_{\zeta})$ by the proof of Lemma 2.

Let \dot{H} be the R(X)-name for the generic filter. Then R(X) forces that $\bigcup \dot{H}$: $\kappa^+ \times \kappa \to \kappa^+$ satisfies $(\bigcup \dot{H})$ " $\{\alpha\} \times \kappa = \alpha \cup \kappa$ for $\alpha < \kappa^+$ and generates the club set $\{x \in \mathcal{P}_{\kappa}\kappa^+ : \forall \alpha \in x((\bigcup \dot{H}))$ " $\{\alpha\} \times (x \cap \kappa) = x \cap (\alpha \cup \kappa))\}$ disjoint from $S_{\kappa} - X$.

By induction on γ , we build a suborder Q_{γ} of the product of γ copies of R with $< \kappa$ -support and take a Q_{γ} -name \dot{X}_{γ} for a subset of S_{κ} so that $Q_{\gamma} = \{p : b \to R : b \in \mathcal{P}_{\kappa} \gamma \land \forall \beta \in b(p|\beta \Vdash_{Q_{\beta}} p(\beta) \in R(\dot{X}_{\beta}))\}$. If neccessary, we understand that $p \in Q_{\gamma}$ maps $\beta \notin \text{dom}(p)$ to \emptyset .

Lemma 4. Q_{γ} has the κ^+ -cc.

Proof. Let $A \subset Q_{\gamma}$ have size κ^+ . We have $B \subset A$ of size κ^+ , $b \in \mathcal{P}_{\kappa}\gamma$ and $\{d_{\beta} : \beta \in b\} \subset \mathcal{P}_{\kappa}\kappa^+$ such that $\{\bigcup_{\beta \in \text{dom}(p)}\{\beta\} \times d(p(\beta)) : p \in B\}$ forms a Δ -system with root $\bigcup_{\beta \in b}\{\beta\} \times d_{\beta}$ and $d(p(\beta)) \cap \kappa = d_{\beta} \cap \kappa \in \kappa$ for $p \in B$ and $\beta \in b$ as in the proof of Lemma 2. Take $p \neq q$ from B so that $p(\beta)$ and $p(\beta)$ agree on $p(\beta)$ are $p(\beta)$ for $p(\beta)$. We claim $p \parallel q$.

We have $r: \operatorname{dom}(p) \cup \operatorname{dom}(q) \to R$ such that $r(\beta)$ extends $p(\beta)$ and $q(\beta)$ as in the proof of Lemma 2 if $\beta \in b$, and is $p(\beta) \cup q(\beta)$ otherwise. Then $r|\beta \in Q_{\beta}$ extends $p|\beta$ and $q|\beta$ by induction on $\beta \leq \gamma$.

Lemma 5. Q_{γ} is weakly κ -closed.

Proof. We give a strategy τ_{γ} for II in the game $\mathcal{G}_{\kappa}(Q_{\gamma})$. Let $\langle p_{\zeta} : \zeta < \xi \rangle$ be a partial run of $\mathcal{G}_{\kappa}(Q_{\gamma})$ according to τ_{γ} with $\xi < \kappa$ even. We have $p : \bigcup_{\zeta < \xi} \operatorname{dom}(p_{\zeta}) \to R$ such that $p(\beta) = \tau(\langle p_{\zeta}(\beta) : \zeta < \xi \rangle)$. Then we can set $\tau_{\gamma}(\langle p_{\zeta} : \zeta < \xi \rangle) = p$, since $p|\beta \in Q_{\beta}$ extends $p_{\zeta}|\beta$ for $\zeta < \xi$ by induction on $\beta \leq \gamma$.

