EXISTENCE OF RELATIVE PERIODIC ORBITS NEAR RELATIVE EQUILIBRIA

Viktor Ginzburg and Eugene Lerman

ABSTRACT. We show existence of relative periodic orbits (a.k.a. relative nonlinear normal modes) near relative equilibria of a symmetric Hamiltonian system under an appropriate assumption on the Hessian of the Hamiltonian. This gives a relative version of the Moser-Weinstein theorem.

1. Introduction

In this paper we discuss a generalization of the Weinstein-Moser theorem [Mo, W1, W2] on the existence of nonlinear normal modes (i.e., periodic orbits) near an equilibrium in a Hamiltonian system to a theorem on the existence of relative periodic orbits (r.p.o.'s) near a relative equilibrium of a symmetric Hamiltonian system.

More specifically let (M, ω_M) be a symplectic manifold with a proper Hamiltonian action of a Lie group G and a corresponding equivariant moment map $\Phi: M \to \mathfrak{g}^*$. Let $h \in C^{\infty}(M)^G$ be a G-invariant Hamiltonian. We will refer to the quadruple $(M, \omega_M, \Phi: M \to \mathfrak{g}^*, h \in C^{\infty}(M)^G)$ as a **symmetric Hamiltonian system**. The main result of the paper is the following theorem (the terms used in the statement are explained below):

Theorem 1. Let $(M, \omega_M, \Phi: M \to \mathfrak{g}^*, h \in C^{\infty}(M)^G)$ be a symmetric Hamiltonian system. Suppose $x \in M$ is a positive definite relative equilibrium of the system and let $\mu = \Phi(x)$. Then for every sufficiently small E > 0 the set $\{h = E + h(x)\} \cap \Phi^{-1}(\mu)$ (if nonempty) contains a relative periodic orbit of h.

This theorem strengthens or complements numerous other results about the existence of relative periodic orbits; see, e.g., [LT, O1, O2].

We now define the relevant terms. Recall that for every invariant function $h \in C^{\infty}(M)^G$ the restriction $h|_{\Phi^{-1}(\mu)}$ descends to a continuous function h_{μ} on the symplectic quotient

$$M//_{\mu}G := \Phi^{-1}(\mu)/G_{\mu},$$

where G_{μ} denotes the stabilizer of $\mu \in \mathfrak{g}^*$ under the coadjoint action. If G_{μ} acts freely on $\Phi^{-1}(\mu)$ then the symplectic quotient $M//_{\mu}G$ is a symplectic manifold

Received February 9, 2004.

Supported in part by the NSF grants DMS-0204448 (EL) and DMS-0307484 (VG) and by the faculty research funds of the University of California, Santa Cruz (VG).

and the flow (of the Hamiltonian vector field) of h on $\Phi^{-1}(\mu)$ descends to the flow of h_{μ} on the quotient. More generally the quotient $M//_{\mu}G$ is a symplectic stratified space: the quotient is a union of strata, which are symplectic manifolds and which fit together in a locally simple manner. In this case the flow of h descends to a flow on $M//_{\mu}G$, which is, on each stratum, the flow of the restriction of h_{μ} to the stratum.¹

A point $x \in \Phi^{-1}(\mu)$ is a **relative equilibrium** of h (strictly speaking of the symmetric Hamiltonian system $(M, \omega, \Phi : M \to \mathfrak{g}^*, h \in C^{\infty}(M)^G)$, if its image $[x] \in M//_{\mu}G$ is stationary under the flow of h_{μ} . If x is a relative equilibrium then there is a vector $\xi \in \mathfrak{g}$ such that $dh(x) = d(\langle \Phi, \xi \rangle)(x)$. It is not hard to see that ξ is in the Lie algebra \mathfrak{g}_{μ} of the stabilizer of μ and that ξ is unique modulo \mathfrak{g}_x , the Lie algebra of the stabilizer of x. If we set

$$h^{\xi} := h - \langle \Phi, \xi \rangle,$$

then $d(h^{\xi})(x) = 0$. Hence the Hessian $d^2(h^{\xi})(x)$ is well-defined. The *symplectic* slice at $x \in M$ is, by definition, the vector space

$$V := T_x(G \cdot x)^{\omega} / (T_x(G \cdot x) \cap T_x(G \cdot x)^{\omega}),$$

where \cdot^{ω} denotes the symplectic perpendicular. Note that V is naturally a symplectic representation of G_x , the stabilizer of x. Note also that $T_x(G \cdot x)^{\omega} = \ker d\Phi_x$, so V is isomorphic to a maximal symplectic subspace of $\ker d\Phi_x$. In particular if G_{μ} acts freely at x then V models the symplectic quotient $M//_{\mu}G$ near [x]. A computation shows that $T_x(G \cdot x) \cap T_x(G \cdot x)^{\omega} = T_x(G_{\mu} \cdot x)$ and that $h^{\xi}(g \cdot x) = h^{\xi}(x)$ for all $g \in G_{\mu}$. Hence the subspace $T_x(G_{\mu} \cdot x)$ lies in the kernel of the quadratic from $d^2(h^{\xi})(x)$. It follows that the Hessian $d^2(h^{\xi})(x)$ descends to a well-defined quadratic form q on the symplectic slice V (which depends on ξ). We say that the relative equilibrium x is **positive definite** if q is positive definite for some choice of ξ . When the action is free, q can be thought of as the restriction of $d^2(h|_{\Phi^{-1}(\mu)})$ to the normal V in $\Phi^{-1}(\mu)$ to the orbit $G \cdot x$. An integral curve $\gamma(t) \subset \Phi^{-1}(\mu)$ of h is a **relative periodic orbit** if its projection $[\gamma(t)] \subset M//_{\mu}G$ is periodic.

The motivation for Theorem 1 comes from a result of Weinstein [W1] generalizing a classical theorem of Liapunov which asserts that if x is an equilibrium of a Hamiltonian h on a symplectic manifold (M, ω) and if the Hessian $d^2h(x)$ of h at x is positive definite, then for every E > 0 sufficiently small the energy surface

$$\{h = h(x) + E\}$$

carries at least $\frac{1}{2} \dim M$ periodic orbits. Now suppose $(M, \omega, \Phi : M \to \mathfrak{g}^*, h \in C^{\infty}(M)^G)$ is a symmetric Hamiltonian system, $\mu \in \mathfrak{g}^*$ is a point and the action

¹The facts referred to above were first proved in [SL] in the special case of G being compact and $\mu = 0$. The case where G acts properly and the coadjoint orbit through μ is closed was dealt with in [BL]. The assumption on the coadjoint orbit was subsequently removed in [LW] following a suggestion in [O1].

