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GLOBAL INVARIANTS FOR STRONGLY PSEUDOCONVEX
VARIETIES WITH ISOLATED SINGULARITIES: BERGMAN
FUNCTIONS

STEPHEN S.-T. YAU

ABSTRACT. Let M be a strongly pseudoconvex manifold which is a resolution
of strongly pseudoconvex variety V with only isolated singularities. We define
a Bergman function Bp; on M which is a biholomorphic invariant of M. The
Bergman function Bj; vanishes precisely on the exceptional set of M. Hence By,
can be pushed down and we obtain a Bergman function By which is a biholomor-
phic invariant of V' and vanishes precisely on the singularities of V. This Bergman
function not only can distinguish analytic structures of isolated singularities, but
it can also distinguish the CR structures of the boundaries of V. As an appli-
cation, we define a continuous numerical invariant on strongly pseudoconvex CR
manifolds in V = {(z,y,2) € ¢3 : zy = 22}. We show that our invariant varies
continuously in R when the CR structure of strongly pseudoconvex CR manifold
changes in V. Our global numerical invariant is explicitly computable. Moreover
we show that the Bergman function allows us to determine the automorphism
groups of these CR manifolds.

1. Introduction

The Bergman kernel form is a basic biholomorphic invariant on complex man-
ifolds [Ko|. A lot of work has been done in its explicit computation and asymp-
totic expansion. However, it seems that there is little attention given to the
possible role of the Bergman kernel on analytic spaces, in connection with the
study of singularities and CR manifolds. In [L-Y-Y], an initial step in study-
ing the Bergman kernel on a resolution of an isolated 2-dimensional Gorenstein
singularity was given. It was shown that the exceptional set of the resolution is
exactly the minimal set of the Bergman kernel. Thus the analytic definition of
the Bergman kernel contains important topological information on the singular-
ity. However, the Bergman kernel defined in [L-Y-Y] is not a biholomorphically
invariant except for the rational double points.

Let M be a complex manifold of dimension n. A real valued C*° function ¢
on M is said to be strongly plurisubharmonic if and only if the hermitian form
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is positive definite with respect to any system of local coordinates (z1, ... , 2z,).
The complex manifold M is said to be strongly pseudoconvex if there is a com-
pact subset B C M, and a continuous real valued function ¢ on M, which is
strongly plurisubharmonic outside B, and such that for each ¢ € R, the set
B.={x € M : ¢(x) < c} is relatively compact in M. Note that a strongly pseu-
doconvex manifold is a modification of a Stein space at a finite many points.

The purpose of this paper is to define a new Bergman function B, for each
strongly pseudoconvex manifold M with dimension n > 2 which is a resolution
of strongly pseudoconvex variety V with only isolated singularities. We show
that Bjs is a biholomorphically invariant function and Bj; vanishes precisely
on the exceptional set of M. Hence Bj; can be pushed down and we obtain
a Bergman function By which is a biholomorphic invariant of V' and vanishes
precisely on the singularities of V.

The invariance properties of a CR manifold X of real dimension 2n — 1 which
is a real hypersurface in C™ with respect to the infinite pseudo-group of biholo-
morphic transformations were studied extensively by many important mathe-
maticians. The systematic study of such properties for hypersurfaces with non-
degenerate Levi form was first made by Catan [Ca] in 1932, and latter by Chern
and Moser [Ch-Mo]. A main result of the theory is the existence of a complete
system of local differential invariants. On the other hand, by using the Catan
method of equivalence, Webster [We| gave a complete characterization when two
ellipsoids in C™ are CR equivalent. In [Fe|, Fefferman has shown that a biholo-
morphic map between two bounded strongly pseudoconvex domains with smooth
boundaries extends smoothly to the boundaries. Then Webster’s result gives a
necessary and sufficient condition for two ellipsoidal domains to be equivalent.

Despite the success of the Chern-Moser theory, the fundamental question of
distinguishing two strongly pseudoconvex manifolds remains unsolved. Let X
be a compact connected strongly pseudoconvex CR manifold of real dimension
2n — 1. In 1974, Boutel de Monvel [Bo] (see also Kohn [Koh]) proved that X is
CR-embeddable in some C¥ if dim X > 5. In this paper, we shall only consider
CR embeddable strongly pseudoconvex CR manifolds. Let X be an embeddable
compact strongly pseudoconvex CR manifold. In view of a beautiful theorem
of Harvey-Lawson [Ha-La], there exists a complex variety V in CV such that
dV = X and V has only normal isolated singularities. Theorem 3.1 below
says that we can use the structures of the singularities of V' to distinguish the
CR structure of X. Thus if two strongly pseudoconvex manifolds bound non-
isomorphic singularities, then their CR structures are different. The difficult
unsolved CR equivalence problem is: how can one distinguish strongly pseudo-
convex CR manifolds X; and X when they are lying in the same variety V. If
V is C¥, this difficult problem has been considered by leading mathematicians
Chern-Moser [Ch-Mo], Fefferman [Fe], Webster [We], etc. Even in this case, it
seems that the CR equivalence problem for complete Reinhardt domains (except
for the ellipsoidal domains which was solved by Webster) remains open. On the
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other hand, when V is a singular variety, the CR equivalence problem is basi-
cally untouched. One of the purpose of this paper is to offer a novel technique to
attack CR equivalence problem. The main observation is that our new Bergman
functions put a lot of restriction on biholomorphic maps between strongly pseu-
doconvex CR manifolds, from which new CR invariants can be constructed and
the automorphism groups of the CR manifolds can be determined. We illustrate
how our new technique works in a concrete example.

We define a continuous numerical invariant on strongly pseudoconvex CR
manifolds in V = {(z,y,2) € C? : 2y = 22}. We show that our invariant varies
continuously in R when the CR structure of strongly pseudoconvex CR manifold
changes in V. Our global numerical invariant is explicitly computable. Moreover
we show that the Bergman function allows us to determine the automorphism
groups of these CR manifolds.