We can identify a Q_{γ} -name \dot{X} for a subset of S_{κ} with a subset " \dot{X} " of $S_{\kappa} \times Q_{\gamma}$ such that $\{p \in Q_{\gamma} : (x,p) \in "\dot{X}"\}$ is an antichain for $x \in S_{\kappa}$. Set $\operatorname{supp}(\dot{X}) = \bigcup \{\operatorname{dom}(p) : \exists x \in S_{\kappa}((x,p) \in "\dot{X}")\}$. Let $s \subset \gamma$ and $\operatorname{supp}(\dot{X}_{\beta}) \subset s \cap \beta$ for $\beta \in s$. Then $Q_s = \{p \in Q_{\gamma} : \operatorname{dom}(p) \subset s\}$ is a complete suborder of Q_{γ} , hence has the κ^+ -cc. In fact p|s is a reduction of $p \in Q_{\gamma}$ to Q_s . The winning strategy τ_{γ} witnesses that Q_s is weakly κ -closed.

Finally assume further $2^{2^{\kappa}} = \kappa^{++}$. Then $Q_{\kappa^{++}} = \bigcup_{\gamma < \kappa^{++}} Q_{\gamma}$ has size κ^{++} , since $\{Q_{\gamma} : \gamma < \kappa^{++}\} \subset H(\kappa^{++})$. Hence we can arrange the construction so that a $Q_{\kappa^{++}}$ -name for a subset of S_{κ} agrees with \dot{X}_{γ} for κ^{++} many γ 's.

4. The main forcing

In this section the Jech-Woodin model [8] is modified for our

Proof of Theorem. Let U be a normal ultrafilter on $\mathcal{P}_{\kappa}\kappa^{+}$ and $j_{U}:V\to M=$ Ult(V,U) the induced embedding. We have $S^{*}\subset S_{\kappa}$ in U such that of $x< y\cap \kappa$

for $x \subseteq y$ both in S^* by the partition property of U and $S_{\kappa} \in U$. We perform a forcing iteration $P = \langle P_{\alpha} : \alpha \leq \kappa \rangle$ with Easton support so that $P_{\alpha+1}$ is $P_{\alpha} * \dot{Q}_{\alpha^{++}}$ if $\alpha < \kappa$ is Mahlo, and $P_{\alpha} * \{\emptyset\}$ otherwise. For $\alpha \leq \kappa$ inaccessible, P_{α} has size α by $P^*\alpha \subset V_{\alpha}$, hence forces $2^{\alpha} = \alpha^{+}$ by GCH. Thus for $\alpha \leq \kappa$ Mahlo, P_{α} has the α -cc and forces that α is inaccessible and $2^{2^{\alpha}} = \alpha^{++}$. Hence for $\alpha < \kappa$ Mahlo, P_{κ} forces that α is inaccessible. Thus P_{κ} forces that κ is Mahlo, since $\{\alpha < \kappa : \alpha \text{ is Mahlo}\}$ is stationary and P_{κ} has the κ -cc.

Let $G \subset P_{\kappa}$ be V-generic and work in V[G]. By the first paragraph, κ is Mahlo and $2^{2^{\kappa}} = \kappa^{++}$. Since $P|\kappa = j_U(P)|\kappa$, $P_{\kappa} = j_U(P)_{\kappa} \in M$. M[G] is closed under the κ^+ -sequences, since M is closed under the κ^+ -sequences and P_{κ} has the κ -cc in V. Hence κ is inaccessible and $2^{2^{\kappa}} = \kappa^{++}$ in M[G]. Set $Q = (j_U(\dot{Q})_{\kappa^{++}})_G \in M[G]$. Then we have Q-names $\{\dot{X}_{\gamma} : \gamma < \kappa^{++}\}$ for subsets of S_{κ} with which Q is built in M[G]. We can regard Q and $\{\dot{X}_{\gamma} : \gamma < \kappa^{++}\}$ as built in V[G], since M[G] is closed under the κ^+ -sequences. We show Q forces that j_U lifts to $j:V[G] \to M[j(G)]$ and M[j(G)] is closed under the κ^+ -sequences.

