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GLOBAL INVARIANTS FOR STRONGLY PSEUDOCONVEX
VARIETIES WITH ISOLATED SINGULARITIES: BERGMAN

FUNCTIONS

Stephen S.-T. Yau

Abstract. Let M be a strongly pseudoconvex manifold which is a resolution
of strongly pseudoconvex variety V with only isolated singularities. We define
a Bergman function BM on M which is a biholomorphic invariant of M . The
Bergman function BM vanishes precisely on the exceptional set of M . Hence BM

can be pushed down and we obtain a Bergman function BV which is a biholomor-
phic invariant of V and vanishes precisely on the singularities of V . This Bergman
function not only can distinguish analytic structures of isolated singularities, but
it can also distinguish the CR structures of the boundaries of V . As an appli-
cation, we define a continuous numerical invariant on strongly pseudoconvex CR
manifolds in V = {(x, y, z) ∈ C

3 : xy = z2}. We show that our invariant varies
continuously in R when the CR structure of strongly pseudoconvex CR manifold
changes in V . Our global numerical invariant is explicitly computable. Moreover
we show that the Bergman function allows us to determine the automorphism
groups of these CR manifolds.

1. Introduction

The Bergman kernel form is a basic biholomorphic invariant on complex man-
ifolds [Ko]. A lot of work has been done in its explicit computation and asymp-
totic expansion. However, it seems that there is little attention given to the
possible role of the Bergman kernel on analytic spaces, in connection with the
study of singularities and CR manifolds. In [L-Y-Y], an initial step in study-
ing the Bergman kernel on a resolution of an isolated 2-dimensional Gorenstein
singularity was given. It was shown that the exceptional set of the resolution is
exactly the minimal set of the Bergman kernel. Thus the analytic definition of
the Bergman kernel contains important topological information on the singular-
ity. However, the Bergman kernel defined in [L-Y-Y] is not a biholomorphically
invariant except for the rational double points.

Let M be a complex manifold of dimension n. A real valued C∞ function φ
on M is said to be strongly plurisubharmonic if and only if the hermitian form

n∑
i,j=1

∂2φ

∂zi∂zj
dzi dzj
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is positive definite with respect to any system of local coordinates (z1, . . . , zn).
The complex manifold M is said to be strongly pseudoconvex if there is a com-
pact subset B ⊂ M , and a continuous real valued function φ on M , which is
strongly plurisubharmonic outside B, and such that for each c ∈ R, the set
Bc = {x ∈ M : φ(x) < c} is relatively compact in M . Note that a strongly pseu-
doconvex manifold is a modification of a Stein space at a finite many points.

The purpose of this paper is to define a new Bergman function BM for each
strongly pseudoconvex manifold M with dimension n ≥ 2 which is a resolution
of strongly pseudoconvex variety V with only isolated singularities. We show
that BM is a biholomorphically invariant function and BM vanishes precisely
on the exceptional set of M . Hence BM can be pushed down and we obtain
a Bergman function BV which is a biholomorphic invariant of V and vanishes
precisely on the singularities of V .

The invariance properties of a CR manifold X of real dimension 2n−1 which
is a real hypersurface in C

n with respect to the infinite pseudo-group of biholo-
morphic transformations were studied extensively by many important mathe-
maticians. The systematic study of such properties for hypersurfaces with non-
degenerate Levi form was first made by Catan [Ca] in 1932, and latter by Chern
and Moser [Ch-Mo]. A main result of the theory is the existence of a complete
system of local differential invariants. On the other hand, by using the Catan
method of equivalence, Webster [We] gave a complete characterization when two
ellipsoids in C

n are CR equivalent. In [Fe], Fefferman has shown that a biholo-
morphic map between two bounded strongly pseudoconvex domains with smooth
boundaries extends smoothly to the boundaries. Then Webster’s result gives a
necessary and sufficient condition for two ellipsoidal domains to be equivalent.

Despite the success of the Chern-Moser theory, the fundamental question of
distinguishing two strongly pseudoconvex manifolds remains unsolved. Let X
be a compact connected strongly pseudoconvex CR manifold of real dimension
2n − 1. In 1974, Boutel de Monvel [Bo] (see also Kohn [Koh]) proved that X is
CR-embeddable in some C

N if dimX ≥ 5. In this paper, we shall only consider
CR embeddable strongly pseudoconvex CR manifolds. Let X be an embeddable
compact strongly pseudoconvex CR manifold. In view of a beautiful theorem
of Harvey-Lawson [Ha-La], there exists a complex variety V in C

N such that
∂V = X and V has only normal isolated singularities. Theorem 3.1 below
says that we can use the structures of the singularities of V to distinguish the
CR structure of X. Thus if two strongly pseudoconvex manifolds bound non-
isomorphic singularities, then their CR structures are different. The difficult
unsolved CR equivalence problem is: how can one distinguish strongly pseudo-
convex CR manifolds X1 and X2 when they are lying in the same variety V . If
V is C

N , this difficult problem has been considered by leading mathematicians
Chern-Moser [Ch-Mo], Fefferman [Fe], Webster [We], etc. Even in this case, it
seems that the CR equivalence problem for complete Reinhardt domains (except
for the ellipsoidal domains which was solved by Webster) remains open. On the
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other hand, when V is a singular variety, the CR equivalence problem is basi-
cally untouched. One of the purpose of this paper is to offer a novel technique to
attack CR equivalence problem. The main observation is that our new Bergman
functions put a lot of restriction on biholomorphic maps between strongly pseu-
doconvex CR manifolds, from which new CR invariants can be constructed and
the automorphism groups of the CR manifolds can be determined. We illustrate
how our new technique works in a concrete example.

We define a continuous numerical invariant on strongly pseudoconvex CR
manifolds in V = {(x, y, z) ∈ C

2 : xy = z2}. We show that our invariant varies
continuously in R when the CR structure of strongly pseudoconvex CR manifold
changes in V . Our global numerical invariant is explicitly computable. Moreover
we show that the Bergman function allows us to determine the automorphism
groups of these CR manifolds.

We thank the referee for many useful suggestions to improve the presentation
of this paper.

2. Bergman function on strongly pseudoconvex manifold and variety

Let M be a complex n-dimensional manifold. We first recall the definition of
the Bergman kernel. Let F be the set of all holomorphic n-forms φ on M such

that
∣∣∣∣
∫

M

φ∧φ

∣∣∣∣ < ∞. (φ will be called L2 or square integrable.) F is a separable

complex Hilbert space under the inner product 〈φ1, φ2〉 = (
√−1 )n2

∫
M

φ1 ∧
φ2. The corresponding norm 〈φ, φ〉 1

2 will be denoted by ‖φ‖. Let {ωj} be
a complete orthonormal basis of F . Then K(z, w) = Σωj(z) ∧ ωj(w) can be
shown to converge uniformly on compact subsets to a holomorphic 2n-form on
M × M . Here, M denotes the conjugate complex manifold obtained by taking
the conjugate coordinate charts of M . Further, K(z, w) is independent of the
choice of complete orthonormal basis of F . If each point z ∈ M is identified with
the point (z, z) ∈ M ×M , then K(z, z) can be regarded as a 2n-form on M and
is referred to as the Bergman kernel of M . Since the Hilbert space F with its
inner product is invariant under biholomorphic maps, so is the Bergman kernel.