of G_{μ} on $\Phi^{-1}(\mu)$ is free, so that the symplectic quotient $M//_{\mu}G$ is smooth. If a relative equilibrium $x \in \Phi^{-1}(\mu)$ is positive definite then the Hessian of h_{μ} at [x] is positive definite. Hence by Weinstein's theorem applied to h_{μ} at [x], for every E > 0 sufficiently small the energy surface

$$\{h_{\mu} = h_{\mu}([x]) + E\}$$

carries at least $\frac{1}{2}\dim M/\!/_{\mu}G$ periodic orbits. In other words, under these natural assumptions the manifolds

$$\{h = h(x) + E\} \cap \Phi^{-1}(\mu)$$

carry relative periodic orbits of h. It is natural to ask what happens if G_{μ} does not act freely at or near the relative equilibrium x of h. To address this issue let us recall where the strata of the symplectic quotients come from. For a subgroup H of G the set $M_{(H)}$ of points of orbit type (H) is defined by

$$M_{(H)} := \{ m \in M \mid \text{ the stabilizer } G_m \text{ is conjugate to } H \text{ in } G \}.$$

Since the action of G is proper, $M_{(H)}$ is a manifold. Moreover the set

$$(M//_{\mu}G)_{(H)} := (M_{(H)} \cap \Phi^{-1}(\mu))/G_{\mu}$$

is naturally a symplectic manifold [BL, SL]. Now if $x \in \Phi^{-1}(\mu)$ is a relative equilibrium and G_x is the stabilizer of x, then $(M//_{\mu}G)_{(G_x)}$ is the stratum of the quotient $M//_{\mu}G$ containing [x]. Hence by Weinstein's theorem if $h_{\mu}|_{(M//_{\mu}G)_{(G_x)}}$ has a positive definite Hessian at [x] then the energy surface

$$\{h_{\mu} = h_{\mu}([x]) + E\}$$

contains at least $\frac{1}{2} \dim(M//\mu G)_{(G_x)}$ periodic orbits of $h_{\mu}|_{(M//\mu G)_{(G_x)}}$ for all E > 0 sufficiently small.

The trivial observation above raises a natural question. Suppose the stratum containing the point [x] is not open in the quotient $M//_{\mu}G$. Under suitable assumptions on the second partials of h at a relative equilibrium x, must the set

$$\{h_{\mu} = h_{\mu}([x]) + E\} \subset M/\!/_{\mu}G$$

contain more periodic orbits of the flow of h_{μ} than $\frac{1}{2}(\dim M//_{\mu}G)_{(H)}$? For example, are there periodic orbits of h_{μ} in nearby strata? Theorem 1 in effect affirmatively answer the question in a special case: the stratum of $M//_{\mu}G$ passing through [x] is a single point $\{[x]\}$.

Keeping in mind that $V = T_x M$, when x is a fixed point of the action, note that the following is a special case of Theorem 1 above:

Theorem 2. Let $K \to Sp(V,\omega)$ denote a symplectic representation of a compact Lie group K on a symplectic vector space (V,ω) , let $\Phi: V \to \mathfrak{k}^*$ denote the associated homogeneous moment map. Let $h \in C^{\infty}(V)^K$ be an invariant function with dh(0) = 0 and the quadratic form $q := d^2h(0)$ positive definite. Then for every E > 0 sufficiently small there is a relatively periodic orbit of h on the set

$${h = h(0) + E} \cap {\Phi = 0},$$

provided the set in question is non-empty.

We will show that in fact Theorem 2 implies Theorem 1.

Theorem 3. Let x be a relative equilibrium of a symmetric Hamiltonian system $(M, \omega, \Phi : M \to \mathfrak{g}^*, h \in C^{\infty}(M)^G)$. Denote the stabilizer of x by G_x , the stabilizer of $\mu = \Phi(x)$ by G_{μ} , the symplectic slice at x by V and the moment map associated to the symplectic representation of G_x on V by Φ_V .

Then there exists a Hamiltonian $h_V \in C^{\infty}(V)^{G_x}$ with $dh_V(0) = 0$ so that for any $E \in \mathbb{R}$ sufficiently small and for any G_x -relatively periodic orbit of h_V in

$$\{h_V = E\} \cap \Phi_V^{-1}(0)$$

sufficiently close to 0 there is a G-relatively periodic orbit of h in

$${h = h(x) + E} \cap \Phi^{-1}(\mu).$$

Moreover, if x is a positive definite relative equilibrium of h, then h_V can be chosen so that the Hessian $d^2h_V(0)$ is positive definite.

Clearly Theorem 2 and Theorem 3 together imply Theorem 1. We will then reduce the proof of Theorem 2 to

Theorem 4. Let Q be a compact manifold with a contact form α whose Reeb flow generates a torus action. Then for any contact form β C^2 -close to α , the Reeb flow of β has at least one periodic orbit.

A note on notation. Throughout the paper the Lie algebra of a Lie group denoted by a capital Roman letter will be denoted by the same small letter in the fraktur font: thus \mathfrak{g} denotes the Lie algebra of a Lie group G etc. The identity element of a Lie group is denoted by 1. The natural pairing between \mathfrak{g} and \mathfrak{g}^* will be denoted by $\langle \cdot, \cdot \rangle$.

When a Lie group G acts on a manifold M we denote the action by an element $g \in G$ on a point $x \in G$ by $g \cdot x$; $G \cdot x$ denotes the G-orbit of x and so on. The vector field induced on M by an element X of the Lie algebra \mathfrak{g} of G is denoted by X_M . The isotropy group of a point $x \in M$ is denoted by G_x ; the Lie algebra of G_x is denoted by \mathfrak{g}_x and is referred to as the isotropy Lie algebra of x. We recall that $\mathfrak{g}_x = \{X \in \mathfrak{g} \mid X_M(x) = 0\}$. The image of a point $x \in M$ in M/G under the orbit map is denoted by [x].

If P is a principal G-bundle then [p, m] denotes the point in the associated bundle $P \times_G M = (P \times M)/G$ which is the orbit of $(p, m) \in P \times M$.

If ω is a differential form on a manifold M and Y is a vector field on M, the contraction of ω by Y is denoted by $\iota(Y)\omega$.

2. Reducing non-linear to linear: proof of Theorem 3

2.1. Facts about symplectic quotients. In this subsection we gather a few facts [SL, BL, LW] about symplectic quotients that we will need in the proof of Theorem 3. As we mentioned in the introduction, the symplectic quotient

at $\mu \in \mathfrak{g}^*$ for a proper Hamiltonian action of a Lie group G on a symplectic manifold (M, ω) is the topological space

$$M//_{\mu}G := \Phi^{-1}(\mu)/G_{\mu}$$

where as before $\Phi: M \to \mathfrak{g}^*$ denotes the associated equivariant moment map. We define the set of **smooth functions** $C^{\infty}(M//_{\mu}G)$ by

$$C^{\infty}(M//_{\mu}G) = \{ f \in C^{0}(M//_{\mu}G) \mid \pi_{\mu}^{*}f \in C^{\infty}(M)^{G}|_{\Phi^{-1}(\mu)} \},$$

where $\pi_{\mu}: \Phi^{-1}(\mu) \to M//_{\mu}G$ denotes the orbit map. Note that since π_{μ} is surjective, given $h \in C^{\infty}(M)^G$ there is a unique $h_{\mu} \in C^{\infty}(M//_{\mu}G)$ with

$$h|_{\Phi^{-1}(\mu)} = \pi_{\mu}^* h_{\mu}.$$

One often refers to h_{μ} as the **reduction** of the Hamiltonian h at μ .

