SHARP $L^2 \rightarrow L^q$ BOUNDS ON SPECTRAL PROJECTORS FOR LOW REGULARITY METRICS

HART F. SMITH

ABSTRACT. We establish $L^2 \to L^q$ mapping bounds for unit-width spectral projectors associated to elliptic operators with C^s coefficients, in the case $1 \le s \le 2$. Examples of Smith-Sogge [6] show that these bounds are best possible for q less than the critical index. We also show that L^∞ bounds hold with the same exponent as in the case of smooth coefficients.

1. Introduction

The goal of this paper is to study the L^p norms of eigenfunctions, and approximate eigenfunctions, of elliptic second order differential operators with low regularity coefficients, on compact manifolds without boundary. We consider the eigenvalues $-\lambda^2$ and eigenfunctions ϕ for an equation

$$d^*(a\,d\phi) + \lambda^2 \rho\,\phi = 0.$$

Here we assume $\rho > 0$ is a real, positive measurable function, and $a_x : T_x^*(M) \to T_x(M)$ is the transformation associated to a real symmetric form on $T_x^*(M)$, also strictly positive and measurable in x. The manifold M and volume form dx are assumed smooth, and d^* is the transpose of the differential d with respect to dx. This setting includes the most general elliptic second order operator on M, assumed self-adjoint with respect to some measurable volume form ρdx , and assumed to annihilate constants, and hence of the form $\rho^{-1}d^*ad$. For limited regularity a and ρ we pose the problem as above to avoid domain considerations.

If we consider the real quadratic forms

$$Q_0(f,g) = \int_M f \, g \, \rho \, dx \,, \qquad Q_1(f,g) = Q_0(f,g) + \int_M a(df,dg) \, dx \,,$$

then

$$Q_0(f,f) = ||f||_{L^2(M,\rho dx)}^2, \qquad Q_1(f,f) \approx ||f||_{H^1(M)}^2,$$

hence Q_0 is compact relative to Q_1 by Rellich's lemma. By the standard argument of simultaneously diagonalizing Q_0 and Q_1 , there exists a complete orthonormal basis ϕ_j for $L^2(M, \rho dx)$ consisting of eigenfunctions for (1), with $\lambda_j \to \infty$.

The object of this paper is to establish bounds on the $L^2 \to L^q$ operator norm of the unit-width spectral projectors for (1). Let Π_{λ} be the projection of $L^2(M, \rho dx)$ onto the subspace spanned by the eigenfunctions of (1) for which $\lambda_i \in [\lambda, \lambda + 1]$. In

Received by the editors April 3, 2006.

The author was supported in part by NSF grants DMS-0140499 and DMS-0354668.

the case that the coefficients ρ and a are C^{∞} , the following estimates hold, and are best possible in terms of the exponent of λ ,

(2)
$$\|\Pi_{\lambda} f\|_{L^{q}(M)} \le C \lambda^{\frac{n-1}{2}(\frac{1}{2} - \frac{1}{q})} \|f\|_{L^{2}(M)}, \qquad 2 \le q \le q_{n},$$

(3)
$$\|\Pi_{\lambda} f\|_{L^{q}(M)} \le C \lambda^{n(\frac{1}{2} - \frac{1}{q}) - \frac{1}{2}} \|f\|_{L^{2}(M)}, \qquad q_{n} \le q \le \infty,$$

where

$$q_n = \frac{2(n+1)}{n-1}$$

For C^{∞} metrics the estimates at $q=q_n$ are due to Sogge [8]. The estimate for $q=\infty$ is related to the spectral counting remainder estimates of Avakumović-Levitan-Hörmander; it can also be obtained from Sogge's estimate by Sobolev embedding. The case q=2 is of course trivial, and all other values of q follow from these endpoints by interpolation.

In [5], both estimates (2) and (3) were established on the full range of q for the case that both a and ρ are of class $C^{1,1}$.