We thank the referee for many useful suggestions to improve the presentation
of this paper.

2. Bergman function on strongly pseudoconvex manifold and variety

Let M be a complex n-dimensional manifold. We first recall the definition of
the Bergman kernel. Let F' be the set of all holomorphic n-forms ¢ on M such

that / gb/\a‘ < 0. (¢ will be called L? or square integrable.) F is a separable
M

complex Hilbert space under the inner product (¢, p2) = (\/—1)”2 / o1 N
M

®,. The corresponding norm (¢, ¢)z will be denoted by [|¢|. Let {w;} be
a complete orthonormal basis of F'. Then K(z,w) = Yw;(z) A wj(w) can be
shown to converge uniformly on compact subsets to a holomorphic 2n-form on
M x M. Here, M denotes the conjugate complex manifold obtained by taking
the conjugate coordinate charts of M. Further, K(z,w) is independent of the
choice of complete orthonormal basis of F'. If each point z € M is identified with
the point (z,Z) € M x M, then K(z,%) can be regarded as a 2n-form on M and
is referred to as the Bergman kernel of M. Since the Hilbert space F' with its
inner product is invariant under biholomorphic maps, so is the Bergman kernel.

Let V be a Stein variety of dimension n > 2 in CV with only irreducible iso-
lated singularities. We assume that 9V is a strongly pseudoconvex CR manifold.
Let 7 : M — V be a resolution of singularity with £ as a exceptional set. We

shall define a Bergman function Bjs(z) on M which is a biholomorphic invariant
of M.

Definition 2.1. Let Fyy be the set of all L? integrable holomorphic n-forms 1 on
M wanishing on the exception set E of M. Let {w;} be a complete orthonormal
basis of Fy. The Bergman kernel vanishing on the exceptional set is defined to

be Ko(z,Z) = Xw;(2) Aw;(2).

Lemma 2.2. F/F, is a finite dimensional vector space.
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Proof. Let Q" be the sheaf of germs of holomorphic n-forms on M and Q"(—FE)
be the sheaf of germs of holomorphic n-forms on M vanishing along E. Clearly
F=T(M,Q") and Fyp =T'(M,Q"(—FE)). From the short exact sequence

0— Q"(-FE) — Q" — Q" —0,
E
we have dim F'/F, < dim HY (E, Q"’E) Since Q"’E is a coherent sheaf on a

compact analytic set F, dim H° (E, Q”!E) is finite. O

Lemma 2.3. Bergman kernel vanishing on the exceptional set Ky(z,Z) is inde-
pendent of the choice of the complete orthonormal basis of Fy and Ko(z,Z) is
invariant under biholomorphic maps.

Proof. Let {w;} and {@;} be two complete orthonormal bases of Fy. In view
of Lemma 2.2, there exists ag,... ,ax holomorphic n-forms on M where k =
dim(F/Fy) such that both {aq,...,ar} U{w;} and {aq,... ,ar} U {@;} form
complete orthonormal basis of F'. Since

k k
Do AT+ Y wihGi=K(27) =) aihwi+Y &N,
i=1 =1

we have S w; A@; = S, 05 A @

Recall that exceptional set F is the maximal compact analytic set in M. Since
E is invariant under biholomorphic maps, so is the space Fy of all L?-integrable
holomorphic n-forms on M vanishing on the exceptional set E. Hence Ky(z,Z)
is invariant under biholomorphic maps. O

Definition 2.4. Let M be a resolution of a strongly pseudoconvex variety V' of
dimn > 2 in CN with only irreducible isolated singularity at the origin. The
Bergman function By on M is defined to be Kpro0/Kp -

Theorem 2.5. Bj; is a global function defined on M which is invariant under
bitholomorphic maps. Moreover, the zero set of By is precisely the exceptional

set of M.

Proof. Let ® : M" — M be a biholomorphic map. Then
O*Kpyo  Kurp
Ky K
We first observe that there exists a holomorphic n-form which does not vanish
on the exceptional set of M. This can be seen as follows. Let m : M — V
be the blowing down map. Since V is a Stein space and f,, the sheaf of
germs of holomorphic n-forms on V, is coherent. There exists a holomorphic
n-form w on V which does not vanish at the singularity set of V. Then 7m*w
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is a holomorphic n-form which does not vanish on the exceptional set of M.
In particular, Kjs does not vanish on the exceptional set of M. Clearly Ky
vanishes along exceptional set. To finish the proof, we need to show that K/
does not vanish outside the exceptional set. For this purpose, given p € M — F,
it suffices to produce a holomorphic n-form vanishing along E but not at p. Let
Q"(—FE) be the sheaf of germs of holomorphic n-forms on M vanishing along
E. Since Q" (—FE) is coherent and 7 is proper, m,2"(—FE) is a coherent sheaf on
V by Grauert’s direct image theorem. As V is a Stein variety, we can find w
in I'(V, 7,Q"(—FE)) which does not vanish at 7(p). Then 7*w is a holomorphic
n-form vanishing along the exceptional set £ but not at p. O

The same argument of the proof of Theorem 1 in [L-Y-Y] will prove the
following theorem.

Theorem 2.6. Let M be a strongly pseudoconver manifold of dimension n > 2
with exceptional set E. Let A be compact submanifold containing in E. Let 7 :
My — M be the blow up of M along A. Then we have Ky, (2,Z) = 7* Ky (2,Z)
and K, 0(2,2) = K o(2,Z). Consequently By, (z) = m* B (2).

Let m; : M; — V, i = 1,2, be two resolutions of singularities of V. By
Hironaka’s theorem [Hi], there exists a resolution 7 : M — V of singularities
of V such that M can be obtained from M;, 1 = 1,2, by successive blowing up
along submanifolds in exceptional set. In view of Theorem 2.5 and Theorem 2.6,
the following definition is well defined.