Let V be a Stein variety of dimension n ≥ 2 in C
N with only irreducible iso-

lated singularities. We assume that ∂V is a strongly pseudoconvex CR manifold.
Let π : M → V be a resolution of singularity with E as a exceptional set. We
shall define a Bergman function BM (z) on M which is a biholomorphic invariant
of M .

Definition 2.1. Let F0 be the set of all L2 integrable holomorphic n-forms ψ on
M vanishing on the exception set E of M . Let {ωj} be a complete orthonormal
basis of F0. The Bergman kernel vanishing on the exceptional set is defined to
be K0(z, z) = Σωj(z) ∧ ωj(z).

Lemma 2.2. F/F0 is a finite dimensional vector space.
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Proof. Let Ωn be the sheaf of germs of holomorphic n-forms on M and Ωn(−E)
be the sheaf of germs of holomorphic n-forms on M vanishing along E. Clearly
F = Γ(M, Ωn) and F0 = Γ(M,Ωn(−E)). From the short exact sequence

0 −→ Ωn(−E) −→ Ωn −→ Ωn

∣∣∣∣
E

−→ 0,

we have dim F/F0 ≤ dimH0
(
E, Ωn

∣∣
E

)
. Since Ωn

∣∣
E

is a coherent sheaf on a
compact analytic set E, dimH0

(
E, Ωn

∣∣
E

)
is finite.

Lemma 2.3. Bergman kernel vanishing on the exceptional set K0(z, z) is inde-
pendent of the choice of the complete orthonormal basis of F0 and K0(z, z) is
invariant under biholomorphic maps.

Proof. Let {ωi} and {ω̃i} be two complete orthonormal bases of F0. In view
of Lemma 2.2, there exists α1, . . . , αk holomorphic n-forms on M where k =
dim(F/F0) such that both {α1, . . . , αk} ∪ {ωi} and {α1, . . . , αk} ∪ {ω̃i} form
complete orthonormal basis of F . Since

k∑
i=1

αi ∧ αi +
∑

ωi ∧ ωi = K(z, z) =
k∑

i=1

αi ∧ αi +
∑

ω̃i ∧ ω̃i,

we have
∑

ωi ∧ ωi =
∑

ω̃i ∧ ω̃i.
Recall that exceptional set E is the maximal compact analytic set in M . Since

E is invariant under biholomorphic maps, so is the space F0 of all L2-integrable
holomorphic n-forms on M vanishing on the exceptional set E. Hence K0(z, z)
is invariant under biholomorphic maps.

Definition 2.4. Let M be a resolution of a strongly pseudoconvex variety V of
dimn ≥ 2 in C

N with only irreducible isolated singularity at the origin. The
Bergman function BM on M is defined to be KM,0/KM .

Theorem 2.5. BM is a global function defined on M which is invariant under
biholomorphic maps. Moreover, the zero set of BM is precisely the exceptional
set of M .

Proof. Let Φ : M ′ −→ M be a biholomorphic map. Then

Φ∗(BM ) =
Φ∗KM,0

Φ∗KM
=

KM ′,0

KM ′
= BM ′ .

We first observe that there exists a holomorphic n-form which does not vanish
on the exceptional set of M . This can be seen as follows. Let π : M → V
be the blowing down map. Since V is a Stein space and Ωn

V , the sheaf of
germs of holomorphic n-forms on V , is coherent. There exists a holomorphic
n-form ω on V which does not vanish at the singularity set of V . Then π∗ω
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is a holomorphic n-form which does not vanish on the exceptional set of M .
In particular, KM does not vanish on the exceptional set of M . Clearly KM,0

vanishes along exceptional set. To finish the proof, we need to show that KM,0

does not vanish outside the exceptional set. For this purpose, given p ∈ M −E,
it suffices to produce a holomorphic n-form vanishing along E but not at p. Let
Ωn(−E) be the sheaf of germs of holomorphic n-forms on M vanishing along
E. Since Ωn(−E) is coherent and π is proper, π∗Ωn(−E) is a coherent sheaf on
V by Grauert’s direct image theorem. As V is a Stein variety, we can find ω
in Γ(V, π∗Ωn(−E)) which does not vanish at π(p). Then π∗ω is a holomorphic
n-form vanishing along the exceptional set E but not at p.

The same argument of the proof of Theorem 1 in [L-Y-Y] will prove the
following theorem.

Theorem 2.6. Let M be a strongly pseudoconvex manifold of dimension n ≥ 2
with exceptional set E. Let A be compact submanifold containing in E. Let π :
M1 → M be the blow up of M along A. Then we have KM1(z, z) = π∗KM (z, z)
and KM1,0(z, z) = π∗KM,0(z, z). Consequently BM1(z) = π∗BM (z).

Let πi : Mi −→ V , i = 1, 2, be two resolutions of singularities of V . By
Hironaka’s theorem [Hi], there exists a resolution π̃ : M̃ −→ V of singularities
of V such that M̃ can be obtained from Mi, i = 1, 2, by successive blowing up
along submanifolds in exceptional set. In view of Theorem 2.5 and Theorem 2.6,
the following definition is well defined.

Definition 2.7. Let V be a strongly pseudoconvex variety in C
N with only ir-

reducible isolated singularities. Let π : M → V be a resolution of singularities of
V . Define the Bergman function BV on V to be the push forward of the Bergman
function BM by the map π.

Theorem 2.8. Let V be a strongly pseudoconvex variety in C
N with only irre-

ducible isolated singularities. Then the Bergman function BV on V is invariant
under biholomorphic maps and BV vanishes precisely on the singular set of V .

Proof. Easy consequence of Theorem 2.5, and Theorem 2.6.

Theorem 2.9. Let V be a strongly pseudoconvex variety in C
N with only iso-

lated normal singularities of dimension n ≥ 2. Let FV be the set of all L2-
integrable holomorphic n-forms on V − S, where S is the singular part of V .
Let FV,0 = {ω ∈ FV : ω vanishes on S}. Let KV (z, z) and KV,0(z, z) be defined

in the usual manner (cf. Definition 2.1). Then BV =
KV (z, z)
KV,0(z, z)

and BV is a

biholomorphical invariant of V .
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Proof. Let π : M → V be a resolution of singularities of V . It is well known
(cf. [La], [Ya]) that a holomorphic n-form ω on a deleted neighborhood of the
singular set S is L2-integrable if and only if π∗ω is a holomorphic n-form on
a neighborhood of the exceptional set E in M . Thus π∗ : FV → FM is an
isomorphism which sends FV,0 onto FM,0. The theorem follows easily.

3. Continuous numerical invariant of strongly pseudoconvex CR
manifold

Let X be a strongly pseudoconvex CR manifold of real dimension 2n − 1.
It is well known [Bo] that X can be CR embedded into C

N if n ≥ 3. For our
subsequent discussion, we shall assume that X is of dimension 2n−1 in C

N . By
a theorem of Harvey and Lawson [Ha-La], X is a boundary of a variety V with
only isolated normal singularities.

Theorem 3.1. Let X1, X2 be two strongly pseudoconvex CR manifolds of di-
mension 2n − 1 which bound varieties V1, V2 respectively in C

N with only iso-
lated normal singularities. If Φ : X1 → X2 is a CR-isomorphism, then Φ can be
extended to a biholomorphic map from V1, to V2.