On the other hand, Smith-Sogge [6] and Smith-Tataru [7] constructed examples, for each 0 < s < 2, of functions a and ρ with coefficients of class C^s (Lipschitz in case s = 1) for which there exist eigenfunctions ϕ_{λ} such that for all $q \geq 2$

$$\|\phi_{\lambda}\|_{L^{q}(M)} \ge C \lambda^{\frac{n-1}{2}(\frac{1}{2}-\frac{1}{q})(1+\sigma)} \|\phi_{\lambda}\|_{L^{2}(M)},$$

where C > 0 is independent of λ , and where

$$\sigma = \frac{2-s}{2+s}$$

For $2 < q < \frac{2(n+2s^{-1})}{n-1}$, this shows that the spectral projection estimates for C^s metrics with s < 2 can be strictly worse than in the C^2 case.

In this paper, we consider the case of coefficients a and ρ of class C^s for $1 \le s < 2$ (Lipschitz in case s = 1.) We start by establishing the following bound, which by the examples of [6] is best possible on the indicated range of q.

Theorem 1. Assume that the coefficients a and ρ are either of class C^s for some 1 < s < 2, or Lipschitz class if s = 1. Let Π_{λ} denote the L^2 -projection onto the subspace spanned by eigenfunctions of (1) with $\lambda_i \in [\lambda, \lambda + 1]$. Then

$$\|\Pi_{\lambda} f\|_{L^{q}(M)} \le C \lambda^{\frac{n-1}{2}(\frac{1}{2} - \frac{1}{q})(1+\sigma)} \|f\|_{L^{2}(M)}, \qquad 2 \le q \le q_{n}.$$

Applying Sobolev embedding to the estimate at $q = q_n$ would not yield the correct bound for $q = \infty$. However, the proof of Theorem 1 also yields no-loss estimates on small sets. Precisely, we will establish the following local estimate, with constant uniform over the balls B.

Theorem 2. Let $B_R \subset M$ be a ball of radius $R = \lambda^{-\sigma}$. Then under the same conditions as Theorem 1

(4)
$$\|\Pi_{\lambda} f\|_{L^{q}(B_{\mathbb{P}})} \leq C \lambda^{n(\frac{1}{2} - \frac{1}{q}) - \frac{1}{2}} \|f\|_{L^{2}(M)}, \qquad q_{n} \leq q \leq \infty.$$

Interpolating with the trivial L^2 estimate establishes the estimate (2) on such balls B_R . Since the constant C in (4) is uniform for all balls B_R , we obtain the same global $L^2 \to L^\infty$ mapping properties in the case of Lipschitz coefficients as in the case of smooth coefficients,

(5)
$$\|\Pi_{\lambda} f\|_{L^{\infty}(M)} \le C \lambda^{\frac{n-1}{2}} \|f\|_{L^{2}(M)}.$$

A corollary of this result is the Hörmander multiplier theorem on compact manifolds for functions of elliptic operators with Lipschitz coefficients, as shown by results of Duong-Ouhabaz-Sikora [1], section 7.2. We note that, in related work, Ivrii [2] has obtained the sharp spectral counting remainder estimate for operators with coefficients of regularity slightly stronger than Lipschitz.

The proof of Theorem 2 that we will present requires that q be not too large, but in all dimensions works for $q = q_n$. We therefore show here how heat kernel estimates permit us to deduce (4) for all $q \ge q_n$ from the case $q = q_n$. For this, let H_{λ} denote the heat kernel at time $\lambda^{-2} \le 1$ for the diffusion system associated to (1). By Theorem 6.3 of Saloff-Coste [4], the integral kernel h_{λ} of H_{λ} satisfies

$$|h_{\lambda}(x,y)| \le C \lambda^n \exp(-c \lambda^2 d(x,y)^2).$$

By Young's inequality, then for $q_n \leq q \leq \infty$

$$\|\Pi_{\lambda}f\|_{L^{q}(B_{R})} \leq C \lambda^{n(\frac{1}{q_{n}}-\frac{1}{q})} \|H_{\lambda}^{-1}\Pi_{\lambda}f\|_{L^{q_{n}}(B_{R}^{*})} + C_{N} \lambda^{-N} \|H_{\lambda}^{-1}\Pi_{\lambda}f\|_{L^{2}(M\setminus B_{R}^{*})}$$
$$\leq C \lambda^{n(\frac{1}{2}-\frac{1}{q})-\frac{1}{2}} \|f\|_{L^{2}(M)}$$