Definition 2.7. Let V be a strongly pseudoconvex variety in C with only ir-
reducible isolated singularities. Let m: M — V be a resolution of singularities of
V. Define the Bergman function By on 'V to be the push forward of the Bergman
function Bps by the map .

Theorem 2.8. Let V be a strongly pseudoconvex variety in CN with only irre-
ducible isolated singularities. Then the Bergman function By on V is invariant
under biholomorphic maps and By vanishes precisely on the singular set of V.

Proof. Fasy consequence of Theorem 2.5, and Theorem 2.6. U

Theorem 2.9. Let V be a strongly pseudoconvex variety in CV with only iso-
lated normal singularities of dimension n > 2. Let Fy be the set of all L?-
integrable holomorphic n-forms on V. — S, where S 1is the singular part of V.
Let Fyy = {w € Fy : w vanishes on S}. Let Ky (2,Z) and Kvo(z,Z) be defined
KV(Zag)

in the usual manner (cf. Definition 2.1). Then By = ————
KV,O (Z, Z)

and By s a

biholomorphical invariant of V.
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Proof. Let m : M — V be a resolution of singularities of V. It is well known
(cf. [Lal, [Ya]) that a holomorphic n-form w on a deleted neighborhood of the
singular set S is L2-integrable if and only if 7*w is a holomorphic n-form on
a neighborhood of the exceptional set £ in M. Thus n* : Fyy — F); is an
isomorphism which sends Fy o onto Fir . The theorem follows easily. O

3. Continuous numerical invariant of strongly pseudoconvex CR
manifold

Let X be a strongly pseudoconvex CR manifold of real dimension 2n — 1.
It is well known [Bo] that X can be CR embedded into CV if n > 3. For our
subsequent discussion, we shall assume that X is of dimension 2n —1 in CV. By
a theorem of Harvey and Lawson [Ha-La], X is a boundary of a variety V' with
only isolated normal singularities.

Theorem 3.1. Let X1, X5 be two strongly pseudoconver CR manifolds of di-
mension 2n — 1 which bound varieties Vi, Vo respectively in C with only iso-
lated normal singularities. If ® : X1 — X5 is a CR-isomorphism, then ® can be
extended to a biholomorphic map from Vi, to Vs.

Proof. Let ¢1,...,¢n be the component functions of ®. Then ¢; as CR holo-
morphic function on X can be extended in a one sided neighborhood of X; in
V1. By Andreotti and Grauert [An-Gr, Théoréme 15], ¢; can be extended holo-
morphically to V7 — S; where Sy is the singular set of V. Since S; consists of
only isolated normal singularities, ¢; can be extended holomorphically to V3.
Clearly (¢1,...,¢n)(V1) is a variety with boundary equal to X5. By uniqueness
of complex Plateau problem, we have (¢1,...,0n) (V1) = Va.

Let 41, ... ,9¥n be the component functions of ¥ which is the inverse mapping
of ®. The argument above shows that 1,...,¢¥n can be extended holomor-
phlcauy to ‘/2 and (wlv s 7¢N)(V2) = VYl Since (¢17 s >¢N) ° (wla te 7¢N)
restrict to X is the identity map, it follows that (¢1,...,¢n) 0 (¢¥1,... ,¢N) is
the identity map on Vj. U

In view of the above Theorem 3.1, if X; and X5 are two strongly pseudoconvex
CR manifolds which bound varieties V7 and V5 with non-isomorphic singularities,
then X7 and X5 are not CR equivalent. Therefore to study the CR equivalence
of two strongly pseudoconvex CR manifolds X; and X5, it remains to consider
the case when X; and X5 are lying on the same variety V. The purpose of this
section is to show that our global invariant Bergman function defined in section
2 can be used to study the CR equivalence problem of strongly pseudoconvex
CR manifolds lying on the same variety. As an example, we shall show explicitly
that how CR manifolds varies in the variety V := {(z,y,2) € C*: f(x,y,2) =

ry — 22 = 0}. An explicit resolution 7 : M — V can be given in terms of
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coordinate charts and transition functions as follows:

Coordinate charts : W, =C2? = {(ug,vr)}, k=0,1
o . up = - ug = udvy
Transition functions : vo or 1
V1 = UV Vo = o
Resolution map — :  F(up,v) = (uf ok uy 0?7 uguy) or
(ZL’,y,Z) = (Uo,UOUO,Uo’Uo) (U%’Ul,Ul,UlUl)
Exceptional set : E =7"1(0)=C; = {ug = 0} U {v; = 0}.

We consider V' = {(z,y,2) € C3 : zy = 2% and n(x,y,2) < €, where 1 is a
strictly plurisubharmonic function}. Then M = 7 (V) is given by the coordi-
nate charts:

Wi = {(ug, vg) : n(ui“v,’j,ui kvi k ,uRvE) < €}, k=0,1.

Observe that under 7 : M — V, Wy\C; is mapped biholomorphically onto
V\y-axis. In particular M\Wj is of measure zero in the obvious sense. Hence,
we may compute integrals on M using the (ug,vg) coordinate on the chart Wy
alone.

In what follows, we shall assume that 7 is a Reinhardt function such that Wy is
a complete Reinhardt domain, i.e. whenever (ug,vg) € Wy, then (1yug, 72, v9) €
Wy for all complex numbers 7; with |7;| < 1. The following proposition can be
found in Proposition 8 of [L-Y-Y].