Theorem 2.1 (Arms-Cushman-Gotay [ACG]). The Poisson bracket $\{\cdot,\cdot\}$ on $C^{\infty}(M)$ induces a Poisson bracket $\{\cdot,\cdot\}_{\mu}$ on $C^{\infty}(M)/_{\mu}G$ so that

$$\pi_{\mu}^*: C^{\infty}(M//_{\mu}G) \to C^{\infty}(M)^G|_{\Phi^{-1}(\mu)}$$

is a Poisson map.

Definition 2.2. We say that a curve $\gamma: I \to M//_{\mu}G$ is **smooth** (C^{∞}) if $f \circ \gamma: I \to \mathbb{R}$ is smooth for any $f \in C^{\infty}(M//_{\mu}G)$ (I, of course, is an interval). A curve $\gamma: I \to M//_{\mu}G$ is an **integral curve** of a function $f \in C^{\infty}(M//_{\mu}G)$ if for any $k \in C^{\infty}(M//_{\mu}G)$ we have

$$\frac{d}{dt}(k \circ \gamma)(t) = \{f, k\}_{\mu}(\gamma(t)).$$

The following fact is an easy consequence of the well-known result that for proper group actions (the only kind of actions we consider) smooth invariant functions separate orbits:

Proposition 2.3. Integral curves of functions in $C^{\infty}(M//_{\mu}G)$ are unique.

It is also not hard to see that Theorem 2.1 implies that if γ is an integral curve of an invariant Hamiltonian $h \in C^{\infty}(M)^G$ lying in $\Phi^{-1}(\mu)$ then $\pi_{\mu} \circ \gamma$ is an integral curve of the corresponding reduced Hamiltonian $h_{\mu} \in C^{\infty}(M//_{\mu}G)$ (as above $\pi_{\mu}^* h_{\mu} = h|_{\Phi^{-1}(\mu)}$). Combining this with Proposition 2.3 we get

Lemma 2.4. Let $h \in C^{\infty}(M)^G$ be an invariant Hamiltonian and $h_{\mu} \in C^{\infty}(M//_{\mu}G)$ the corresponding reduced Hamiltonian at μ . If $\gamma: I \to M//_{\mu}G$ is an integral curve of h_{μ} there exists an integral curve $\tilde{\gamma}: I \to \Phi^{-1}(\mu)$ of h so that

$$\pi_{\mu} \circ \tilde{\gamma} = \gamma.$$

Note that $\tilde{\gamma}$ is not unique: for any $a \in G_{\mu}$ the curve $a \cdot \tilde{\gamma}$ is also an integral curve of γ projecting down to γ . We will need one more fact about integral curves of functions in symplectic quotients, which is an easy consequence of Proposition 2.3.

Lemma 2.5. Suppose $\tau: M//_{\mu}G \to M'//_{\mu'}G'$ is a continuous map between two symplectic quotients such that the pull-back τ^* maps $C^{\infty}(M'//_{\mu'}G')$ to $C^{\infty}(M//_{\mu}G)$ preserving the Poisson brackets (i.e, τ is a morphism of symplectic quotients). Then for any $h' \in C^{\infty}(M'//_{\mu'}G')$ if γ is an integral curve of τ^*h' then $\tau \circ \gamma$ is an integral curve h'.

Proof. Since γ is an integral curve of τ^*h'

$$\frac{d}{dt}((\tau^*f')\circ\gamma)(t) = \{\tau^*h', \tau^*f'\}_{\mu}(\gamma(t)).$$

for any $f' \in C^{\infty}(M'//_{u'}G')$. Hence

$$\frac{d}{dt}f'(\tau \circ \gamma) = \{\tau^*h', \tau^*f'\}_{\mu}(\gamma) = \tau^*(\{h', f'\}_{\mu'})(\gamma) = \{h', f'\}_{\mu'}(\tau \circ \gamma).$$

This ends our digression on the subject of symplectic quotients.

In proving Theorem 3 we will argue that there is a G_x -equivariant symplectic embedding $\sigma: \mathcal{V} \to \mathcal{U}$ of a G_x -invariant neighborhood \mathcal{V} of 0 in V into a G-invariant neighborhood \mathcal{U} of x in M which induces a morphism

$$\bar{\sigma}: \mathcal{V}/\!/G_x \to \mathcal{U}/\!/_{\mu}G$$

of symplectic quotients so that $\bar{\sigma}$ embeds $\mathcal{V}/\!/G_x$ as a connected component of $\mathcal{U}/\!/_{\mu}G$. Note that for σ to induce $\bar{\sigma}$ we would want σ to map $\Phi_V^{-1}(0) \cap \mathcal{V}$ into $\Phi^{-1}(\mu) \cap \mathcal{U}$ in such a way that the diagram

(2.1)
$$\Phi_{V}^{-1}(0) \cap \mathcal{V} \xrightarrow{\sigma} \Phi^{-1}(\mu) \cap \mathcal{U}$$

$$\pi_{0} \downarrow \qquad \qquad \downarrow \pi_{\mu}$$

$$\mathcal{V}//_{0}G_{x} \xrightarrow{\bar{\sigma}} \mathcal{U}//_{\mu}G$$

commutes, where π_0 , π_μ are the respective orbit maps. As before given $f \in C^\infty(\mathcal{V})^{G_x}$ we denote by f_0 the unique function in $C^\infty(\mathcal{V}//_0G_x)$ with $f|_{\Phi_V^{-1}(0)\cap\mathcal{V}} = \pi_0^*f_0$ and similarly $h_\mu \in C^\infty(\mathcal{U}//_\mu G)$ is determined by $\pi_\mu^*h_\mu = h|_{\Phi^{-1}(\mu)}$. Then the commutativity of (2.1) implies:

$$(\sigma^*h)_0 = \bar{\sigma}^*h_\mu$$

for any $h \in C^{\infty}(\mathcal{U})^G$.

Suppose next that we have constructed $\sigma: \mathcal{V} \to \mathcal{U}$ with the desired properties. Given $h \in C^{\infty}(M)^G$ and any $\xi \in \mathfrak{g}_{\mu}$ let

$$h_V = \sigma^*(h - \langle \Phi, \xi \rangle).$$

Then $h_V \in C^{\infty}(\mathcal{V})^{G_x}$. Moreover, since (2.1) commutes,

$$(h_V)_0 = (\sigma^*(h - \langle \Phi, \xi \rangle))_0 = \bar{\sigma}^*(h - \langle \Phi, \xi \rangle)_\mu = \bar{\sigma}^*h_\mu - \langle \mu, \xi \rangle.$$

In other words,

$$(2.2) (h_V)_0 = \bar{\sigma}^* h_\mu + \text{ constant.}$$

Lemma 2.5 and equation (2.2) imply that if γ_V is an integral curve of h_V in $\mathcal{V} \cap \Phi_V^{-1}(0) \cap \{h_V = h_V(0) + E\}$ then $\pi_0 \circ \gamma_V$ is an integral curve of $(h_V)_0$ in $\{(h_V)_0 = (h_V)(\pi_0(0)) + E\}$. Hence $\bar{\sigma} \circ \pi_0 \circ \gamma_V$ is an integral curve of h_μ in $\{h_\mu = h_\mu(\pi_\mu(x)) + E\}$. It follows that there is an integral curve γ of h in $\{h = h(x) + E\} \cap \mathcal{U} \cap \Phi^{-1}(\mu)$ with

$$\pi_{\mu} \circ \gamma = \bar{\sigma} \circ \pi_0 \circ \gamma_V.$$

If γ_V is a G_x -relative periodic orbit of h_V then $\pi_0 \circ \gamma_V$ is a periodic orbit of $(h_V)_0$. Consequently γ is a G-relative periodic orbit of h.