where we use (4) at $q = q_n$ with B_R replaced by its double B_R^* , and the fact that $\|H_{\lambda}^{-1}\Pi_{\lambda}f\|_{L^2} \approx \|\Pi_{\lambda}f\|_{L^2}$ since $\exp(\lambda_j^2/\lambda^2) \approx 1$ for $\lambda_j \in [\lambda, \lambda+1]$.

If we interpolate the estimate of Theorem 1 at $q = q_n$ with the estimate (5), then we obtain the following.

Corollary 3. Under the same conditions as Theorem 1

$$\|\Pi_{\lambda} f\|_{L^{q}(M)} \le C \lambda^{n(\frac{1}{2} - \frac{1}{q}) - \frac{1}{2} + \frac{\sigma}{q}} \|f\|_{L^{2}(M)}, \qquad q_{n} \le q \le \infty.$$

For $q_n < q < \infty$, however, the exponent is strictly larger than that predicted by the examples of [6]. It is not currently known what the sharp exponent is for this range.

The key idea in our proof is that a C^s function is well approximated on sets of diameter $R=\lambda^{-\sigma}$ by a C^2 function, up to an error which is suitably bounded when dealing with eigenfunctions localized to frequency λ . In effect, rescaling by R reduces matters to a C^2 situation, where no-loss estimates hold. The loss of $\lambda^{\frac{\sigma}{q}}$ comes from adding up the bounds over $\approx R^{-1}$ disjoint sets.

This scaling parameter R occurs in the examples of Smith-Sogge [6] and Smith-Tataru [7]. The idea of scaling by R to prove L^p estimates was first used by Tataru in [9], to establish Strichartz-type estimates for time-dependent wave equations with C^s coefficients, yielding improved existence theorems for a class of quasilinear hyperbolic equations.

Notation. By a C^s function on \mathbb{R}^n , for $1 < s \le 2$ we understand a continuously differentiable function f such that

$$||f||_{C^s} = ||f||_{L^{\infty}(\mathbb{R}^n)} + ||df||_{L^{\infty}(\mathbb{R}^n)} + \sup_{h \in \mathbb{R}^n} |h|^{1-s} ||df(\cdot + h) - df(\cdot)||_{L^{\infty}(\mathbb{R}^n)} < \infty.$$

Thus, C^s coincides with $C^{1,s-1}$ for $s \in (1,2]$. For s=1, we use C^1 to mean Lipschitz. For 0 < s < 1 we take C^s to be the standard Holder class.

We use d to denote the differential taking functions to covector fields, and d^* its adjoint with respect to dx. When working on \mathbb{R}^n , $d = (\partial_1, \dots, \partial_n)$, and d^* is the standard divergence operator.

The notation $A \lesssim B$ means $A \leq CB$, where C is a constant that depends only on the C^s norm of a and ρ , as well as on universally fixed quantities, such as the manifold M and the non-degeneracy of a and ρ . In particular, C can be taken to depend continuously on a and ρ in the C^s norm, so our estimates are uniform under small C^s perturbations of a and ρ .

2. Scaling Arguments

Our starting point is the following square-function estimate for solutions to the Cauchy problem. For C^{∞} coefficients this was established by Mockenhaupt-Seeger-Sogge [3]. The version we need for $C^{1,1}$ metrics is Theorem 1.3 of [5]. That theorem was stated under the condition F=0 and for coefficients which are constant for large x, but these conditions are easily dropped by the Duhamel principle and a partition of unity argument.