Proof. Let φ1, . . . , φN be the component functions of Φ. Then φi as CR holo-
morphic function on X can be extended in a one sided neighborhood of X1 in
V1. By Andreotti and Grauert [An-Gr, Théoréme 15], φi can be extended holo-
morphically to V1 − S1 where S1 is the singular set of V . Since S1 consists of
only isolated normal singularities, φi can be extended holomorphically to V1.
Clearly (φ1, . . . , φN )(V1) is a variety with boundary equal to X2. By uniqueness
of complex Plateau problem, we have (φ1, . . . , φN )(V1) = V2.

Let ψ1, . . . , ψN be the component functions of Ψ which is the inverse mapping
of Φ. The argument above shows that ψ1, . . . , ψN can be extended holomor-
phically to V2 and (ψ1, . . . , ψN )(V2) = V1. Since (φ1, . . . , φN ) ◦ (ψ1, . . . , ψN )
restrict to X1 is the identity map, it follows that (φ1, . . . , φN ) ◦ (ψ1, . . . , ψN ) is
the identity map on V1.

In view of the above Theorem 3.1, if X1 and X2 are two strongly pseudoconvex
CR manifolds which bound varieties V1 and V2 with non-isomorphic singularities,
then X1 and X2 are not CR equivalent. Therefore to study the CR equivalence
of two strongly pseudoconvex CR manifolds X1 and X2, it remains to consider
the case when X1 and X2 are lying on the same variety V . The purpose of this
section is to show that our global invariant Bergman function defined in section
2 can be used to study the CR equivalence problem of strongly pseudoconvex
CR manifolds lying on the same variety. As an example, we shall show explicitly
that how CR manifolds varies in the variety Ṽ := {(x, y, z) ∈ C

3 : f(x, y, z) =
xy − z2 = 0}. An explicit resolution π̃ : M̃ → Ṽ can be given in terms of
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coordinate charts and transition functions as follows:

Coordinate charts : W̃k = C
2 = {(uk, vk)}, k = 0, 1

Transition functions :
{

u1 = 1
v0

v1 = u0v
2
0

or
{

u0 = u2
1v1

v0 = 1
u1

Resolution map : π̃(uk, vk) = (uk+1
k vk

k , u1−k
k v2−k

k , ukvk) or

(x, y, z) = (u0, u0v
2
0 , u0v0) = (u2

1v1, v1, u1v1)

Exceptional set : E = π−1(0) = C1 = {u0 = 0} ∪ {v1 = 0}.
We consider V = {(x, y, z) ∈ C

3 : xy = z2 and η(x, y, z) < ε0, where η is a
strictly plurisubharmonic function}. Then M = π̃−1(V ) is given by the coordi-
nate charts:

Wk = {(uk, vk) : η(uk+1
k vk

k , u1−k
k v2−k

k , ukvk) < ε0}, k = 0, 1.

Observe that under π : M → V , W0\C1 is mapped biholomorphically onto
V \y-axis. In particular M\W0 is of measure zero in the obvious sense. Hence,
we may compute integrals on M using the (u0, v0) coordinate on the chart W0

alone.
In what follows, we shall assume that η is a Reinhardt function such that W0 is

a complete Reinhardt domain, i.e. whenever (u0, v0) ∈ W0, then (τ1u0, τ2, v0) ∈
W0 for all complex numbers τj with |τj | ≤ 1. The following proposition can be
found in Proposition 8 of [L-Y-Y].

Proposition 3.2. In the above notations, let φαβ = uα
0 vβ

0 du0 ∧ dv0, α, β =
0, 1, 2, . . . . Assume that W0 is a complete Reinhardt domain. Then{

φαβ

‖φαβ‖M
: α ≥ 1

2
β

}
is a complete orthonormal base of F . In other words, a complete orthonormal
base of F is of the form:


1
‖φ00‖M

du0 ∧ dv0,
u0

‖φ10‖M
du0 ∧ dv0,

u0v0
‖φ11‖M

du0 ∧ dv0,

u0v2
0

‖φ12‖M
du0 ∧ dv0,

u2
0

‖φ20‖M
du0 ∧ dv0,

u2
0v0

‖φ21‖M
du0 ∧ dv0,

u2
0v2

0
‖φ22‖M

du0 ∧ dv0,

u2
0v3

0
‖φ23‖M

du0 ∧ dv0,
u2

0v4
0

‖φ24‖M
du0 ∧ dv0,

u3
0

‖φ30‖M
du0 ∧ dv0,

u3
0v0

‖φ31‖M
du0 ∧ dv0,

u3
0v2

0
‖φ32‖M

du0 ∧ dv0,
u3

0v3
0

‖φ33‖M
du0 ∧ dv0,

u3
0v4

0
‖φ34‖M

du0 ∧ dv0,
u3

0v5
0

‖φ35‖M
du0 ∧ dv0,

u3
0v6

0
‖φ36‖M

du0 ∧ dv0, . . .




.
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Observe that except for
1

‖φ00‖du0 ∧ dv0, all the other holomorphic 2-forms

above are vanishing at the exceptional set. Therefore the Bergman kernel van-
ishing on the exceptional set KM,0 and Bergman kernel are given respectively
by:

KM,0((u0, v0), (u0, v0)) = ΘMdu0 ∧ dv0 ∧ du0 ∧ dv0

KM ((u0, v0), (u0, v0)) =
(

1
‖φ00‖2

M

+ ΘM

)
du0 ∧ dv0 ∧ du0 ∧ dv0

where

ΘM =
|u0|2

‖φ10‖2
M

+
|u0|2|v0|2
‖φ11‖2

M

+
|u0|2|v0|4
‖φ12‖2

M

+
|u0|4

‖φ20‖2
M

+
|u0|4|v0|2
‖φ21‖2

M

+
|u0|4|v0|4
‖φ22‖2

M

+
|u0|4|v0|6
‖φ23‖2

M

+
|u0|4|v0|8
‖φ24‖2

M

+
|u0|6

‖φ30‖2
M

+
|u0|6|v0|2
‖φ31‖2

M

+
|u0|6|v0|4
‖φ32‖2

M

+
|u0|6|v0|6
‖φ33‖2

M

+
|u0|6|v0|8
‖φ34‖2

M

+
|u0|6|v0|10
‖φ35‖2

M

+
|u0|6|v0|12
‖φ36‖2

M

+ · · ·(3.1)

Theorem 3.3. Assume that W0 is a complete Reinhardt domain. Then the
Bergman function for the strongly pseudoconvex manifold M is given by

BM ((u0, v0), (u0, v0)) = ‖φ00‖2
MΘM

[
1 − ‖φ00‖2

MΘM + (‖φ00‖2
MΘM )2

−(‖φ00‖2
MΘM )3 + (‖φ00‖2

MΘM )4 − · · ·
]
.(3.2)

The Bergman function for the strongly pseudoconvex variety V is given by

BV ((x, y, z), (x, y, z)) = ‖φ00‖2
MΘV

[
1 − ‖φ00‖2

MΘV + (‖φ00‖2
MΘV )2

−(‖φ00‖2
MΘV )3 + (‖φ00‖2

MΘV )4 − · · ·
]