Let $H \subset Q$ be V[G]-generic and work in V[G][H]. Since $j_U(P_\kappa)$ has size $j_U(\kappa)$ and the $j_U(\kappa)$ -cc, and $j_U(P)_{\kappa+1} = P_\kappa * j_U(\dot{Q})_{\kappa++}$ has the κ^+ -cc in M, $j_U(P_\kappa)/(G*H)$ has size at most $j_U(\kappa)$ and the $j_U(\kappa)$ -cc in M[G][H]. Since $j_U(\kappa) > |j_U(P)_{\kappa+1}|$ is inaccessible in $M, j_U(\kappa)$ remains inaccessible in M[G][H]. Hence M[G][H] has at most $|j_U(\kappa)| = \kappa^{++}$ maximal antichains of $j_U(P_\kappa)/(G*H)$. M[G][H] is closed under the κ^+ -sequences, since M is closed under the κ^+ -sequences and $j_U(P)_{\kappa+1}$ has the κ^+ -cc in V. Hence $j_U(P_\kappa)/(G*H)$ is weakly κ^{++} -closed, since it is the case in M[G][H]. Thus we have $K \subset j_U(P_\kappa)/(G*H)$ which is M[G][H]-generic. Since j_U " $G \subset G*H*K$, j_U lifts to $j:V[G] \to M[j(G)] = M[G][H][K]$. M[j(G)] is closed under the κ^+ -sequences, since the κ^+ -sequences of ordinals are in $M[G][H] \subset M[j(G)]$.

Work in V[G]. Since Q has size κ^{++} and the κ^{+} -cc, Q forces that in M[j(G)], j(Q) has size $j(\kappa^{++})$ and the $j(\kappa^{+})$ -cc. Hence we can let Q force that $\langle \dot{A}_{\gamma} : \gamma < \kappa^{++} \rangle$ lists the maximal antichains of j(Q) in M[j(G)] with κ^{++} many repetitions, since Q forces $|(j(\kappa^{++})^{j(\kappa)})^{M[j(G)]}| = |j((\kappa^{++})^{\kappa})| = |j(\kappa^{++})| = \kappa^{++}$. Let \dot{H} be the Q-name for the generic filter and Q force that $\dot{H}_{\gamma} = \{p(\gamma) : p \in \dot{H}\}$ for $\gamma < \kappa^{++}$. Then Q forces $\bigcup j''\dot{H}_{\gamma} : j''\kappa^{+} \times \kappa \to j''\kappa^{+} \in j(R)$, since Q forces $\bigcup \dot{H}_{\gamma} : \kappa^{+} \times \kappa \to \kappa^{+}$, $(\bigcup \dot{H}_{\gamma})''\{\alpha\} \times \kappa = \alpha \cup \kappa$ for $\alpha < \kappa^{+}$, $j''\dot{H}_{\gamma} = \{j''p(\gamma) : p \in \dot{H}\}$ and M[j(G)] is closed under the κ^{+} -sequences. Recall $\tau_{\kappa^{++}}$ is the winning strategy for II in the game $\mathcal{G}_{\kappa}(Q)$.

We build $s \subset \kappa^{++}$ and Q-names $\{\dot{q}_{\xi} : \xi < \kappa^{++}\}$ inductively so that $\operatorname{supp}(\dot{X}_{\gamma}) \subset s \cap \gamma$ if $\gamma \in s$, and Q forces that in M[j(G)], $\langle \dot{q}_{\xi} : \xi \leq 2\gamma \rangle$ is a partial run of the game $j(\mathcal{G}_{\kappa}(Q_{s \cap \gamma}))$ according to $j(\tau_{\kappa^{++}})$, $\dot{q}_{2\gamma+1} \in j(Q_{s \cap (\gamma+1)})$ extends some condition of \dot{A}_{γ} if \dot{A}_{γ} is a maximal antichain of $j(Q_{s \cap \gamma})$, and $\dot{q}_{2\gamma+1}(j(\gamma)) = \bigcup j \ddot{H}_{\gamma}$ if $\gamma \in s$. Assume we have $s \cap \gamma$ and $\{\dot{q}_{\xi} : \xi < 2\gamma\}$ with $\gamma < \kappa^{++}$.