Proposition 3.2. In the above notations, let ¢op = ug‘vgduo Advy, a,8 =
0,1,2,.... Assume that Wy is a complete Reinhardt domain. Then

¢aﬁ X 1 }
{Hqﬁaﬁ!M oz ah

is a complete orthonormal base of F'. In other words, a complete orthonormal
base ofF is of the form:

dug A dvg, dug N dvg, 2% dug A dug,

H¢00HM H¢>10HM lp11(las

s oo A dvo, i duo A dvo, R duo A dvo, i dug A du,
oy oo A dvo, S duo A dvo, i dun A dvo, ki duo A du,
iy duo A dvo, i duo A dvo, i duo A dvo, A duo A du,
H;‘;’;T’M dug A dug, . . .
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1
Observe that except for ——dug A dvg, all the other holomorphic 2-forms

[[Gooll

above are vanishing at the exceptional set. Therefore the Bergman kernel van-

ishing on the exceptional set Kj; o and Bergman kernel are given respectively
by:

KM’()((UO, ’U()), (ﬂo,ﬁo)) = @MdU() A dvo A du_o AN d%
1
KM<(’U,(],1}0), (u_o,%)) <72 + @M) duo A dUO A d%/\ d%
oo ll3s
where
0y — uol? | fuol?lvol? | [uol?|vol* | fuol* | |uol*|vol®
lowolld,  loullis o123 o203 llo21ll3s
+\U0!4|UO\4 lug|*|vol® | Juol*|vol® |uo® Juo|®|vol? | |uo|®lvo|*
| d22]13 | p23ll3s p2all3;  llosollzs  llos1llas | pa2l|3s
(3.1) +\U0!6|U0\6 |uo|®fvol®  Juo|®lvol* Juo|®[vo]"? .

| bs3ll3, | ps4ll3s | ps5 13, P36 13,

Theorem 3.3. Assume that Wy is a complete Reinhardt domain. Then the
Bergman function for the strongly pseudoconvex manifold M 1is given by

B ((uo, vo), (W0, 00)) = [ldooll3,Onm [1 — ll$0oll3rOn + (llb0oll3rOn)?
(3.2 ~(Inal3O30)* + (ol 020"~ |
The Bergman function for the strongly pseudoconvex variety V is given by

By((z,y,2),(@7:2) = l¢ooliOv [1— 00l 3,Ov + (I¢0oll3,Ov)?
(33 (ol )* + (Il Ov)! = -
where

|z |22 ly|? Els ERER |2|*
Oy = + + + + +
Io10ll3y  Noullds — low2lliy  le20ll3s — Noaillds  ld22ll3y
O O - TN 1 G
lé2sll3;  l@2allds  Nsollds  Nosallds — Nos2llds  Ngsallis
zly[* =]yl ly|°
34) + - + o
B4 ol T TosslZ T sl
Ko On | ool 3,© m

PROOF: B((up,vo), (Wo,00)) = - - ‘
M ((uo,v0), (W0, 0 )) Kus er@M 1+ [|¢ooll3,©n
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Hence (3.2) follows immediately. Recall that the resolution map is given
by (z,y,z) = (uugvd,upvg). Then (3.4) and (3.3) follow from (3.1) and (3.2)
respectively. Q.E.D.

Lemma 3.4. Any biholomorphism U = (11,%9,13) : V. — V has the following
representation

Y1(2,y, 2) ail a1z ai13 x
Yo(z,y,2) |=| a21 asa ass y | + higher order terms in z,y and z
V3(2, 9, 2) as1 a2 ass 2

where the constants a;; satisfy the following equations

(3.5) airaz —az; =0

(3.6) a12a99 — agz =0

(3.7) a13a93 — a33 + a11a22 + aj2a21 — 2aziaze =0
(3-8) aiiaz3 + aizaz1 — 2az1azz =0

(3.9) a12a23 + a13a22 — 2azz2a33 = 0

(3.10) det(a;;) # 0.

Proof. Since ¥ : V. — V., we have 91 (z,y, 2){2(z,y,2) — ¥3(x,y,2) = 0. By
looking at the quadratic part of this equation, we obtain

(a1 + a2y + a3 2)(az21 ¢ + a2y + agz z) — (as1 x + azp y + ass 2)2 =0

which implies
2 4.2 24,2 2.2
(a11a21 — a3;)x” + (a11a22 — azy)y” + (a13a23 — azz)z
+(ai1a22 + ar2a21 — 2az1a32)xy + (a11a23 + a13a21 — 2as1a33)rz

(3.11)  +(ai2a23 + a13a22 — 2aszas3)yz = 0.

Since 2% = zy, (3.5)-(3.9) follows from (3.11). (3.10) is a consequence of the fact
that ¥ is a biholomorphism. O

Proposition 3.5. Let V; = {(z,y,2) € C? : xy = 2% and ni(v,y,2) < eo,
where n; s a strictly plurisubharmonic Reinhardt function} for i = 1,2. Let
M; =7 1V;), i =1,2. Suppose that ¥ : V| — Va is a biholomorphic map given
by V(z,y,2) = (@117 + a2y + a132,a21% + a2y + a232,a317 + azey + azzz)+
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| bo0ll3s 5 llooll3s 5 llooll3s 5 ll%ooll3s
(3.12) T len P + e las P g lan [P = ot
P01, p11113s, | p12113, [ é10ll3s,
| booll3s 5 |léooll3s 5 lldooll3s o lldooll3s
(3.13) Tz et + e lase |t + e et = 5
b10l13s, o113, p12113,, |d12113s,
| pooll3s 5 |léooll3s 5 |léooll3s 5 lléooll3s
(3.14) s3]t + e ass]t + e as]t =
p10l13s, o11l13s, p12113s, o11113s,
| pooll3s l|booll3s | booll3s
(3.15) 5011012 + 5031032 + 75—~ A21022 = 0
p10l13s, o113, p12113s,
l¢oolld, — lldoollie, — ldoolly,
72 pr—
(3.16) aii1a13 + g 31433 + g G21023 0
p10l3s, P13y, | p12l3s,
dooll3 dooll3 dooll3
i) A0l o 100l WOl e~
[ p10l3s, P13y, | p123s,

Proof. By, ((x,y,2),(T,7,2)) = ll¢ooll3s, Ovi — l[P00ll3s, ©F, + P00l O, - -

~Moollzs, | o |
= ol @
101l vy

|pooll3s, |21?
1113y,

léooll3s,

5 + higher order term.
| ®12]|3,

ly[?