(3.3)

where

ΘV =
|x|2

‖φ10‖2
M

+
|z|2

‖φ11‖2
M

+
|y|2

‖φ12‖2
M

+
|x|4

‖φ20‖2
M

+
|x|2|z|2
‖φ21‖2

M

+
|z|4

‖φ22‖2
M

+
|y|2|z|2
‖φ23‖2

M

+
|y|4

‖φ24‖2
M

+
|x|6

‖φ30‖2
M

+
|x|5|y|
‖φ31‖2

M

+
|x|4|y|2
‖φ32‖2

M

+
|z|6

‖φ33‖2
M

+
|x|2|y|4
‖φ34‖2

M

+
|x| |y|5
‖φ35‖2

M

+
|y|6

‖φ36‖2
M

+ · · ·(3.4)

Proof: BM ((u0, v0), (u0, v0 )) =
KM,0

KM
=

ΘM
1

‖φ00‖2
M

+ ΘM

=
‖φ00‖2

MΘM

1 + ‖φ00‖2
MΘM

.
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Hence (3.2) follows immediately. Recall that the resolution map is given
by (x, y, z) = (u,u0v

2
0 , u0v0). Then (3.4) and (3.3) follow from (3.1) and (3.2)

respectively. Q.E.D.

Lemma 3.4. Any biholomorphism Ψ = (ψ1, ψ2, ψ3) : V → V has the following
representation


 ψ1(x, y, z)

ψ2(x, y, z)
ψ3(x, y, z)


=


 a11 a12 a13

a21 a22 a23

a31 a32 a33




 x

y
z


 + higher order terms in x, y and z

where the constants aij satisfy the following equations

a11a21 − a2
31 = 0(3.5)

a12a22 − a2
32 = 0(3.6)

a13a23 − a2
33 + a11a22 + a12a21 − 2a31a32 = 0(3.7)

a11a23 + a13a21 − 2a31a33 = 0(3.8)
a12a23 + a13a22 − 2a32a33 = 0(3.9)
det(aij) �= 0.(3.10)

Proof. Since Ψ : V → V , we have ψ1(x, y, z)ψ2(x, y, z) − ψ2
3(x, y, z) = 0. By

looking at the quadratic part of this equation, we obtain

(a11 x + a12 y + a13 z)(a21 x + a22 y + a23 z) − (a31 x + a32 y + a33 z)2 = 0

which implies

(a11a21 − a2
31)x

2 + (a11a22 − a2
32)y

2 + (a13a23 − a2
33)z

2

+(a11a22 + a12a21 − 2a31a32)xy + (a11a23 + a13a21 − 2a31a33)xz

+(a12a23 + a13a22 − 2a32a33)yz = 0.(3.11)

Since z2 = xy, (3.5)-(3.9) follows from (3.11). (3.10) is a consequence of the fact
that Ψ is a biholomorphism.

Proposition 3.5. Let Vi = {(x, y, z) ∈ C
3 : xy = z2 and ηi(x, y, z) < ε0,

where ηi is a strictly plurisubharmonic Reinhardt function} for i = 1, 2. Let
Mi = π̃−1(Vi), i = 1, 2. Suppose that Ψ : V1 → V2 is a biholomorphic map given
by Ψ(x, y, z) = (a11x + a12y + a13z, a21x + a22y + a23z, a31x + a32y + a33z)+
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higher order terms. Then

‖φ00‖2
M2

‖φ10‖2
M2

|a11|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a31|2 +
‖φ00‖2

M2

‖φ12‖2
M2

|a21|2 =
‖φ00‖2

M1

‖φ10‖2
M1

(3.12)

‖φ00‖2
M2

‖φ10‖2
M2

|a12|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a32|2 +
‖φ00‖2

M2

‖φ12‖2
M2

|a22|2 =
‖φ00‖2

M1

‖φ12‖2
M1

(3.13)

‖φ00‖2
M2

‖φ10‖2
M2

|a13|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a33|2 +
‖φ00‖2

M2

‖φ12‖2
M2

|a23|2 =
‖φ00‖2

M1

‖φ11‖2
M1

(3.14)

‖φ00‖2
M2

‖φ10‖2
M2

a11a12 +
‖φ00‖2

M2

‖φ11‖2
M2

a31a32 +
‖φ00‖2

M2

‖φ12‖2
M2

a21a22 = 0(3.15)

‖φ00‖2
M2

‖φ10‖2
M2

a11a13 +
‖φ00‖2

M2

‖φ11‖2
M2

a31a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a21a23 = 0(3.16)

‖φ00‖2
M2

‖φ10‖2
M2

a12a13 +
‖φ00‖2

M2

‖φ11‖2
M2

a32a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a22a23 = 0(3.17)

Proof. BV1((x, y, z), (x, y, z )) = ‖φ00‖2
M1

ΘV1 − ‖φ00‖4
M1

Θ2
V1

+ ‖φ00‖6
M1

Θ3
V1

. . .

=
‖φ00‖2

M1

‖φ10‖2
M1

|x|2 +
‖φ00‖2

M1
|z|2

‖φ11‖3
M1

+
‖φ00‖2

M1

‖Φ12‖2
M1

|y|2 + higher order term.

In view of Theorem 2.8, we have

BV1((x, y, z)), (x, y, z )) = BV2(Ψ(x, y, z),Ψ(x, y, z) )



INVARIANT FOR STRONGLY PSEUDOCONVEX VARIETIES 819

which implies

‖φ00‖2
M1

|x|2
‖φ10‖2

M1

+
‖φ00‖2

M1
|z|2

‖φ11‖2
M1

+
‖φ00‖2

M1
|y|2

‖φ12‖2
M1

=
‖φ00‖2

M2

‖φ10‖2
M2

|a11x + a12y + a13z|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a31x + a32y + a33z|2

+
‖φ00‖2

M2

‖φ12‖2
M2

|a21x + a22y + a23z|2

=
(‖φ00‖2

M2

‖φ10‖2
M2

|a11|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a31|2 +
‖φ00‖2

M2

‖φ12‖2
M2

|a21|2
)
|x|2

+
(‖φ00‖2

M2

‖φ10‖2
M2

|a12|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a32|2 +
‖φ00‖2

M2

‖φ12‖2
M2

|a22|2
)
|y|2

+
(‖φ00‖2

M2

‖φ10‖2
M2

|a13|2 +
‖φ00‖2

M2

‖φ11‖2
M2

|a33|2 +
‖φ00‖2

M2

‖φ12‖2
M2

|a23|2
)
|z|2

+
(‖φ00‖2

M2

‖φ10‖2
M2

a11a12 +
‖φ00‖2

M2

‖φ11‖2
M2

a31a32 +
‖φ00‖2

M2

‖φ12‖2
M2

a21a22

)
xy

+
(‖φ00‖2

M2

‖φ10‖2
M2

a11a12 +
‖φ00‖2

M2

‖φ11‖2
M2

a31a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a21a22

)
xy

+
(‖φ00‖2

M2

‖φ10‖2
M2

a11a13 +
‖φ00‖2

M2

‖φ11‖2
M2

a31a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a21a23

)
xz

+
(‖φ00‖2

M2

‖φ10‖2
M2

a11a13 +
‖φ00‖2

M2

‖φ11‖2
M2

a31a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a21a23

)
xz

+
(‖φ00‖2

M2

‖φ10‖2
M2

a12a13 +
‖φ00‖2

M2

‖φ11‖2
M2

a32a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a22a23

)
yz

+
(‖φ00‖2

M2

‖φ10‖2
M2

a12a13 +
‖φ00‖2

M2

‖φ11‖2
M2

a32a33 +
‖φ00‖2

M2

‖φ12‖2
M2

a22a23

)
yz

(3.12)-(3.17) follows immediately.