We can let Q force $\dot{q}_{2\gamma} = j(\tau_{\kappa^{++}})(\langle \dot{q}_{\xi} : \xi < 2\gamma \rangle)$, since Q forces that in $M[j(G)], \langle \dot{q}_{\xi} : \xi < 2\gamma \rangle$ is a partial run of $j(\mathcal{G}_{\kappa}(Q_{s \cap \gamma}))$. Let $\gamma \in s$ iff supp $(\dot{X}_{\gamma}) \subset$

 $s \cap \gamma$ and Q forces that $\dot{X}_{\gamma} \subset S^*$ and in M[j(G)], $\dot{q}_{2\gamma}$ forces $j\text{``}\kappa^+ \in j(\dot{X}_{\gamma})$. We have a Q-name \dot{q} such that Q forces $\dot{q} \in j(Q_{s \cap \gamma})$ extends $\dot{q}_{2\gamma}$, and some condition of \dot{A}_{γ} if \dot{A}_{γ} is a maximal antichain of $j(Q_{s \cap \gamma})$. Let Q force that $\dot{q}_{2\gamma+1}$ is $\dot{q} \cup \{(j(\gamma), \bigcup j\text{``}\dot{H}_{\gamma})\}$ if $\gamma \in s$, and \dot{q} otherwise. In the former case, we show Q forces that in M[j(G)], $\dot{q}_{2\gamma}$ forces $\bigcup j\text{``}\dot{H}_{\gamma} \in j(R)(j(\dot{X}_{\gamma}))$, which implies Q forces $\dot{q}_{2\gamma+1} \in j(Q_{s \cap (\gamma+1)})$.

Let $H \subset Q$ be V[G]-generic and work in V[G][H]. Then $\bigcup j$ " $H_{\gamma} = \bigcup \{j(p(\gamma)): p \in H\} \in j(R)$. In V[G], $Q_{s \cap \gamma}$ forces $\dot{X}_{\gamma} \subset S^*$, since $\operatorname{supp}(\dot{X}_{\gamma}) \subset s \cap \gamma$ and Q forces $\dot{X}_{\gamma} \subset S^*$. Hence it suffices to show in M[j(G)], $(\dot{q}_{2\gamma})_H$ forces $j(S^*) \cap j(C)(\bigcup j$ " $H_{\gamma}) \subset j(\dot{X}_{\gamma})$, since $j(Q_{s \cap \gamma})$ forces $j(\dot{X}_{\gamma}) \subset j(S^*)$. Fix $z \in j(S^*) \cap j(C)(\bigcup j$ " H_{γ}). Then $z \subset j$ " κ^+ by $\bigcup j$ " $H_{\gamma}: j$ " $\kappa^+ \times \kappa \to j$ " κ^+ . If z = j " κ^+ , then in M[j(G)], $(\dot{q}_{2\gamma})_H$ forces z = j " $\kappa^+ \in j(\dot{X}_{\gamma})$ by $\gamma \in s$, as desired. If $z \subseteq j$ " κ^+ , then of z < (j " $\kappa^+) \cap j(\kappa) = \kappa$, since $z \in j(S^*)$, and j " $\kappa^+ \in j(S^*)$ by $S^* \in U$. Hence z = j "z = j(z)" for some $z \in \mathcal{P}_{\kappa}$ "Take $z \in \mathcal{P}_{\kappa}$ ". Take $z \in \mathcal{P}_{\kappa}$ " $z \in \mathcal{P}_{\kappa}$ " and $z \in \mathcal{P}_{\kappa}$ " ince $z \in \mathcal{P}_{\kappa}$ ". Thus in $z \in \mathcal{P}_{\kappa}$ forces $z \in \mathcal{P}_{\kappa}$ ince $z \in \mathcal{P}_{\kappa}$ forces $z \in \mathcal{P}_{\kappa}$ ince $z \in \mathcal{P}_{\kappa$

Work in V[G]. Let Q force $\dot{K} = \{q \in j(Q_s) : \exists \xi < \kappa^{++} (\dot{q}_{\xi} \leq q)\}$. By the κ^{+} -cc of Q_s , Q forces that in M[j(G)], $j(Q_s)$ has the $j(\kappa^{+})$ -cc. Hence Q forces that a maximal antichain of $j(Q_s)$ in M[j(G)] agrees with some \dot{A}_{γ} which is a maximal antichain of $j(Q_{s\cap\gamma})$. Thus Q forces that \dot{K} is M[j(G)]-generic. Q forces j" $(\dot{H} \cap Q_s) \subset \dot{K}$, since Q forces that $\dot{q}_{2\gamma} \leq j(r)$ if $r \in \dot{H} \cap Q_{s\cap\gamma}$ for $\gamma < \kappa^{++}$. Hence Q forces that j lifts to $j^* : V[G][\dot{H} \cap Q_s] \to M[j(G)][\dot{K}]$.