In view of Theorem 2.8, we have

Bvl((ﬂf,y, Z))’ (W)) = BVQ(\Ij(xvya Z)’ \IJ(LB,y, Z) )
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which implies

léooll3s, 121% Nldoollis, 1217 lldooll3s, [y]?
1013, p1113s, | p12113s,
b0 ll3s P00 ll3s
= Towl, e+ oy +ansl + o2
2 2
| booll3
+W!a21$+a22y+a232’2
1211 My
_ <H¢)00||?\42 lagy 2 b00ll3s, gy 2 lbo0ll3s,
1013 o111, p12l13,,
N <’¢00HM2| ol + lIdooll3s, asal? lp00ll3s,
lb10l13 H¢11||?\42 p12l13,
N <’¢OOHM2’ 2+ H¢00H?\42 lags? HqﬁooH?\@
lo10l13 llo111%,, [| P12 ||?\42
lbooll3s b0 ll3s P00 ll3s
+ < 2011012 + 52031032 + 75—
101132, 113, p12113,,
H¢00||M b0 134 H¢oo||M
+ | 52011012 + 5~ A31433 + 5~ Q21
<|¢10|| 1113, p12l13,
2
N <’¢00HM2 a1y 4+ | Pooll 2y, 0315 4+ H%oHM2
1013 [o11l132, H€Z512||M2
lbooll3z, looll3 s, P00 ll3s
+ < 11013 + 5 = a31433 + ——— 5~ 021
101132, 113, o211,
H¢00||M b0 |34 l|ooll3,
+ 2012013 + 5032033 + 50
<|¢>10|| \|€Z511||2 p12l13,,
(WooHM23 o1 4 H¢00HM2 d5aas 4 H¢oo||M2
1013 11113, p12l13,

(3.12)-(3.17) follows immediately.

las1z + as2y + 66332’|2

|a21|2> 2f?
|ags| >
| 23\2)1 2

21a22> Ty

a21a 2) Ty
) TZ
a21a 23> Tz
3) yz
aza 23> yz

819

The following theorem gives a continuous numerical invariant for strongly
pseudoconvex CR manifolds lying in V = {(z,y,2) € C3 : zy = 2%}.

Theorem 3.6. Let V = {(z,y,2) € C?
N is a strictly plurisubharmonic Reinhardt function} such that X =

smooth CR manifold. Let M = 7= 1(V).

P13
P10l azlP12 || as

vx =

cay = 22 and n(r,y,2) < e where

oV s a

With the notation in Proposition 3.2,

1s a CR invariant of X in V, i.e. if X1 and X5 are two

such strongly pseudoconvexr CR manifolds in V which are CR equivalent, then
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1211113, 611113z,
= , where My and My are strongly pseudo-

[or0llar || @r2llar, — lldrolla, 912l ar, , .
convexr CR manifolds which have X1 and Xo as boundaries respectively.

Proof. Let V; = {(z,y,2) € C3 : zy = 2% and n;(z,y,2) < €, where n; is a
strictly plurisubharmonic Reinhardt function} and 0V; = X;, ¢ = 1,2. If X is
CR equivalent to X5, then V; is biholomorphic equivalent to V5 by Theorem 3.1.
Theorem 3.6 follows from the following Theorem 3.7. U

Theorem 3.7. Let V; = {(x,y,2) € C3 : 2y = 22 and n;(z,y, z) < €, where 1;
is a strictly plurisubharmonic Reinhardt function} and M; = 7=1(V;) is the res-
olution of singularity of V;, i = 1,2. If there exists a biholomorphic map ¥ from
2 2 2
1
Vi to Vi and P11 1%z, p1115s, P11z,

% —, then = .
P10l Pr2llar, * 2 @10l 1 P12llaey N d10llnss | B12] as

Proof. The same argument as in Lemma 3.4 will show that W can be written
as (Y1,2,%3) = (a1 + a12y + @132, 212 + a0y + a232, 0317 + azzy + a33z)+
higher order terms such that (3.5)-(3.10) hold. By Proposition 3.5, we know
that (3.12)-(3.17) also hold. We have three cases to consider: Case 1, az; # 0
and azo # 0; Case 2, ag; = 0; Case 3, azz = 0.

Case 1: a3; # 0 and a3y # 0. In view of (3.5) and (3.6), we have ay; # 0, a2 #
0,a12 # 0 and ass # 0 in this case.

a11 asi

(35) - —:—;:7"1750
a31 a1
1
(318) — a1 = Tria3i, as1 = r—agl
1
(3.6) = d22 _ %32 =ry #0
a32 ai2
1
(3.19) = Q22 = T2a32, Q12 = T—CL32
2
(3.20) (38) and (318) = 7rias93 + —aiz — 2a33 =0
1
1
(3.21) (3.9) and (3.19) = —ag3 + 12013 — 2a33 =0
T2
1 1
=

(3.22) (3.20) and (3.21) (r1— E)azg + (E —79)aiz = 0.

There are two cases to be considered.
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1
Case 1l (a): 1y — — =0,1e 1= —

T2 ™
1
(3.23) (319) = an= 532, @12 = 71032
1
(3.24) (3.20) = asz= a2 + 5 —ais
r1
(3.25) (3.7),(3.18) and (3.23) = aj3a23 —a33 =0
(3.26) (3.25) and (3.24) = a3 = riass
1
(327) (324) and (3 26) — Q33 = Tr1093 = T—alg
1
(3.15), (3.18) and (3.23) imply
(3.28) l[¢ooll3s, 2 lp0oll3s, . llPoollis, 1 _0
[é10l34, lo11ll3s, — l1d12ll3g, Iraf?

which is a contradiction because the left hand side of (3.28) is positive. Hence
Case 1 (a) cannot happen.