The following theorem gives a continuous numerical invariant for strongly
pseudoconvex CR manifolds lying in Ṽ = {(x, y, z) ∈ C

3 : xy = z2}.
Theorem 3.6. Let V = {(x, y, z) ∈ C

3 : xy = z2 and η(x, y, z) < ε0 where
η is a strictly plurisubharmonic Reinhardt function} such that X = ∂V is a
smooth CR manifold. Let M = π̃−1(V ). With the notation in Proposition 3.2,

νX :=
‖φ11‖2

M

‖φ10‖M‖φ12‖M
is a CR invariant of X in V , i.e. if X1 and X2 are two

such strongly pseudoconvex CR manifolds in V which are CR equivalent, then
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‖Φ11‖2
M1

‖φ10‖M1‖φ12‖M1

=
‖φ11‖2

M2

‖φ10‖M2‖φ12‖M2

, where M1 and M2 are strongly pseudo-

convex CR manifolds which have X1 and X2 as boundaries respectively.

Proof. Let Vi = {(x, y, z) ∈ C
3 : xy = z2 and ηi(x, y, z) < ε0, where ηi is a

strictly plurisubharmonic Reinhardt function} and ∂Vi = Xi, i = 1, 2. If Xi is
CR equivalent to X2, then V1 is biholomorphic equivalent to V2 by Theorem 3.1.
Theorem 3.6 follows from the following Theorem 3.7.

Theorem 3.7. Let Vi = {(x, y, z) ∈ C
3 : xy = z2 and ηi(x, y, z) < ε0, where ηi

is a strictly plurisubharmonic Reinhardt function} and Mi = π̃−1(Vi) is the res-
olution of singularity of Vi, i = 1, 2. If there exists a biholomorphic map Ψ from

V1 to V2 and
‖φ11‖2

M2

‖φ10‖M2‖φ12‖M2

�= 1
2
, then

‖φ11‖2
M1

‖φ10‖M1‖φ12‖M1

=
‖φ11‖2

M2

‖φ10‖M2‖φ12‖M2

.

Proof. The same argument as in Lemma 3.4 will show that Ψ can be written
as (ψ1, ψ2, ψ3) = (a11x + a12y + a13z, a21x + a22y + a23z, a31x + a32y + a33z)+
higher order terms such that (3.5)-(3.10) hold. By Proposition 3.5, we know
that (3.12)-(3.17) also hold. We have three cases to consider: Case 1, a31 �= 0
and a32 �= 0; Case 2, a31 = 0; Case 3, a32 = 0.

Case 1: a31 �= 0 and a32 �= 0. In view of (3.5) and (3.6), we have a11 �= 0, a21 �=
0, a12 �= 0 and a22 �= 0 in this case.

(3.5) =⇒ a11

a31
=

a31

a21
:= r1 �= 0

=⇒ a11 = r1a31, a21 =
1
r1

a31(3.18)

(3.6) =⇒ a22

a32
=

a32

a12
:= r2 �= 0

=⇒ a22 = r2a32, a12 =
1
r2

a32(3.19)

(3.8) and (3.18) =⇒ r1a23 +
1
r1

a13 − 2a33 = 0(3.20)

(3.9) and (3.19) =⇒ 1
r2

a23 + r2a13 − 2a33 = 0(3.21)

(3.20) and (3.21) =⇒ (
r1 − 1

r2

)
a23 +

( 1
r1

− r2)a13 = 0.(3.22)

There are two cases to be considered.
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Case 1 (a): r1 − 1
r2

= 0, i.e. r2 =
1
r1

(3.19) =⇒ a22 =
1
r1

a32, a12 = r1a32(3.23)

(3.20) =⇒ a33 =
1
2
r1a23 +

1
2r1

a13(3.24)

(3.7), (3.18) and (3.23) =⇒ a13a23 − a2
33 = 0(3.25)

(3.25) and (3.24) =⇒ a13 = r2
1a23(3.26)

(3.24) and (3.26) =⇒ a33 = r1a23 =
1
r1

a13(3.27)

(3.15), (3.18) and (3.23) imply

‖φ00‖2
M2

‖φ10‖2
M2

|r1|2 +
‖φ00‖2

M2

‖φ11‖2
M2

+
‖φ00‖2

M2

‖φ12‖2
M2

1
|r1|2 = 0,(3.28)

which is a contradiction because the left hand side of (3.28) is positive. Hence
Case 1 (a) cannot happen.

Case 1 (b): r1 − 1
r2

�= 0

(3.22) =⇒ a23 =
r2

r1
a13(3.29)

(3.20) and (3.29) =⇒ a33 =
(

r2

2
+

1
2r1

)
a13.(3.30)

In view of (3.29) and (3.30), we have a13 �= 0 because det(aij) �= 0. (3.15), (3.18)
and (3.19) imply

‖φ00‖2
M2

‖φ10‖2
M2

r1

r2
+

‖φ00‖2
M2

‖φ11‖2
M2

+
‖φ00‖2

M2

‖φ12‖2
M2

r2

r1
= 0(3.31)

(3.16) and (3.18), (3.29) and (3.30) imply

‖φ00‖2
M2

‖φ10‖2
M2

r1 +
‖φ00‖2

M2

‖φ11‖2
M2

(
r2

2
+

1
2r1

)
+

‖φ00‖2
M2

‖φ12‖2
M2

r2

|r1|2 = 0(3.32)

(3.17), (3.19), (3.29) and (3.30) imply

‖φ00‖2
M2

‖φ10‖2
M2

1
r2

+
‖φ00‖2

M2

‖φ11‖2
M2

(
r2

2
+

1
2r1

)
+

‖φ00‖2
M2

‖φ12‖2
M2

|r2|2
r1

= 0(3.33)
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Clearly (3.32), (3.33) and (3.34) imply

det




r1
r2

1 r2
r1

r1
r2
2 + 1

2r1

r2
|r1|2

1
r2

r2
2 + 1

2r1

|r2|2
r1


 = 0

=⇒ (r1r2 + 1)(r1r2 + r2r2)(r1r2 − 1) + 2r1r2(1 − r1r2)(1 + r1r2) = 0.

Since r1 − 1
r2

�= 0, i.e. r1r2 − 1 �= 0, we have

(r1r2 + 1)(r1r2 + r1r2) − 2r1r2(1 + r1r2) = 0
=⇒ (r1r2 − r1r2)(1 − r1r2) = 0.