Finally note that if additionally we can arrange for

$$d\sigma_0(T_0\mathcal{V}) \subset T_x(G\cdot x)^\omega$$

then since σ is symplectic

$$d\sigma_0(T_0\mathcal{V}) \cap T_x(G_\mu \cdot x) = \{0\}.$$

Consequently,

if $\xi \in \mathfrak{g}_{\mu}$ is such that $d(h - \langle \Phi, \xi \rangle)(x) = 0$ and $d^2(h - \langle \Phi, \xi \rangle)(x)|_{T_x(G \cdot x)^{\omega}}$ is positive semi-definite of maximal rank, then

$$d^2(h - \langle \Phi, \xi \rangle)(x)|_{d\sigma_0(T_0 \mathcal{V})}$$

is positive definite. Therefore the Hessian

$$d^2(\sigma^*(h-\langle \Phi, \xi \rangle))(0)$$

is positive definite as well. We conclude that in order to prove Theorem 3 it is enough to construct the embedding σ with the desired properties. In other words it is enough to prove:

Proposition 2.6. Let $(M, \omega, \Phi : M \to \mathfrak{g}^*)$ be a symplectic manifold with a proper Hamiltonian action of a Lie group G. Fix a point x in M. Let $\mu = \Phi(x)$, let $\Phi_V : V \to \mathfrak{g}_x^*$ be the homogeneous moment map associated with the symplectic slice representation $G_x \to \operatorname{Sp}(V, \omega_V)$. There exists a G_x -invariant neighborhood V of 0 in V, a G-invariant neighborhood U of X in X and a X-equivariant embedding X: $Y \to U$ with

$$\sigma(\Phi_V^{-1}(0) \cap \mathcal{V}) \subset \Phi^{-1}(\mu) \cap \mathcal{U}$$

such that the composition

$$\Phi_V^{-1}(0) \cap \mathcal{V} \xrightarrow{\sigma} \Phi^{-1}(\mu) \cap \mathcal{U} \xrightarrow{\pi_\mu} (\Phi^{-1}(\mu) \cap \mathcal{U})/G_\mu = \mathcal{U}//_\mu G$$

drops down to

$$\bar{\sigma}: \mathcal{V}//_0 G_x = (\Phi_V^{-1}(0) \cap \mathcal{V})/G_x \to \mathcal{U}//_\mu G$$

making (2.1) commute. Moreover,

- 1. $\bar{\sigma}(\mathcal{V}//_0G_x)$ is a connected component of $\mathcal{U}//_{\mu}G$ and $\bar{\sigma}$ is a homeomorphism onto its image;
- 2. the pull-back $\bar{\sigma}^*$ sends $C^{\infty}(\mathcal{U}//_{\mu}G)$ isomorphically to $C^{\infty}(\mathcal{V}//_{0}G_{x})$ (as Poisson algebras).

Additionally

$$d\sigma_0(T_0\mathcal{V}) \subset T_x(G\cdot x)^\omega$$
.

Proposition 2.6 will follow from

Proposition 2.7. As above let $(M, \omega, \Phi : M \to \mathfrak{g}^*)$ be a symplectic manifold with a proper Hamiltonian action of a Lie group G. Fix a point x in M. Let $\mu = \Phi(x)$, let $\Phi_V : V \to \mathfrak{g}_x^*$ be the homogeneous moment map associated with the symplectic slice representation $G_x \to \operatorname{Sp}(V, \omega_V)$. There exists a slice Σ at x for the action of G on M, a G_x -invariant neighborhood V of G in G and a G_x -equivariant embedding G: G is a specific property of G in G and G

- 1. $\sigma(\mathcal{V})$ is closed in Σ ;
- 2. $\sigma(\Phi_V^{-1}(0) \cap \mathcal{V}) = \Sigma \cap \Phi^{-1}(\mu);$
- 3. $\sigma^*\omega = \omega_V$ and $\Phi \circ \sigma = i \circ \Phi_V + \mu$ where $i: \mathfrak{g}_x^* \to \mathfrak{g}^*$ is a G_x -equivariant injection;
- 4. $G_{\mu} \cdot (\Sigma \cap \Phi^{-1}(\mu))$ is a connected component of $\Phi^{-1}(\mu) \cap \mathcal{U}$, where $\mathcal{U} = G \cdot \Sigma$.

Proof of Proposition 2.7. Our proof of Proposition 2.7 uses the Bates-Lerman version [BL][pp. 212–215] of the local normal form theorem for moment maps of Marle, Guillemin and Sternberg:

Theorem 2.8 ([BL]). Let (M, ω) be a symplectic manifold with a proper Hamiltonian action of a Lie group G and a corresponding equivariant moment map $\Phi: M \to \mathfrak{g}^*$. Fix $x \in M$, let $\mu = \Phi(x)$, (V, ω_V) the symplectic slice at $x, \Phi_V: V \to \mathfrak{g}_x^*$ the associated homogeneous moment map. Choose a G_x -equivariant splitting

$$\mathfrak{g}^* = \mathfrak{g}_x^* \oplus (\mathfrak{g}_\mu/\mathfrak{g}_x)^* \oplus \mathfrak{g}_\mu^\circ$$

 $(\mathfrak{g}_{\mu}^{\circ} \text{ denotes the annihilator of } \mathfrak{g}_{\mu} \text{ in } \mathfrak{g}^{*})$ and thereby G_{x} -equivariant injections

$$i:\mathfrak{g}_x^*\to\mathfrak{g}^*,\quad j:(\mathfrak{g}_\mu/\mathfrak{g}_x)^*\to\mathfrak{g}^*.$$

Let

$$Y = G \times_{G_x} ((\mathfrak{g}_{\mu}/\mathfrak{g}_x)^* \times V);$$

it is a homogeneous vector bundle over G/G_x . There exists a closed 2-form ω_Y on Y which is non-degenerate in a neighborhood of the zero section $G \times_{G_x} (\{(0,0)|\}) = G \cdot [1,0,0]$ (1 denotes the identity in G) such that

- 1. a G-invariant neighborhood of $G \cdot x$ in (M, ω) is G-equivariantly symplectomorphic to a neighborhood of $G \cdot [1, 0, 0]$ in (Y, ω_Y) ;
- 2. the moment map Φ_Y for the action of G on (Y, ω_Y) is given by

$$\Phi_Y([g,\eta,v]) = g \cdot (\mu + j(\eta) + i(\Phi_V(x)))$$

for all $(g, \eta, v) \in G \times (\mathfrak{g}_{\mu}/\mathfrak{g}_x)^* \times V$;

3. the embedding $\iota: V \to Y$, $\iota(v) = [1, 0, v]$ is symplectic: $\iota^* \omega_Y = \omega_V$.