1
Case 1 (b): mp — — #0
T2

(3.29) (3.22) = aps = :—zalg
1
1
(3.30) (3.20) and (3.29) = ag = (%2 n ?) ars.
1

In view of (3.29) and (3.30), we have a;3 # 0 because det(a;;) # 0. (3.15), (3.18)
and (3.19) imply

llpoollts, 11 | llPooll3s, | llboollis, 72

3.31 —
(3:31) Tl 7z T ToulBy | Tor2ly

=0

(3.16) and (3.18), (3.29) and (3.30) imply

[é00ll3s, +||¢>00||?\42 (@ L) Iooll3s, 72
2 2

r1 — -
b10l13s, lo11l13s, T1 123, |1l

(3.32)

(3.17), (3.19), (3.29) and (3.30) imply

lldoollds, 1| lldooll3s, <7‘2 L) n IPooll3s, Iral®
2

3.33 — + — —
(3:33) 16002, 72+ Ton s, ) T ol

=0
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Clearly (3.32), (3.33) and (3.34) imply

rL 1 T2
T2 1
T2 1 T2
det r1 2 + P [r[? =0
1 m, 1 [
T 2 277 1

= (7172 + 1)(r1re + T272)(r1m2 — 1) + 27772 (1 — r17r2) (1 4+ r172) = 0.
1
Since r;1 — — # 0, i.e. 79 — 1 # 0, we have
)

(Tir2 + 1) (r1re + 7172) — 2772 (1 + 11772) = 0
_— (rirg —m72)(1 —7173) = 0.

Since 7172 — 1 # 0, we have

(334) riro = 11719
Let = L. Then a =@, r1 = aT2, 11 = arz. (3.31), (3.32) and (3.33) can be
rewritten as
(3.35) 0?4 ||¢10”?V[2a+ d10l13s, _ 0
p11113s, [p12113s,
ad|rg|? 1 a?lra? o«
(3.36) < —) b = 0
low0lld, — lnillis, 2 2 612113,
o 1 alr? 1 72 ]2
(3.37) + < +o )+ —2— = 0
61003, N1, 2 2 [p12113s,

(3.36) — a(3.37) =

a(alrg? = 1) 1 —alry? B

(3.38) =0
[610[l3s, [d12[|3,
2
ie. 1—alra>=0 2= 7“%0"2&.
p12l3s,
2 -9 2
If a2 = %, then (3.35) implies o = LJMQ It follows easily that
|p12115s, p121l3s,
611113, B - .
= —, a contradiction to our hypothesis. Hence we conclude
|12/ aez [ P10ll0, 2
that
(3.39) alry* = 1.
Putting (3.39) in (3.37), we get
1 1 |7"2|2
+ + =0
r22l¢10ll3,  lonlld,  lolis
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which is absurd since the left hand side is positive. Thus Case 1 (b) cannot
occur also.

Case 2: a3; = 0. By (3.5), we have either a;; = 0 or ag; = 0.

Case 2 (a): ag; = 0 and a;; = 0. Since det(a;;) # 0, we have ag; # 0.

(3.40) (315) = a9102 =0=a99 =0
(341) (38) = ai3a91 = 0= a13=0
(3.42) (3.6) and (3.40) => a3 = 0.

Since det(aij) 75 0 and ajl = 0= a3, we have ai19 75 0.

(3.43)  (3.9),(3.40) and (3.42) = ay2a93 = 0 = a3 = 0
(3.44) (3.7) and (3.43) = —a3; + ajoas; =0
o llo2lli,  llooollis,
(345) (312) — |(121| = 5 " 5
IPooll5z, lld10llas,
2 2
(3.4 313) = |l = 200 ool
Poollas, Ié12llar,
2 2
(3.47) (3.14) = |ags)® = H¢11H§@ : ”%0”341
lpoollts, Ié11ll3s,
(3.44), (3.45), (3.46) and (3.47) imply
5.45) lould, — _ louli,
||¢12HM2H¢10HM2 H¢10HM1H¢12||M1

Case 2 (b): a3; =0 and ag; = 0. Since det(a;;) # 0, we have a1 # 0.

(349) (315) = a11a12=0=1a12=0
(350) (38) = aj1a93 = 0= a93 =0
(3.51) (3.6) and (3.48) = az» = 0.
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Since azy = 0 = a1 and det(a;;) # 0, we have agq # 0.
(3.52) (39), (351) and (349) = a13a92 = 0= a13=0
(3.53)  (3.7),(3.52) and (3.49) == —a3; + ajjaz =0

d10l13s, ' l|b00ll3s,

3.54 312) = l|an|*=

o (312 = el =5 B, Towl,
Ipr2lli,  lldoolls

3.55 313) = |aw|*= 2. :

. &1 = Ipoolls, lldr2l3s,

(3.56) (3.14) = |a33|2 . H¢>11H?\42 ||¢00||?\/11

loollRs, o3y,

(3.53), (3.54), (3.55) and (3.56) imply (3.48).
Case 3: azs = 0. By (3.6), we have either a1 = 0 or age = 0.

Case 3 (a): azz = 0 and a1 = 0. By the same argument as above, we can
show that all a;; are zero except a11,az2 and as3. Moreover a1, agz, ass satisfy
(3.53), (3.54), (3.55) and (3.56) so that (3.48) holds.

Case 3 (b): ass = 0 and age = 0. By the same argument as above, we can

show that all a;; are zero except a2, a1 and azs. Moreover, a2, as1, ass satisfy
(3.44), (3.45), (3.46) and (3.47) so that (3.48) holds. O

Corollary 3.8. Let V; = {(z,y,2) € C3 : 2y = 22 and n;(z,y, 2) < €, where 1;
is a strictly plurisubharmonic Reinhardt function}. If the CR invariant vy, in
Theorem 3.6 is not equal to 0.5, then the biholomorphic map VU = (11,9, 13) :
Vi — Vo must be one of the following forms:

(1) (Y1, 9,%3) = (a117, azey, azzz)+ higher order terms and a5 = ajiass.
(2) (¥1,9,%3) = (a12y, a212,azzz)+ higher order terms and a3; = ajzaz;.