Since r1r2 − 1 �= 0, we have

r1r2 = r1r2(3.34)

Let α = r1
r2

. Then α = α, r1 = αr2, r1 = αr2. (3.31), (3.32) and (3.33) can be
rewritten as

α2 +
‖φ10‖2

M2

‖φ11‖2
M2

α +
‖φ10‖2

M2

‖φ12‖2
M2

= 0(3.35)

α3|r2|2
‖φ10‖2

M2

+
1

‖φ11‖2
M2

(
α2|r2|2

2
+

α

2

)
+

1
‖φ12‖2

M2

= 0(3.36)

α

‖φ10‖2
M2

+
1

‖φ11‖2
M2

(
α|r2|2

2
+

1
2

)
+

|r2|2
‖φ12‖2

M2

= 0(3.37)

(3.36) − α(3.37) ⇒
α2(α|r2|2 − 1)

‖φ10‖2
M2

+
1 − α|r2|2
‖φ12‖2

M2

= 0(3.38)

i.e. 1 − α|r2|2 = 0 or α2 =
‖φ10‖2

M2

‖φ12‖2
M2

.

If α2 =
‖φ10‖2

M2

‖φ12‖2
M2

, then (3.35) implies α =
−2‖φ11‖2

M2

‖φ12‖2
M2

. It follows easily that

‖φ11‖2
M2

‖φ12‖M2‖φ10‖M2

=
1
2
, a contradiction to our hypothesis. Hence we conclude

that

α|r2|2 = 1.(3.39)

Putting (3.39) in (3.37), we get

1
|r2|2‖φ10‖2

M2

+
1

‖φ11‖2
M2

+
|r2|2

‖φ12‖2
M2

= 0
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which is absurd since the left hand side is positive. Thus Case 1 (b) cannot
occur also.

Case 2: a31 = 0. By (3.5), we have either a11 = 0 or a21 = 0.

Case 2 (a): a31 = 0 and a11 = 0. Since det(aij) �= 0, we have a21 �= 0.

(3.15) =⇒ a21a22 = 0 =⇒ a22 = 0(3.40)
(3.8) =⇒ a13a21 = 0 =⇒ a13 = 0(3.41)

(3.6) and (3.40) =⇒ a32 = 0.(3.42)

Since det(aij) �= 0 and a11 = 0 = a13, we have a12 �= 0.

(3.9), (3.40) and (3.42) =⇒ a12a23 = 0 =⇒ a23 = 0(3.43)
(3.7) and (3.43) =⇒ −a2

33 + a12a21 = 0(3.44)

(3.12) =⇒ |a21|2 =
‖φ12‖2

M2

‖φ00‖2
M2

· ‖φ00‖2
M1

‖φ10‖2
M1

(3.45)

(3.13) =⇒ |a12|2 =
‖φ10‖2

M2

‖φ00‖2
M2

· ‖φ00‖2
M1

‖φ12‖2
M1

(3.46)

(3.14) =⇒ |a33|2 =
‖φ11‖2

M2

‖φ00‖2
M2

· ‖φ00‖2
M1

‖φ11‖2
M1

(3.47)

(3.44), (3.45), (3.46) and (3.47) imply

‖φ11‖2
M2

‖φ12‖M2‖φ10‖M2

=
‖φ11‖2

M1

‖φ10‖M1‖φ12‖M1

.(3.48)

Case 2 (b): a31 = 0 and a21 = 0. Since det(aij) �= 0, we have a11 �= 0.

(3.15) =⇒ a11a12 = 0 =⇒ a12 = 0(3.49)
(3.8) =⇒ a11a23 = 0 =⇒ a23 = 0(3.50)

(3.6) and (3.48) =⇒ a32 = 0.(3.51)
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Since a32 = 0 = a12 and det(aij) �= 0, we have a22 �= 0.

(3.9), (3.51) and (3.49) =⇒ a13a22 = 0 =⇒ a13 = 0(3.52)
(3.7), (3.52) and (3.49) =⇒ −a2

33 + a11a22 = 0(3.53)

(3.12) =⇒ |a11|2 =
‖φ10‖2

M2

‖φ00‖2
M2

· ‖φ00‖2
M1

‖φ10‖2
M1

(3.54)

(3.13) =⇒ |a22|2 =
‖φ12‖2

M2

‖φ00‖2
M2

· ‖φ00‖2
M1

‖φ12‖2
M1

(3.55)

(3.14) =⇒ |a33|2 =
‖φ11‖2

M2

‖φ00‖2
M2

· ‖φ00‖2
M1

‖φ11‖2
M1

(3.56)

(3.53), (3.54), (3.55) and (3.56) imply (3.48).

Case 3: a32 = 0. By (3.6), we have either a12 = 0 or a22 = 0.

Case 3 (a): a32 = 0 and a12 = 0. By the same argument as above, we can
show that all aij are zero except a11, a22 and a33. Moreover a11, a22, a33 satisfy
(3.53), (3.54), (3.55) and (3.56) so that (3.48) holds.

Case 3 (b): a32 = 0 and a22 = 0. By the same argument as above, we can
show that all aij are zero except a12, a21 and a33. Moreover, a12, a21, a33 satisfy
(3.44), (3.45), (3.46) and (3.47) so that (3.48) holds.

Corollary 3.8. Let Vi = {(x, y, z) ∈ C
3 : xy = z2 and ηi(x, y, z) < ε0, where ηi

is a strictly plurisubharmonic Reinhardt function}. If the CR invariant νX2 in
Theorem 3.6 is not equal to 0.5, then the biholomorphic map Ψ = (ψ1, ψ2, ψ3) :
V1 → V2 must be one of the following forms:

(1) (ψ1, ψ2, ψ3) = (a11x, a22y, a33z)+ higher order terms and a2
33 = a11a22.

(2) (ψ1, ψ2, ψ3) = (a12y, a21x, a33z)+ higher order terms and a2
33 = a12a21.

Proof: It is clear from the proof of Theorem 3.7.

4. Explicit computation of new CR invariant

Let a be positive real number. We shall follow the notations in our previous
section. Let Va = {(x, y, z) ∈ C

3 : xy = z2, a|x|2 + |y|2 + |z|2 < ε0}. Recall that
(x, y, z) = (u0, u0v

2
0 , u0v0). Then Ma be the resolution of Va with coordinate

chart W0 = {(u0, v0) : a|u0|2 + |u0|2|v0|4 + |u0|2|v0|2 < ε0}. Next write u0 = reiθ
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and v0 = ρeiφ. Then

‖φαβ‖2
Ma

=
∫

Ma

φαβ ∧ φαβ =
∫

W0

|uα
0 |2|vβ

0 |2du0 ∧ dv0 ∧ d u0 ∧ d v0

= 2π

∫ 2π

0

∫∫
D

r2α+1ρ2β+1drdρ dθ

where D = {(r, ρ) : r ≥ 0, ρ ≥ 0, ar2 + r2ρ4 + r2ρ2 < ε0}. In particular

‖φ1β‖2
Ma

= 2π

∫ 2π

0

∫ ∞

0

∫ √
ε0√

a+ρ2+ρ4

0

r3ρ2β+1drdρdθ

= 2π

∫ 2π

0

∫ ∞

0

ε20ρ
2β+1

(a + ρ2 + ρ4)2
dρdθ.