Hence, we can assume without loss of generality that $(M, \omega, \Phi) = (Y, \omega_Y, \Phi_Y)$ and x = [1, 0, 0]. Note that the embedding $\kappa : (\mathfrak{g}_{\mu}/\mathfrak{g}_x)^* \times V \to Y$, $\kappa(\eta, v) = [1, \eta, v]$ is a slice at x for the action of G on Y.

We now argue that for a small enough G_x -invariant neighborhood \mathcal{V} of 0 in V and a small enough G_x -invariant neighborhood \mathcal{W} of 0 in $(\mathfrak{g}_{\mu}/\mathfrak{g}_x)^*$

$$\Sigma := \kappa(\mathcal{W} \times \mathcal{V}) \subset Y$$

is the desired slice and

$$\sigma = \kappa|_{\{0\} \times \mathcal{V}}: \mathcal{V} \to \Sigma, \quad \sigma(v) = [1, 0, v]$$

is the desired embedding.

Note that no matter how \mathcal{V} and \mathcal{W} are chosen we automatically have that $\sigma(\mathcal{V})$ is closed in Σ and $\sigma^*\omega_Y = \omega_V$. Hence $\sigma(\mathcal{V})$ is closed in $\mathcal{U} := G \cdot \Sigma$, which is a G-invariant neighborhood of x. Note also that

$$\Phi_Y \circ \sigma(v) = \Phi_Y([1, 0, v]) = \mu + i(\Phi_V(v)).$$

Next we make our choice of \mathcal{V} and \mathcal{W} and prove that the resulting embedding σ has all the desired properties. For this purpose, factor $\Phi_Y : Y \to \mathfrak{g}^*$ as a sequence of maps (we identify \mathfrak{g}_{μ}^* with $j((\mathfrak{g}_{\mu}/\mathfrak{g}_x)^*) \oplus i(\mathfrak{g}_x^*) \subset \mathfrak{g}^*$):

$$G \times_{G_x} ((\mathfrak{g}_{\mu}/\mathfrak{g}_x)^* \times V) \xrightarrow{F_1} G \times_{G_x} ((\mathfrak{g}_{\mu}/\mathfrak{g}_x)^* \times \mathfrak{g}_x^*) \xrightarrow{F_2} G \times_{G_{\mu}} \mathfrak{g}_{\mu}^* \xrightarrow{\mathcal{E}} \mathfrak{g}^*,$$

where

$$F_1([g, \eta, v]) = [g, \eta, \Phi_V(v)],$$

$$F_2([g, \eta, \nu]) = [g, j(\eta) + i(\nu)] \text{ and }$$

$$\mathcal{E}([g, \vartheta]) = g \cdot (\mu + \vartheta).$$

Since the tangent space $T_{\mu}(G \cdot \mu)$ is canonically isomorphic to the annihilator $\mathfrak{g}_{\mu}^{\circ}$ and since $\mathfrak{g}^* = \mathfrak{g}_{\mu}^* \oplus \mathfrak{g}_{\mu}$, the vector bundle $G \times_{G_{\mu}} \mathfrak{g}_{\mu}^*$ is the normal bundle for the embedding $G \cdot \mu \hookrightarrow \mathfrak{g}^*$ and $\mathcal{E} : G \times_{G_{\mu}} \mathfrak{g}_{\mu}^* \to \mathfrak{g}^*$ is the exponential map for a flat G_x -invariant metric on \mathfrak{g}_x^* . Therefore \mathcal{E} is a local diffeomorphism near the zero section. In particular there is a G_x -invariant neighborhood \mathcal{O} of $[1,0] \in G \times_{G_{\mu}} \mathfrak{g}_{\mu}^*$ so that $\mathcal{E}|_{\mathcal{O}}$ is a diffeomorphism onto its image. Let $\mathcal{O}' = (F_2 \circ F_1)^{-1}(\mathcal{O})$. Then

$$\mathcal{O}' \cap \Phi_Y^{-1}(\mu) = \mathcal{O}' \cap (F_2 \circ F_1)^{-1}((\mathcal{E}|_{\mathcal{O}})^{-1}(\mu))$$

$$= \mathcal{O}' \cap F_1^{-1}(F_2^{-1}([1,0]))$$

$$= \mathcal{O}' \cap F_1^{-1}(G_{\mu} \times_{G_x} \{(0,0)\})$$

$$= \mathcal{O}' \cap G_{\mu} \times_{G_x} (\{0\} \times \Phi_V^{-1}(0)).$$

We may take \mathcal{O} to be of the form $\mathcal{A} \times_{G_{\mu}} (\mathcal{W} \times \mathcal{V}')$ where $\mathcal{A} \subset G$ is a $G_x \times G_{\mu}$ -invariant neighborhood of 1, $\mathcal{W} \subset (\mathfrak{g}_{\mu}/\mathfrak{g}_x)^*$ is a G_x -invariant neighborhood of 0 and $\mathcal{V}' \subset \mathfrak{g}_x^*$ is a convex G_x -invariant neighborhood of 0. We take $\mathcal{V} = \Phi_V^{-1}(\mathcal{V}')$. Then $\mathcal{V} \cap \Phi_V^{-1}(0)$ is connected. With the choices above, $\mathcal{O}' = \mathcal{A} \times_{G_x} (\mathcal{W} \times \mathcal{V})$ and

$$\mathcal{O}' \cap \Phi_Y^{-1}(\mu) = (\mathcal{A} \times_{G_x} (\mathcal{W} \times \mathcal{V})) \cap (G_{\mu} \times_{G_x} (\{0\} \times (\Phi_V^{-1}(0) \cap \mathcal{V}))).$$

Since $G_{\mu} \times_{G_x} (\{0\} \times (\Phi_V^{-1}(0) \cap \mathcal{V}))$ is closed in $G \times_{G_x} (\mathcal{W} \times \mathcal{V}) = G \cdot \Sigma = \mathcal{U}$ and since $\Phi_V^{-1}(0) \cap \mathcal{V}$ is connected, $G_{\mu} \cdot \sigma(\Phi_V^{-1}(0) \cap \mathcal{V}) = G_{\mu} \times_{G_x} (\{0\} \times (\Phi_V^{-1}(0) \cap \mathcal{V}))$ is a connected component of $\Phi_V^{-1}(\mu) \cap \mathcal{U}$. This proves property (4).