Now let $H_s \subset Q_s$ be V[G]-generic and work in $V[G][H_s]$. Since Q_s is weakly κ -closed in V[G], κ remains Mahlo. By the last paragraph, Q/H_s forces that j lifts to $j^*:V[G][H_s] \to M[j(G)][\dot{K}]$. By the κ^+ -cc of Q and Q_s in V[G], Q/H_s has the κ^+ -cc. Let F be the filter $\{X \subset \mathcal{P}_{\kappa}\kappa^+ : \Vdash_{Q/H_s} j^* \text{``} \kappa^+ \in j^*(X)\}$. We have a complete embedding $X \mapsto \|j^* \text{``} \kappa^+ \in j^*(X)\|$ from F^+ into the completion of Q/H_s . Hence F is κ^+ -saturated. Finally we claim F is generated by S^* over the club filter.

First $\{x \in \mathcal{P}_{\kappa}\kappa^{+}: f"x^{<\omega} \subset x\} \in F \text{ for } f: (\kappa^{+})^{<\omega} \to \kappa^{+}, \text{ and } S^{*} \in F. \text{ Next fix } X \in F. \text{ We show } S^{*} - X \text{ is nonstationary. Take a } Q_{s}\text{-name } \dot{X} \in V[G] \text{ with } \dot{X}_{H_{s}} = S^{*} \cap X \in F \text{ and work in } V[G]. \text{ We can assume } Q \text{ forces that } \dot{X} \subset S^{*} \text{ and in } M[j(G)][\dot{K}], j"\kappa^{+} \in j(\dot{X})_{\dot{K}}. \text{ Hence } Q \text{ forces that in } M[j(G)] \text{ some } \dot{q}_{\xi} \text{ forces } j"\kappa^{+} \in j(\dot{X}). \text{ The } \kappa^{+}\text{-cc of } Q \text{ gives } \xi < \kappa^{++} \text{ such that } Q \text{ forces that in } M[j(G)], \dot{q}_{\xi} \text{ forces } j"\kappa^{+} \in j(\dot{X}). \text{ By the } \kappa^{+}\text{-cc of } Q_{s}, \text{ supp}(\dot{X}) \subset s \cap \beta \text{ for some } \beta < \kappa^{++}. \text{ Hence we have } \gamma < \kappa^{++} \text{ such that } \dot{X} \text{ agrees with } \dot{X}_{\gamma}, \text{ supp}(\dot{X}) \subset s \cap \gamma \text{ and } Q \text{ forces that in } M[j(G)], \dot{q}_{2\gamma} \text{ forces } j"\kappa^{+} \in j(\dot{X}). \text{ Thus } \gamma \in s. \text{ Now in } \beta = 0$

 $V[G][H_s], \bigcup \{p(\gamma) : p \in H_s\} : \kappa^+ \times \kappa \to \kappa^+ \text{ generates a club set disjoint from } S^* - (\dot{X}_{\gamma})_{H_s} = S^* - \dot{X}_{H_s} = S^* - X, \text{ as desired.}$

5. Remarks

In the final model $V[G][H_s]$, F^+ is κ -Baire, since it is completely embeddable into a κ -Baire poset. For F a κ^+ -saturated normal filter on $\mathcal{P}_{\kappa}\kappa^+$ in general, $S_{\kappa} \in F$ if F^+ is ω_1 -Baire.

Finally we extend Solovay's theorem as in [6] by an elementary proof:

Proposition. A stationary subset of $\mathcal{P}_{\kappa}\lambda$ splits into κ stationary sets.