Therefore the new CR invariant for the CR manifold Xa := ∂Va is

νa :=
‖φ11‖2

Ma

‖φ10‖Ma‖φ12‖Ma

=

∫ 2π

0

∫ ∞
0

ρ3

(a+ρ2+ρ4)2 dρdθ(∫ 2π

0

∫ ∞
0

ρ
(a+ρ2+ρ4)2 dρdθ

) 1
2

(∫ 2π

0

∫ ∞
0

ρ5

(a+ρ2+ρ4)2 dρdθ
) 1

2
.

Case 1: a =
1
4

I1 =
∫ 2π

0

∫ ∞

0

ρ

(ρ4 + ρ2 + 1
4 )2

dρdθ = π

∫ ∞

0

1
(x + 1

2 )4
dx =

8
3
π

I2 =
∫ 2π

0

∫ ∞

0

ρ3

(ρ4 + ρ2 + 1
4 )2

dρdθ = π

∫ ∞

0

x

(x + 1
2 )4

dx =
2
3
π

I3 =
∫ 2π

0

∫ ∞

0

ρ5

(ρ4 + ρ2 + 1
4 )2

dρdθ = π

∫ ∞

0

x2

(x + 1
2 )4

dx =
2
3
π

ν 1
4

=
I2√
I1I3

=
2
3π√

8
3π · 2

3π
=

1
2
.
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Case 2: a >
1
4

I1 =
∫ 2π

0

∫ ∞

0

ρ

(ρ4 + ρ2 + a)2
dρdθ = π

∫ ∞

0

dx

(x2 + x + a)2

= π

[
2x + 1

(4a − 1)(x2 + x + a)
+

4
(4a − 1)

3
2

arctan
(

x + 1√
4a − 1

)]∣∣∣∣∣
∞

0

= π

[
π

(4a − 1)
3
2
− 1

a(4a − 1)
− 4

(4a − 1)
3
2

arctan
(

1√
4a − 1

)]

I2 =
∫ 2π

0

∫ ∞

0

ρ3

(ρ4 + ρ2 + a)2
dρdθ = π

∫ ∞

0

xdx

(x2 + x + a)2

= π

[
− 2a + x

(4a − 1)(x2 + x + a)
− 2

(4a − 1)
3
2

arctan
(

2x + 1√
4a − 1

)]∣∣∣∣∞
0

= π

[
2

4a − 1
− π

(4a − 1)
3
2

+
2

(4a − 1)
3
2

arctan
(

1√
4a − 1

)]

I3 =
∫ 2π

0

∫ ∞

0

ρ5

(ρ4 + ρ2 + a)2
dρdθ = π

∫ ∞

0

x2dx

(x2 + x + a)2

= π

[
(1 − 2a)x + a

(4a − 1)(x2 + x + a)
+

4a

(4a − 1)
3
2

arctan
(

2x + 1√
4a − 1

)]∣∣∣∣∞
0

= π

[
2aπ

(4a − 1)
3
2
− 1

4a − 1
− 4a

(4a − 1)
3
2

arctan
(

1√
4a − 1

)]
.

If a =
1
2
, then I1 = π(π − 2), I2 = π

(
2 − π

2

)
and I3 = π

(
π

2
− 1

)
. We have

ν 1
2

=
2 − π

2√
(π − 2)

(
π
2 − 1

) =
√

2(4 − π)
2(π − 2)

� 0.5317007373 > 0.5.

Similarly if a = 1 >
1
4
, then I1 = π

6

(
4π

3
√

3
− 1

)
, I2 = π

3

(
1 − π

3
√

3

)
, I3 = I1

and ν1 � 0.55753024284785 > 0.5.
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Case 3: a <
1
4

I1 =
∫ 2π

0

∫ ∞

0

ρ

(ρ4 + ρ2 + a)
dρdθ = π

∫ ∞

0

dx

(x2 + x + a)2

= π

[
1

a(1 − 4a)
+

2
(1 − 4a)

3
2

ln
1 −√

1 − 4a

1 +
√

1 − 4a

]

I2 =
∫ 2π

0

∫ ∞

0

ρ3

(ρ4 + ρ2 + a)2
dρdθ = π

∫ ∞

0

x

(x2 + x + a)2
dx

= π

[
− 2

1 − 4a
− 1

(1 − 4a)
3
2

ln
1 −√

1 − 4a

1 +
√

1 − 4a

]

I3 =
∫ 2π

0

∫ ∞

0

ρ5

(ρ4 + ρ2 + a)2
dρdθ = π

∫ ∞

0

x2

(x2 + x + a)2
dx

=
π

2

[
1

1 − 4a
+

2a

(1 − 4a)
3
2

ln
1 −√

1 − 4a

1 +
√

1 − 4a

]
.

If a =
3
16

<
1
4
, then I1 = π

(64
3

− 16 ln 3
)
, I2 = π(8 ln 3 − 8) and I3 =

π(4 − 3 ln 3). Hence

ν 3
16

=
8 ln 3 − 8√

( 64
3 − 16 ln 3)(4 − 3 ln 3)

=
2
√

3(ln 3 − 1)
4 − 3 ln 3

� 0.4851191037356 < 0.5.

Similarly one has the following results:

a =
2
9

<
1
4
, ν 2

9
� 0.4940697511735

a =
15
64

<
1
4
, ν 15

64
� 0.49674784168264

a =
6
25

<
1
4
, ν 6

25
� 0.49794879674687.

5. Automorphism group of compact CR manifold

In this section, we shall show that our Bergman function can be used to
determine the automorphism group of a compact CR manifold.

Theorem 5.1. Let X = {(x, y, z) ∈ C
3 : xy = z2, η(x, y.z) < ε0} where η is a

strictly plurisubharmonic Reinhardt function and νX be the CR invariant defined
in the previous section, where X = ∂V . Then the automorphism group of X for
νX �= 1

2 consists of biholomorphic map Ψ = (ψ1, ψ2, ψ3) of the following forms:

(1) (ψ1, ψ2, ψ3) = (eiθ1x, eiθ2y, ei
θ1+θ2

2 z)
(2) (ψ1, ψ2, ψ3) = (eiθ1y, eiθ2x, ei

θ1+θ2
2 z).
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Proof. In view of Corollary 3.8, we know that Ψ = (ψ1, ψ2, ψ3) must be one of
the following forms:

(1) (ψ1, ψ2, ψ3) = (a11x, a22y, a33z)+ higher order terms and a2
33 = a11a22

(2) (ψ1, ψ2, ψ3) = (a12y, a21x, a33z)+ higher order terms and a2
33 = a12a21.

Recall that the Bergman function BV = ‖φ00‖2
MΘV − ‖φ00‖4

MΘ2
V + · · · . where

M is the minimal resolution of V as described in section 3, and ΘV is given by
(3.4). In view of Theorem 2.8, we have

BV ((x, y, z), (x, y, z)) = BV (Ψ(x, y, z), Ψ(x, y, z)).(5.1)

Putting (1) and (2) in (5.1) and comparing the 3rd order terms in (5.1), we see
easily the 2nd order terms of (ψ1, ψ2, ψ3) are zero. Repeating this argument,
we see that (ψ1, ψ2, ψ3) has only linear terms. Using (5.1) again, we obtain
|a11| = |a22| = |a12| = |a21| = 1.

In Corollary 3.8, we need to assume that our invariant νX is not 1
2 . If we

consider only automorphism instead of biholomorphism, we can deal with the
case νX = 1

2 .