Theorem 4. Suppose that a and ρ are defined globally on \mathbb{R}^n , and that

$$||a^{ij} - \delta^{ij}||_{C^{1,1}(\mathbb{R}^n)} + ||\rho - 1||_{C^{1,1}(\mathbb{R}^n)} \le c_0$$

where c_0 is a small constant depending only on n. Let u solve the Cauchy problem $\rho(x) \partial_t^2 u(t,x) - d^*(a(x) du(t,x)) = F(t,x)$, $u(0,x) = u_0(x)$, $\partial_t u(0,x) = u_1(x)$. Then

(6)
$$\|u\|_{L_x^{q_n} L_t^2(\mathbb{R}^n \times [-1,1])} \lesssim \|u_0\|_{H^{\frac{1}{q_n}}} + \|u_1\|_{H^{\frac{1}{q_n}-1}} + \|F\|_{L_t^{\frac{1}{4}H^{\frac{1}{q_n}-1}}}$$

We first deduce the following corollary which is more useful for our purposes.

Corollary 5. Suppose that f satisfies an equation on \mathbb{R}^n of the form

$$d^*(a df) + \mu^2 \rho f = d^*g_1 + g_2$$
.

If a and ρ satisfy the condition of Theorem 4, then

(7)
$$||f||_{L^{q_n}} \lesssim \mu^{\frac{1}{q_n}} (||f||_{L^2} + \mu^{-1} ||df||_{L^2} + ||g_1||_{L^2} + \mu^{-1} ||g_2||_{L^2}).$$

Proof. Let $S_r = S_r(D)$ denote a smooth cutoff on the Fourier transform side to frequencies of size $|\xi| \le r$. Let $a_\mu = S_{c^2\mu}a$, for c to be chosen suitably small. Then

$$\|(a-a_{\mu})df\|_{L^{2}} \lesssim c^{-2}\mu^{-1}\|df\|_{L^{2}}, \qquad \mu^{2}\|(\rho-\rho_{\mu})f\|_{L^{2}} \lesssim c^{-2}\mu\|f\|_{L^{2}},$$

and thus we may replace a and ρ by a_{μ} and ρ_{μ} at the expense of absorbing the above two terms into g_1 and g_2 , which does not change the size of the right hand side of (7).

Next, let
$$f_{<\mu} = S_{c\mu}f$$
. Since

$$||[S_{c\mu}, a_{\mu}]||_{L^2 \to L^2} \lesssim (c\mu)^{-1},$$

and similarly for $[S_{c\mu}, \rho_{\mu}]$, we can absorb the commutator terms into g_1 and g_2 , and since all terms are localized to frequencies less than μ we can write

(8)
$$d^*(a_\mu df_{<\mu}) + \mu^2 \rho_\mu f_{<\mu} = g_{<\mu},$$

where

$$||g_{<\mu}||_{L^2} \lesssim \mu ||f||_{L^2} + ||df||_{L^2} + \mu ||g_1||_{L^2} + ||g_2||_{L^2}$$

Since $||d^*(a_\mu df_{<\mu})||_{L^2} \lesssim (c\mu)^2 ||f_{<\mu}||_{L^2}$, for c suitably small the L^2 norm of the left hand side of (8) is comparable to $\mu^2 ||f_{<\mu}||_{L^2}$, hence we have

$$||f_{<\mu}||_{L^2} \lesssim \mu^{-1} (||f||_{L^2} + \mu^{-1} ||df||_{L^2} + ||g_1||_{L^2} + \mu^{-1} ||g_2||_{L^2})$$

Sobolev embedding now implies (7) if f is replaced on the left hand side by $f_{<\mu}$. In fact there is a gain of $\mu^{-\frac{1}{2}}$, since $\frac{1}{q_n} = n(\frac{1}{2} - \frac{1}{q_n}) - \frac{1}{2}$. If we let $f_{>\mu} = f - S_{c^{-1}\mu}f$, then similar arguments let us write

(9)
$$d^*(a_\mu df_{>\mu}) + \mu^2 \rho_\mu f_{>\mu} = d^*g_{>\mu}$$

where now $g_{>\mu}$, like $f_{>\mu}$, is frequency localized to frequencies larger than $c^{-1}\mu$, and

$$||g_{>\mu}||_{L^2} \lesssim ||f||_{L^2} + \mu^{-1}||df||_{L^2} + ||g_1||_{L^2} + \mu^{-1}||g_2||_{L^2}$$