Note that $\Sigma = \{[1, \eta, v] \mid \eta \in \mathcal{W}, v \in \mathcal{V}\} \subset \mathcal{A} \times_{G_x} (\mathcal{W} \times \mathcal{V})$. Hence $\Phi_Y^{-1}(\mu) \cap \Sigma = (\Phi_Y^{-1}(\mu) \cap \mathcal{O}') \cap \Sigma = \{[1, 0, v] \mid v \in \Phi_V^{-1}(0) \cap \mathcal{V}\}$, i.e.,

$$\sigma(\Phi_V^{-1}(0) \cap \mathcal{V}) = \Phi_V^{-1}(\mu) \cap \Sigma,$$

which proves property (2) and thereby finishes the proof of Proposition 2.7. \square

Proof of Proposition 2.6. We continue to use the notation above. Since $\sigma(\Phi_V^{-1}(0) \cap \mathcal{V}) = \Phi^{-1}(\mu) \cap \Sigma$ and since $\sigma : \mathcal{V} \to \Sigma$ is a closed embedding, the restriction $\sigma|_{\Phi_V^{-1}(0) \cap \mathcal{V}} : \Phi_V^{-1}(0) \cap \mathcal{V} \to \Phi^{-1}(\mu) \cap \Sigma$ is a G_x -equivariant homeomorphism. Hence

$$\bar{\sigma}: (\Phi_V^{-1}(0) \cap \mathcal{V})/G_x \to (\Phi^{-1}(\mu) \cap \Sigma)/G_x$$

is a homeomorphism as well. Since Σ is a slice at x for the action of G on M, it is also a slice for the action of G_{μ} . Consequently

$$(G_{\mu} \cdot (\Phi^{-1}(\mu) \cap \Sigma))/G_{\mu} \cong (\Phi^{-1}(\mu) \cap \Sigma)/G_x.$$

Since $G_{\mu} \cdot (\Phi^{-1}(\mu) \cap \Sigma)$ is a component of $\Phi^{-1}(\mu) \cap \mathcal{U}$, $\bar{\sigma} : \mathcal{V}//_0 G_x \to \mathcal{U}//_{\mu} G$ is a homeomorphism onto its image. Moreover, the diagram (2.1) commutes.

We now argue that $\bar{\sigma}$ pulls back the smooth functions in $C^{\infty}(\mathcal{V}/\!/G_x)$ to smooth functions in $C^{\infty}(\mathcal{U}/\!/_{\mu}G)$ and that the pull-back is an isomorphism of Poisson algebras. Since Σ is a slice and $\mathcal{U} = G \cdot \Sigma$, the restriction

$$C^{\infty}(\mathcal{U})^G \to C^{\infty}(\Sigma)^{G_x}, \quad f \mapsto f|_{\Sigma}$$

is a bijection. Since $\sigma(\Phi_V^{-1}(0)\cap \mathcal{V})\subset \Phi^{-1}(\mu)\cap \mathcal{U}$ and since

$$C^{\infty}(\mathcal{U})^{G} \xrightarrow{\sigma^{*}} C^{\infty}(\mathcal{V})^{G_{x}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C^{\infty}(\mathcal{U})^{G}|_{\Phi^{-1}(\mu)\cap\mathcal{U}} \xrightarrow{\bar{\sigma}^{*}} C^{\infty}(\mathcal{V})^{G_{x}}|_{\Phi_{V}^{-1}(0)\cap\mathcal{V}}$$

commutes, where the vertical arrows are restrictions, and since the top arrow is surjective, the bottom arrow is surjective as well. Since Σ is a slice and $\mathcal{U} = G \cdot \Sigma$, any function $f \in C^{\infty}(\mathcal{U})^{G}|_{\Phi^{-1}(\mu) \cap \mathcal{U}}$ is uniquely defined by its values on $\Phi^{-1}(\mu) \cap \Sigma = \sigma(\Phi_{V}^{-1}(0) \cap \mathcal{V})$. Hence the bottom arrow $\bar{\sigma}^*$ is also

injective. Since $\sigma: \mathcal{V} \to \mathcal{U}$ is symplectic, $\sigma^*: C^{\infty}(\mathcal{U}) \to C^{\infty}(\mathcal{V})$ is Poisson. Hence $\sigma^*: C^{\infty}(\mathcal{U})^G \to C^{\infty}(\mathcal{V})^{G_x}$ is also Poisson. Consequently $\sigma^*: C^{\infty}(\mathcal{U})^G|_{\Phi^{-1}(\mu)\cap\mathcal{U}} \to C^{\infty}(\mathcal{V})^{G_x}|_{\Phi^{-1}(0)\cap\mathcal{V}}$ is Poisson as well. We conclude that

$$\bar{\sigma}^*: C^{\infty}(\mathcal{U}//_{\mu}G) \to C^{\infty}(\mathcal{V}//_{0}G_x)$$

is an isomorphism of Poisson algebras.

Finally since $\Phi \circ \sigma = i \circ \Phi_V + \mu$,

$$d\Phi_x \circ d\sigma_0 = i \circ d(\Phi_V)_0$$
.

Since Φ_V is quadratic homogeneous, $d(\Phi_V)_0 = 0$. Hence

$$d\sigma_0(T_0\mathcal{V}) \subset \ker d\Phi_x = T_x(G \cdot x)^\omega$$
.

This concludes our proof of Theorem 3 as well.

3. From invariant Hamiltonians on vector spaces to Reeb flows: Theorem 4 implies Theorem 2

Remark 3.1. Theorem 2 is easily seen to be true in a special case: the set V^K of K-fixed vectors is a subspace of V of positive dimension. Indeed, since h is K-invariant its Hamiltonian flow preserves the symplectic subspace V^K , which is contained in the zero level set $\Phi^{-1}(0)$ of the moment map. Moreover the flow of h in V^K is the Hamiltonian flow of the restriction $h|_{V^K}$. Hence Weinstein's theorem applied to the Hamiltonian system $(V^K, \omega|_{V^K}, h|_{V^K})$ guarantees that for any E > 0 sufficiently small there are at least $\frac{1}{2} \dim V^K$ periodic orbits of $h|_{V^K}$ in the surface

$$\{h|_{V^K} = E\} = \{h = E\} \cap V^K \subset \{h = E\} \cap \{\Phi = 0\}.$$

To show that Theorem 4 implies Theorem 2 we first need to digress on the subject of contact quotients.

3.1. Facts about contact quotients. Suppose that a Lie group G acts properly on a manifold Σ , preserving a contact form β . The associated moment map $\Psi: \Sigma \to \mathfrak{g}^*$ is defined by

$$\langle \Psi(x), \xi \rangle = \beta_x(\xi_M(x))$$

for all $x \in \Sigma$, all $\xi \in \mathfrak{g}^*$. The map Ψ is G-equivariant. The contact quotient at zero $\Sigma//G$ is, by definition, the set

$$\Sigma/\!/G:=\Psi^{-1}(0)/G.$$

Just as in the case of symplectic quotients the contact quotients are stratified spaces [LW] with the stratification induced by the orbit type decomposition:

$$\Sigma //G := \coprod_{H < G} (\Psi^{-1}(0) \cap \Sigma_{(H)}) / G,$$

where the disjoint union is taken over conjugacy classes of subgroups of G. Additionally each stratum

$$(\Sigma//G)_{(H)} := (\Psi^{-1}(0) \cap \Sigma_{(H)})/G$$

is a contact manifold and the contact form $\beta_{(H)}$ on each stratum is induced by the contact form β on Σ [Wi, Theorem 3, p. 4256]. More precisely for each subgroup H of G the set $\Psi^{-1}(0) \cap \Sigma_{(H)}$ is a manifold and

$$\pi_{(H)}^* \beta_{(H)} = \beta|_{\Psi^{-1}(0) \cap \Sigma_{(H)}},$$

where $\pi_{(H)}: \Psi^{-1}(0) \cap \Sigma_{(H)} \to (\Psi^{-1}(0) \cap \Sigma_{(H)})/G = (\Sigma//G)_{(H)}$ is the orbit map. It is not hard to see that the flow of the Reeb vector field X of β preserves

the moment map and the orbit type decomposition, hence descends to a stratapreserving flow on the quotient $\Sigma//G$. Also, on each stratum the induced flow is the Reeb flow of the induced contact form $\beta_{(H)}$.