ProoOF: It is clear from the proof of Theorem 3.7.

4. Explicit computation of new CR invariant

Let a be positive real number. We shall follow the notations in our previous
section. Let V, = {(x,y,2) € C?: zy = 22, alz|? + |y|? + |2|*> < €o}. Recall that
(2,9,2) = (uo,uovd, ugvg). Then M, be the resolution of V, with coordinate
chart Wy = {(uo,v0) : a|uo|? + |uo|?|vo|* + |uo|?|vo]? < €0} Next write ug = re®
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and vy = pe'®. Then

lbaslZr, = /%ﬁwaﬁ—/ 1 P1of Pdug A dvo A dTg A dT5

27
— 27T/ // 2a+41 2/8+1d7“dp do

where D = {(r,p) : 7 >0, p >0, ar? + r?p* + r?p* < ¢o}. In particular

27 oo %
||¢1,8||?\/[a = 27r/ / / e 3 p?P 1 drdpdd

27 €2p20+1
= 27r/ / —— 5 dpdb.
a+p + p*)?

Therefore the new CR invariant for the CR manifold X, := 9V}, is

_ o113z,
¢ P10l a2, | P12l 01,

o Jo Wdﬂd@

(k" mdm&) (o™ Jie dede)*

1
C 1: a = -
ase 1: a = 7

27
11:/
0

/ 8
0 3
27 fo%e) 3 e’}

p x 2

Iy, = / / —————dpdf = 7r/ ——dr = -7
o Jo (P4+P2+i)2 0 ($+%)4 3
/ 2
0 3

N
ﬁ
=
&

I
wloo
3
Lol
3
o
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1
C 2:a> -
ase a 1

27 ') [e)
1) dx
I, = — F  _dpde = =
! /0 /0 P+ prtaz? ”/0 22+ 2 +a)?

W[(Zla - 1§fx;ri v+a) (4 f )3 arcmn(%—llﬂ 'O

N W[ 4ai1)§ a(4a1— 1) (4af1)3 armn(ﬁ)}

27
xdx
I, = —— —dpdf = —_—
2 // p+p (P*+p%+a)? p /(a;2+x+a)2

= T|— 2a tx — 2 arctan ﬂ
N (da—-1)(22+x+4+a) (da—1)2 Via —1

oo

0

W[4a2— 1 (40:1)§ - (46:1)§ aman(%)]

2 x2dx
I = P dpdh = __rar
’ / / (o +p tae® 7r/ 22+ 7 + a)2

(1-2a)r+a N da oo 2041 >
= e e —
(4a— D(z2+z+a) (4a—1) Vida—1) 1],

w0

[ 2am 1 4a ) ( 1 )]
= T — — arctan| —F/——— .
(4a—1)2 4a—1 (da—1)3 Via —1

1
Ifa= 3 then I; = n(m —2), I :7r<2— g) and I3 :7r<g —1). We have

9_ = 2(4 —
— 2 _ V24 -) ~ 0.5317007373 > 0.5.

o JeaGoy Y

14

1 4
Similarly if @ = 1> 7, then I = g(% -~ 1), I = 3(1— l) I =1,
and vy ~ 0.55753024284785 > 0.5.
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1
C 3:a< -
ase a 1

2
dx
I, = dpdf = @
! // p+p W+ ta)” 7T/ (z2 + 1 + a)?

W[ L2 11—\/1—4a]
(1 —4a) (1—4a)% 1++v1—4a

27
xr
L = P pdd = T 4
? / / p+p +a) ’ /0 @ rz+aP

[ In 1—\/1—4a]
™
1 —4a (174@3 1++v1—4a

27 2
X
o = ———dpdf = ——d
3 / / (p* +p W+ ta2? F/ @2 +z+a)2
T

_[ L2 1—\/1—4(1]
2[1—4a  (1-4a)3 1++v1—4a
31 64
Ifa =20 < then I} = Tr(E —16In3), Iy = 7(8In3 — 8) and I3 =

4
m(4 —31In3). Hence

8In3 -8 ~ 2v/3(In3-1)
V(& —16m3)(4—3m3) 47303

v

ol

~ (.4851191037356 < 0.5.

Similarly one has the following results:

9 1
a=2 < X L~ 04940697511735
9 1 5
_ B 1 ~  0.49674784168264
‘T Sy o &7
_ 6 1 0.49794879674687
a = % < 17 V% - : :

5. Automorphism group of compact CR manifold

In this section, we shall show that our Bergman function can be used to
determine the automorphism group of a compact CR manifold.

Theorem 5.1. Let X = {(z,y,2) € C? : zy = 22, n(z,y.2) < €0} where n is a

strictly plurisubharmonic Reinhardt function and vx be the CR invariant defined

in the previous section, where X = 0V. Then the automorphism group of X for

vx # % consists of biholomorphic map ¥ = (¢1,2,13) of the following forms:
.601+62o

(1) (1,92,3) = (12, 2y, e =7 2)

91+02

(2) (Y1, 02,13) = (ery, 2z, 2 2).
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Proof. In view of Corollary 3.8, we know that ¥ = (i1, 12, 13) must be one of
the following forms:

(1) (¥1,%9,13) = (a11x, azy, assz)+ higher order terms and a§3 = a11a92
(2) (¥1,9,%3) = (a12y, as17,azzz)+ higher order terms and a3; = ajzaz;.

Recall that the Bergman function By = ||¢oo||3,0v — ||o0l|3,0% + - --. where
M is the minimal resolution of V' as described in section 3, and Oy is given by
(3.4). In view of Theorem 2.8, we have

(5.1) By ((z,y,2), (2,y,2)) = By (¥(z,y,2), ¥(z,y, 2)).