Proof. Let $S \subset \mathcal{P}_{\kappa}\lambda$ be stationary. We can assume $x \cap \kappa \in \kappa$ for $x \in S$. Then $T = \{y \in S : \exists g : y^{<\omega} \to y(S \cap \{x \subset y : \text{ot } x < \text{ot } y \wedge g``x^{<\omega} \subset x\} = \emptyset)\}$ is stationary: Fix $f : \lambda^{<\omega} \to \lambda$. Take $y \in S$ closed under f so that of g is as small as possible. Then $f|y^{<\omega}$ witnesses $g \in T$, as desired. For $g \in T$ take a witness $g \in S$ splits into stationary sets $g \in S$ is stationary for $g \in S$. Then $g \in S$ splits into stationary sets $g \in S$ for $g \in S$. We claim $g \in S$ for some $g \in S$.

Suppose to the contrary $z_a \in \mathcal{P}_{\kappa}\lambda$ for $a \in \lambda^{<\omega}$. Take $C_{a,\gamma} \subset \mathcal{P}_{\kappa}\lambda$ club and disjoint from $\{y \in T : g_y(a) = \gamma\}$ for $a \in \lambda^{<\omega}$ and $\gamma \in \lambda - z_a$. Then $C = \{x \in \mathcal{P}_{\kappa}\lambda : \forall a \in x^{<\omega}(z_a \subset x \land \forall \gamma \in x - z_a(x \in C_{a,\gamma}))\}$ is club. Take $x \subset y$ from $T \cap C$ so that of x < of y. We have $a \in x^{<\omega}$ with $g_y(a) \notin x$, since $x \in y$ are in T and of x < of y. Then $\gamma = g_y(a) \notin z_a$, since $z_a \subset x$ by $x \in C$ and $a \in x^{<\omega}$. Hence $y \in C_{a,\gamma}$ by $y \in C$, $a \in y^{<\omega}$ and $\gamma \in y$, which contradicts $y \in T$ and $g_y(a) = \gamma$, as desired.

References

- [1] Y. Abe, Saturation of fundamental ideals on $\mathcal{P}_{\kappa}\lambda$, J. Math. Soc. Japan 48 (1996), 511–524.
- [2] J. Baumgartner, *Iterated forcing*, Surveys in set theory, 1–59, London Math. Soc. Lecture Note Ser., 87, Cambridge Univ. Press, Cambridge, 1983.
- [3] _____, On the size of closed unbounded sets, Ann. Pure Appl. Logic 54 (1991), 195–227.
- [4] J. Baumgartner, A. Taylor, Saturation properties of ideals in generic extensions. I, Trans. Amer. Math. Soc. **270** (1982), 557–574.
- [5] H.-D. Donder, P. Matet, Two cardinal versions of diamond, Israel J. Math. 83 (1993), 1–43.
- [6] M. Gitik, Nonsplitting subset of $\mathcal{P}_{\kappa}(\kappa^{+})$, J. Symbolic Logic **50** (1985), 881–894.
- [7] T. Jech, S. Shelah, On reflection of stationary sets in $\mathcal{P}_{\kappa}\lambda$, Trans. Amer. Math. Soc. **352** (2000), 2507–2515.
- [8] T. Jech, W. Woodin, Saturation of the closed unbounded filter on the set of regular cardinals, Trans. Amer. Math. Soc. 292 (1985), 345–356.
- [9] A. Kanamori, *The higher infinite*, Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1994.
- [10] ______, Handwritten notes, 1997.
- [11] M. Magidor, Representing sets of ordinals as countable unions of sets in the core model, Trans. Amer. Math. Soc. **317** (1990), 91–126.
- [12] Y. Matsubara, Consistency of Menas' conjecture, J. Math. Soc. Japan 42 (1990), 259–263.

- [13] T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974/75), 327–359.
- [14] M. Shioya, Splitting $\mathcal{P}_{\kappa}\lambda$ into maximally many stationary sets, Israel J. Math. **114** (1999), 347–357.
- [15] R. Solovay, Real-valued measurable cardinals, Axiomatic set theory. Proc. Sympos. Pure Math., Vol. XIII, Part I, 397–428. Amer. Math. Soc., Providence, RI, 1971.

Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 Japan. $E\text{-}mail\ address:}$ shioya@math.tsukuba.ac.jp