We're now ready to prove that Theorem 4 implies Theorem 2. It is no loss of generality to assume that h(0) = 0. Since the quadratic form $q = d^2h(0)$ is positive definite, the energy surface

$$\{q=E\},$$

E > 0, is a K-invariant hypersurface star-shaped about 0. Hence

$$\alpha_E := \iota(R)\omega|_{\{q=E\}}$$

is a K-invariant contact form, where R(v) = v denotes the radial vector field on V. For E > 0 sufficiently small, the K-invariant set

$$\{h = E\}$$

is a hypersurface which is C^2 -close to $\{q = E\}$. Hence

$$\beta_E := \iota(R)\omega|_{\{h=E\}}$$

is also a K-invariant contact form. By the implicit function theorem, for E > 0 sufficiently small, there is a function $f : \{q = E\} \to (0, \infty)$, which is C^2 close to 1, so that

$$\phi: \{q = E\} \to \{h = E\} \quad \phi(x) = f(x)x$$

is a K-equivariant diffeomorphism. Since $\phi^*\beta_E = f^2\alpha_E$, the manifolds $\{q = E\}$ and $\{h = E\}$ are K-equivariantly contactomorphic. Moreover, under the identification ϕ the two contact forms α_E and β_E are C^2 -close (again, provided E is small). Note that the two associated contact moment maps are $\Phi|_{\{q=E\}}$ and $\Phi|_{\{h=E\}}$ respectively.

Up to re-parameterization the integral curves of the Hamiltonian vector field of h in $\{h=E\}$ are the integral curves of the Reeb vector field X_E of β_E . Similarly the integral curves of the Hamiltonian vector field of q on $\{q=E\}$ are the integral curves of the Reeb vector field Y_E of α_E . In particular the relatively periodic orbits of h on $\{h=E\}$ are relatively periodic orbits of X_E . Since the hypersurface $\{h=E\}$ is compact and since the orbit type decomposition of the contact quotient $\{h=E\}/\!/G$ is a stratification, the minimal strata of the quotient are compact. Let $Q=(\{h=E\}/\!/G)_{(L)}$ be one such stratum. Then the relatively periodic orbits of h in $\{h=E\}\cap\Phi^{-1}(0)\cap V_{(L)}$ descend to periodic orbits of the Reeb vector field X of the contact form $\beta_{(L)}$ on $Q=(\{h=E\}\cap\Phi^{-1}(0)\cap V_{(L)})/G$. Therefore to prove Theorem 2 it is enough to establish the existence of periodic orbits of X. For this, according to Theorem 4, it suffices to establish the existence of a contact form α on Q whose Reeb vector field Y generates a torus action and such that $\beta_{(L)}$ is C^2 close to α when E>0 is small enough.

The form α , of course, is the form induced by α_E . Let us prove that it does have the desired properties. Since $\phi: \{q=E\} \to \{h=E\}$ is an equivariant contactomorphism it induces an identification of the contact manifold Q with $(\{q=E\} \cap \Phi^{-1}(0) \cap V_{(L)})/G$. Moreover, since α_E and β_E are C^2 -close, the induced forms $\beta_{(L)}$ and $\alpha = \alpha_{(L)}$ are C^2 -close as well. Since q is definite, its Hamiltonian flow generates a linear symplectic action of a torus \mathbb{T} on V. The restriction of this action to $\{q=E\}$ is also generated by the Reeb vector field Y_E of α_E . Since q is K-invariant, the action of \mathbb{T} commutes with the action of K and preserves the moment map Φ . Hence it descends to an action of \mathbb{T} on Q. Moreover, since the Reeb vector field of α_E descends to the Reeb vector field of $\alpha_{(L)}$ on Q, the induced action of \mathbb{T} on Q is generated by the Reeb vector field of $\alpha_{(L)}$. We conclude that Theorem 4 implies Theorem 2.

4. Perturbations of Reeb flows: proof of Theorem 4

In the proof of Theorem 4 we will need the following elementary result.

Lemma 4.1. Let ϕ_t be a dense one-parameter subgroup in a torus \mathbb{T} and let H be a subgroup of \mathbb{T} topologically generated by an element ϕ^{τ} , $\tau > 0$. Then either H has codimension one in \mathbb{T} or $H = \mathbb{T}$.

Proof of Lemma 4.1. It suffices to show that the map

$$[0,\tau] \times H \to \mathbb{T}, \quad F(t,h) = \phi^t \cdot h$$

is onto \mathbb{T} . Pick $g \in \mathbb{T}$. Assume first that g is in the one-parameter subgroup, i.e., $g = \phi^t$ for some t. Then we have $t = k\tau + t'$ with $0 \le t' < \tau$ and, clearly,

$$g = \phi^{t'} \cdot [(\phi^{\tau})^k] = F\left(t', (\phi^{\tau})^k\right).$$

Hence g is in the image of F.

Let now g be in \mathbb{T} , but not in the one-parameter subgroup ϕ^t . Then there exists a sequence $t_r \to \pm \infty$ such that $\phi^{t_r} \to g$. (This sequence must go to positive or negative infinity, for otherwise g would be in the one-parameter subgroup.) Assume that $t_r \to \infty$; the case of negative infinity can be dealt with in a similar fashion. As above, we write

$$t_r = k_r \tau + t_r',$$

where $k_r \to \infty$ as $r \to \infty$ and $0 < t'_r < \tau$.

The elements $(\phi^{\tau})^{k_r}$ are in H and, since H is compact, we may assume that $(\phi^{\tau})^{k_r} \to h \in H$ by passing if necessary to a subsequence. Furthermore, by passing if necessary to a subsequence again, we may assume that $t'_r \to t' \in [0, \tau]$.

We claim now that g = F(t', h). To see this note that as above

$$\phi^{t_r} = \phi^{k_r \tau + t'_r} = \phi^{t'_r} \cdot [(\phi^{\tau})^{k_r}].$$

As r goes to infinity, $\phi^{t'_r} \to \phi^{t'}$ and the second term goes to h. Hence,

$$g = \phi^{t'} \cdot h = F(t', h).$$

This completes the proof of the lemma.