Putting (1) and (2) in (5.1) and comparing the 3rd order terms in (5.1), we see
easily the 2nd order terms of (v1,12,13) are zero. Repeating this argument,
we see that (i1,12,13) has only linear terms. Using (5.1) again, we obtain
la11] = |agz| = |aiz| = a2 = 1. O

In Corollary 3.8, we need to assume that our invariant vy is not % If we
consider only automorphism instead of biholomorphism, we can deal with the
case vy = %

Theorem 5.2. Let V = {(z,y,2) € C3 : 2y = 2% and n(x,y,2) < €0, where n is
a strictly plurisubharmonic Reinhardt function}. Suppose that vx = % where vx
is the CR invariant of X = OV defined in Theorem 3.6. Then the automorphism
= (1,%2,1%3) : X — X must be one of the following forms:

01469

(1) (%1, %2,13) = (ewlx,e“’?y,e’g : z)
(2) (P1,92,13) = (e’ely,'e“%x,e’ 12' )
Un are”%agz;  Te Pag, a13 .
1 .0 i0 120
(3) o | = ——eaz;  revasp gel’ 6213 y |+
w?) asi asz a;’a—;— e’ ais z
higher order terms
where o = M
I¢12ll3,
= # 1031
asi ]a!r2 1
as2 ngblO !M 1032
[@12][ar + 72{| 10 as
ay = 2r||d1o|m i(5+ %+ %2 —0)

r2||é10llar + 12/l ar

Proof. The proof is the same as the proof of Theorem 3.7 except in case 1(b)
where we did use the assumption vy, # % Therefore to prove Theorem 5.2, it
is sufficient to prove that statement (3) above occurs in case 1(b) of the proof
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of Theorem 3.7 under the assumption
11113, 1

(52) [Grolaléral 2
Recall that in case 1(b) of the proof of Theorem 3.7, we have
(5-3) a11 = T1G31, a1 = %G:n
(5-4) a22 = T'2G32, a12 = %%2
r
(5.5) (23 = fam, azz = (%2 =+ %) a3
) 2 —
T2 |p12113, P12l ar
Let
(5.7) ry = re.
Then
(58) Tl — are—i@ — _H¢10HM ei@
H¢12HM
and
(5.9) jra| = L010llar,
P12l ar
Putting (3.29), (3.30), (3.18) and (3.19) into (3.7), we get
2
T2 1 1
1 a2 (2 - — 2] =u0.
(5 0) ais ( 5 2T1> + azias2 <7’17’2 + v~ ) 0
Putting (3.18) into (3.12), we get
|r1|? 1 1 | booll3s
1) loarPlowls | e+ -
MAllgwold, Mol ImPllenzl3 ] ldwol3,
(5.2) and (5.11) imply
71| | P12 s _ 7{|d10] 0

(512) |CL31‘ =

829

Putting (3.19) into (3.13), we get

2| l[¢10llas rl| @10l as

(513) |a32| =

Putting (3.29) and (3.30) into (3.14), we get

2lr1 Pl @1o0llas [l ér2llar

I¢12llar + Ir2llg0llar — ll¢r2llar + [r2[ll10llar”

lais]® =

4r?|| 103,

(5.14) " () drolln + [ br2lla)?

12l @123y + 5 (rar2 + D262l ér0llar + Il d10l13

r12lérzllar + llérollar — ledr2liérollar + llgoollar — lafr? +17
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This implies

2r?||¢10ll3,
515 a =
(5.15) 130 = 2 g ollar + rallar
(5.9) implies
4r
(516) CL%g == a31a32r—21.

Putting (5.12), (5.13) and (5.14) into (5.16), we get

472 o2, vy T rllgrollas (0514052, OTC "
(r2l¢10llar + [[P12llar)? lar? 41 [|p12lar + 72| P10l ns ret?
It follows that
€2i913 — 6_2i9+iﬂ-+i(031+032).

Hence

T 031 O3
5.17 Oi3=—+——=+=2-0
( ) 13 5 + 9 + 9

|

Corollary 5.3. Let V = {(x,y,2) € C?: zy = 2% and n(x,y, 2) < €y, where n is
a strictly plurisubharmonic Reinhardt function}. Suppose that vx = % where vx
is the CR invariant of X = 0V defined in Theorem 3.6. If case (3) of Theorem
5.2 occurs, then the CR automorphism group of X contains a 4-dimensional

linear subgroup of the following form:

)1 are %ag  Lleag a13

x
o | = arefam refaz Je¥ais y
s asi asz artleifg,, z
where
« = M
612113
= _ T o
as1 o + 1
a5y = rl|@10/[ar o2
[p12l[ar + 72(| 10l s
4y — 2r|| @10l (5% %2 g)

2\ @10llar + [Pzl ar

Now we are ready to compute the automorphism group of X even if vy = %

Theorem 5.4. Let X, = {(x,y,2) € C3: alz]? +|y|* + |2]*> = €0} and v, be the
CR invariant defined in the previous section. Then vy,q = v(X1/4) = % and the
automorphism group of Xi,4 consists of biholomorphic map ¥ = (v1,2,v3) of
the following forms:
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61465

(1) (¢13¢2,¢3) = (ei91$’ 6i92ya esz)

. . .0146
(2) (¢17 ¢27 7/’3) = (elelyﬂ 6102:137 e’ 12 ? Z)

Proof. We only need to prove that the automorphism group of X;,4 does not

have element of the form in Corollary 5.3. Suppose on the contrary that auto-

morphism of the form in Corollary 5.3 does exist. Since (0, /€, 0) is in X 4,

we have (¥2e~¥qz,,/egre®ass, /epass) in X /4. Hence

r

1le
Zr—g|a32\2 + 607"2!(132\2 + eo\a32]2 = €.
This implies
1 2 ) 2|l ¢10ll3,
(47“2 (Ipr2llar +r2d10ll3s
It follows that
2 _ l¢10llar + 2[f12lms
4H¢10HM
This is absurd. O
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