Theorem 5.2. Let V = {(x, y, z) ∈ C
3 : xy = z2 and η(x, y, z) < ε0, where η is

a strictly plurisubharmonic Reinhardt function}. Suppose that νX = 1
2 where νX

is the CR invariant of X = ∂V defined in Theorem 3.6. Then the automorphism
ψ = (ψ1, ψ2, ψ3) : X → X must be one of the following forms:

(1) (ψ1, ψ2, ψ3) = (eiθ1x, eiθ2y, ei
θ1+θ2

2 z)
(2) (ψ1, ψ2, ψ3) = (eiθ1y, eiθ2x, ei

θ1+θ2
2 z)

(3)


 ψ1

ψ2

ψ3


 =


 αre−iθa31

1
r e−iθa32 a13

1
αr eiθa31 reiθa32

1
αe2iθa13

a31 a32
αr2+1
2αr eiθa13





 x

y
z


 +

higher order terms

where α =
−2‖φ11‖2

M

‖φ12‖2
M

a31 =
r

|α|r2 + 1
eiθ31

a32 =
r‖φ10‖M

‖φ12‖M + r2‖φ10‖M
eiθ32

a13 =
2r‖φ10‖M

r2‖φ10‖M + ‖φ12‖M
ei( π

2 +
θ31
2 +

θ32
2 −θ).

Proof. The proof is the same as the proof of Theorem 3.7 except in case 1(b)
where we did use the assumption νX2 �= 1

2 . Therefore to prove Theorem 5.2, it
is sufficient to prove that statement (3) above occurs in case 1(b) of the proof
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of Theorem 3.7 under the assumption

νX =
‖φ11‖2

M

‖φ10‖M‖φ12‖M
=

1
2
.(5.2)

Recall that in case 1(b) of the proof of Theorem 3.7, we have

a11 = r1a31, a21 = 1
r1

a31(5.3)

a22 = r2a32, a12 = 1
r2

a32(5.4)

a23 =
r2

r1
a13, a33 =

(
r2
2 + 1

2r1

)
a13(5.5)

α =
r1

r̄2
=

−2‖φ11‖2
M

‖φ12‖2
M

=
−‖φ10‖M

‖φ12‖M
.(5.6)

Let

r2 = reiθ.(5.7)

Then

r1 = αre−iθ =
−‖φ10‖M

‖φ12‖M
reiθ(5.8)

and

|r1| =
‖φ10‖M

‖φ12‖M
r.(5.9)

Putting (3.29), (3.30), (3.18) and (3.19) into (3.7), we get

−a2
13

(
r2

2
− 1

2r1

)2

+ a31a32

(
r1r2 +

1
r1r2

− 2
)

= 0.(5.10)

Putting (3.18) into (3.12), we get

|a31|2‖φ00‖2
M

[ |r1|2
‖φ10‖2

M

+
1

‖φ11‖2
M

+
1

|r1|2‖φ12‖2
M

]
=

‖φ00‖2
M

‖φ10‖2
M

(5.11)

(5.2) and (5.11) imply

|a31| =
|r1| ‖φ12‖M

|r1|2‖φ12‖M + ‖φ10‖M
=

r‖φ10‖M

|α|r2‖φ10‖M + ‖φ00‖M
=

r

|α|r2 + 1
.(5.12)

Putting (3.19) into (3.13), we get

|a32| =
|r2| ‖φ10‖M

‖φ12‖M + |r2|2‖φ10‖M
=

r‖φ10‖M

‖φ12‖M + |r2|‖φ10‖M
.(5.13)

Putting (3.29) and (3.30) into (3.14), we get

|a13|2 =
2|r1|2‖φ10‖M‖φ12‖M

|r1|2‖φ12‖2
M + 1

2 (r1r2 + 1)2‖φ12‖M‖φ10‖M + |r2|2‖φ10‖2
M

=
4r2‖φ10‖2

M

(r2‖φ10‖M + ‖φ12‖M )2
.(5.14)
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This implies

|a13| =
2r2‖φ10‖2

M

r2‖φ10‖M + ‖φ12‖M
(5.15)

(5.9) implies

a2
13 = a31a32

4r1

r2
.(5.16)

Putting (5.12), (5.13) and (5.14) into (5.16), we get

4r2‖φ10‖2
M

(r2‖φ10‖M + ‖φ12‖M )2
e2iθ13 =

r

|α|r2 + 1
r‖φ10‖M

‖φ12‖M + r2‖φ10‖M
ei(θ31+θ32)4

αre−iθ

reiθ
.

It follows that

e2iθ13 = e−2iθ+iπ+i(θ31+θ32).

Hence

θ13 =
π

2
+

θ31

2
+

θ32

2
− θ(5.17)

Corollary 5.3. Let V = {(x, y, z) ∈ C
3 : xy = z2 and η(x, y, z) < ε0, where η is

a strictly plurisubharmonic Reinhardt function}. Suppose that νX = 1
2 where νX

is the CR invariant of X = ∂V defined in Theorem 3.6. If case (3) of Theorem
5.2 occurs, then the CR automorphism group of X contains a 4-dimensional
linear subgroup of the following form:

 ψ1

ψ2

ψ3


 =


 αre−iθa31

1
r e−iθa32 a13

1
αr eiθa31 reiθa32

1
αe2iθa13

a31 a32
αr2+1
2αr eiθa13





 x

y
z




where

α =
−2‖φ11‖2

M

‖φ12‖2
M

a31 =
r

|α|r2 + 1
eiθ31

a32 =
r‖φ10‖M

‖φ12‖M + r2‖φ10‖M
eiθ32

a13 =
2r‖φ10‖M

r2‖φ10‖M + ‖φ12‖M
ei( π

2 +
θ31
2 +

θ32
2 −θ).

Now we are ready to compute the automorphism group of X even if νX = 1
2 .

Theorem 5.4. Let Xa = {(x, y, z) ∈ C
3 : a|x|2 + |y|2 + |z|2 = ε0} and νa be the

CR invariant defined in the previous section. Then ν1/4 = ν(X1/4) = 1
2 and the

automorphism group of X1/4 consists of biholomorphic map Ψ = (ψ1, ψ2, ψ3) of
the following forms:
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(1) (ψ1, ψ2, ψ3) = (eiθ1x, eiθ2y, ei
θ1+θ2

2 z)
(2) (ψ1, ψ2, ψ3) = (eiθ1y, eiθ2x, ei

θ1+θ2
2 z).

Proof. We only need to prove that the automorphism group of X1/4 does not
have element of the form in Corollary 5.3. Suppose on the contrary that auto-
morphism of the form in Corollary 5.3 does exist. Since (0,

√
ε0, 0) is in X1/4,

we have (
√

ε0
r e−iθa32,

√
ε0re

iθa32,
√

ε0a32) in X1/4. Hence

1
4

ε0
r2

|a32|2 + ε0r
2|a32|2 + ε0|a32|2 = ε0.

This implies (
1

4r2
+ r2 + 1

)
r2‖φ10‖2

M

(‖φ12‖M + r2‖φ10‖2
M

= 1.

It follows that

r2 =
‖φ10‖M + 2‖φ12‖M

4‖φ10‖M
.

This is absurd.
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