Proof of Theorem 4. First, let us set notation. We denote by X the Reeb vector field of α and by ϕ^t its Reeb flow. By the hypotheses of the theorem, the flow ϕ^t generates an action of a torus \mathbb{T} on Q. We will view ϕ^t as a dense one-parameter subgroup of \mathbb{T} . The points on periodic orbits of X will be referred to as periodic points. We break up the proof of the theorem into four steps. Steps 1–3 concern exclusively properties of the Reeb flow of α . The perturbed form β enters the proof only at the last step.

1. We claim that the periodic points of X are exactly the points $x \in Q$ whose stabilizers \mathbb{T}_x have codimension one in \mathbb{T} .

Indeed, let $x \in Q$ be a periodic point, i.e., $\phi^T(x) = x$ for some T > 0. Since ϕ^t is dense in \mathbb{T} , the Reeb orbit through x is dense in the \mathbb{T} -orbit through x. Since x is a periodic point, the Reeb orbit is closed and thus equal to the \mathbb{T} -orbit. Hence, \mathbb{T}/\mathbb{T}_x is a circle and thus \mathbb{T}_x has codimension one. Conversely, if \mathbb{T}_x has codimension one, the Reeb orbit through x must be dense in the \mathbb{T} -orbit and hence equal to the \mathbb{T} -orbit because the latter is a circle.

2. Let now N be a minimal stratum of the \mathbb{T} -action, which is comprised entirely of periodic points. We claim that such a stratum exists, is a smooth submanifold, and all points of N have the same period, i.e., the \mathbb{T} -action on N factors through a free circle action.

Since the \mathbb{T} -action has no fixed points, periodic points lie in minimal strata of the action. Furthermore, the Reeb flow of α has at least one periodic orbit (in fact, at least two unless Q is a circle); this follows, for example, from a theorem of Banyaga and Rukimbira, [BR]. Now it suffices to take as N a minimal stratum containing a periodic point. The fact that N is smooth is a general result about compact group actions. Finally, all points in N have the same stabilizer \mathbb{T}_x and the action of the circle \mathbb{T}/\mathbb{T}_x on N is free because N is minimal. The period T of $x \in N$ is the first T > 0 such that $\phi^T \in \mathbb{T}_x$.

3. We claim that N is a non-degenerate invariant submanifold for the Reeb flow of α .

Let $x \in N$. We need to show that the linearization $d\phi^T$ on the normal space ν_x to N at x does not have unit as an eigenvalue. By definition, this linearization is just the linearized action of $\phi^T \in \mathbb{T}_x$ on ν_x . As is well known, the isotropy representation of \mathbb{T}_x on ν_x contains no trivial representations in its decomposition into the sum of irreducible representations. Hence, it suffices to show that the subgroup generated by ϕ^T is dense in \mathbb{T}_x .

Let m be the first positive integer such that $(\phi^T)^m$ is in \mathbb{T}^0_x , the connected component of identity in \mathbb{T}_x . (Such an integer m exists because $\mathbb{T}_x/\mathbb{T}^0_x$ is a finite subgroup of the circle $\mathbb{T}/\mathbb{T}^0_x$.) Since $\mathbb{T}_x/\mathbb{T}^0_x$ is finite cyclic, it suffices to show that the subgroup H topologically generated by ϕ^{mT} is equal to \mathbb{T}^0_x . This follows immediately from Lemma 4.1. Indeed, by the lemma, the group H is either equal to \mathbb{T} or has codimension one in \mathbb{T} . Since $H \subset \mathbb{T}^0_x$ and \mathbb{T}^0_x has codimension one, the group H must have codimension one. Thus H is a closed subgroup of \mathbb{T}^0_x of the same dimension as \mathbb{T}^0_x and hence $H = \mathbb{T}^0_x$.

4. Now we invoke the following theorem due to Kerman [K] (p. 967). Let Crit(P) be the minimal possible number of critical points of a smooth function on a compact manifold P.

Theorem 4.2 (Kerman, [K]). Let Q be a compact odd-dimensional manifold, X a non-vanishing vector field on Q, and N a non-degenerate periodic submanifold of X. Let Ω be a closed maximally non-degenerate two-form on Q whose kernel is C^2 -close to X and such that the class $[\Omega|_N]$ is in the image of the pull-back from $H^2(N/S^1)$ to $H^2(N)$. Then Ω has at least $Crit(N/S^1)$ closed characteristics near N.

Applying this theorem to Q, N and X as above, and $\Omega = d\beta$ we obtain the required result.

Remark 4.3. In fact, our proof of Theorem 4 establishes the existence of two distinct periodic orbits when Q is not a circle. As a consequence, in the setting of Theorems 1 and 2 there exist at least two distinct relative periodic orbits unless Q is a circle.

References

- [ACG] J. Arms, R. Cushman, M. Gotay, A universal reduction procedure for Hamiltonian group actions, The geometry of Hamiltonian systems (Berkeley, CA, 1989), 33–51, Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991.
- [AMM] J. Arms, J. Marsden, and V. Moncrief, Symmetry and bifurcations of momentum mappings, Comm. Math. Phys. 78 (1980/81), no. 4, 455–478.
- [BR] A. Banyaga and P. Rukimbira, On characteristics of circle invariant presymplectic forms, Proc. Amer. Math. Soc. 123 (1995), 3901–3906.
- [BL] L. Bates and E. Lerman, Proper group actions and symplectic stratified spaces, Pacific J. Math. 181 (1997), 201–229.
- [GS] V. Guillemin and S. Sternberg, A normal form for the moment map, Differential Geometric Methods in Mathematical Physics S. Sternberg, ed., D. Reidel Publishing Company, Dordrecht, 1984.
- [K] E. Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds, Internat. Math. Res. Notices 1999, 954–969.
- [LT] E. Lerman and T. Tokieda, On relative normal modes, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 413–418.
- [LW] E. Lerman and C. Willett, The topological structure of contact and symplectic quotients, Internat. Math. Res. Notices 2001, 33–52.
- [Ma] C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rendiconti del Seminario Matematico 43 (1985), 227–251, Università e Politechnico, Torino.
- [Mo] J. Moser, Periodic orbits near an equilibrium and a theorem of A. Weinstein, Pure Appl. Math. 29 (1976) 727–747.
- [O1] J.-P. Ortega, Symmetry, reduction and stability in Hamiltonian systems, Ph.D. Thesis, University of California, Santa Cruz, 1998.
- [O2] J.-P. Ortega, Relative normal modes for nonlinear Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 665–704.
- [SL] R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991), 375–422.
- [W1] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973) 47–57.

[W2] A. Weinstein, Bifurcations and Hamilton's principle, Math. Z. 159 (1978) 235–248.

[Wi] C. Willett, Contact reduction, Trans. Amer. Math. Soc. 354 (2002), 4245–4260

Department of Mathematics, University of California at Santa Cruz, Santa Cruz, CA $95064\,$

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

 $E\text{-}mail\ address: \verb|ginzburg@math.ucsc.edu|\\ E\text{-}mail\ address: \verb|lerman@math.uiuc.edu|$