Taking the inner product of both sides of (9) against $f_{>u}$ yields

$$||df_{>\mu}||_{L^2}^2 - 4\mu^2 ||f_{>\mu}||_{L^2}^2 \lesssim ||g_{>\mu}||_{L^2} ||df_{>\mu}||_{L^2}$$

and by the frequency localization of $f_{>\mu}$ we obtain

$$||f_{>\mu}||_{H^1} \lesssim ||f||_{L^2} + \mu^{-1} ||df||_{L^2} + ||g_1||_{L^2} + \mu^{-1} ||g_2||_{L^2}$$

Since $n(\frac{1}{2} - \frac{1}{q_n}) = \frac{1}{q_n} + \frac{1}{2} \le 1$, Sobolev embedding yields (7) if f is replaced on the left hand side by $f_{>\mu}$. As above, there is in fact a gain of $\mu^{-\frac{1}{2}}$ for this term. We now let $f_{\mu} = S_{c^{-1}\mu}f - S_{c\mu}f$, and as above write

$$d^*(a_{\mu} df_{\mu}) + \mu^2 \rho_{\mu} f_{\mu} = g_{\mu}$$

where now f_{μ} and g_{μ} are localized to frequencies comparable to μ , and

$$||g_{\mu}||_{L^{2}} \lesssim \mu ||f||_{L^{2}} + ||df||_{L^{2}} + \mu ||g_{1}||_{L^{2}} + ||g_{2}||_{L^{2}}$$

Setting $u(t,x) = \cos(\mu t) f_{\mu}(x)$, we apply (6) to deduce

$$||f_{\mu}||_{L^{q}} \lesssim \mu^{\frac{1}{q_{n}}} (||f_{\mu}||_{L^{2}} + \mu^{-1}||g_{\mu}||_{L^{2}})$$

which yields (7) for this term.

Remark. For future use, we note that in the proof of Corollary 5 the assumption that $a \in C^{1,1}$ was used only at the last step, in order to deduce that (6) holds. The commutator and approximation bounds require only that a and ρ be Lipschitz. In particular, the bounds on $f_{\leq \mu}$ and $f_{\geq \mu}$ hold for Lipschitz a and ρ .

Corollary 6. Let Q be a unit cube and Q^* its double. Suppose that a and ρ are bounded and measurable, and that there exist $C^{1,1}$ functions \tilde{a} and $\tilde{\rho}$ satisfying the conditions of Theorem 4 such that

$$||a - \tilde{a}||_{L^{\infty}(Q^*)} + ||\rho - \tilde{\rho}||_{L^{\infty}(Q^*)} \le \mu^{-1}$$

Suppose that on Q^* we have

$$d^*(a df) + \mu^2 \rho f = d^*g_1 + g_2$$

Then

$$||f||_{L^{q_n}(Q)} \lesssim \mu^{\frac{1}{q_n}} \left(||f||_{L^2(Q^*)} + \mu^{-1} ||df||_{L^2(Q^*)} + ||g_1||_{L^2(Q^*)} + \mu^{-1} ||g_2||_{L^2(Q^*)} \right)$$

The constant in the inequality is uniform for $\mu \geq 1$.

Proof. Let ϕ be a smooth function, equal to 1 on Q and supported in Q^* . Then

$$d^*(a d(\phi f)) + \mu^2 \rho (\phi f) = d^* \left[(a d\phi) f + \phi g_1 \right] + \left[(a d\phi) \cdot df - (d\phi) \cdot g_1 + \phi g_2 \right]$$
$$= d^* \tilde{q}_1 + \tilde{q}_2$$

where for $\mu \geq 1$

$$\|\tilde{g}_1\|_{L^2} + \mu^{-1} \|\tilde{g}_2\|_{L^2} \lesssim \|f\|_{L^2(Q^*)} + \mu^{-1} \|df\|_{L^2(Q^*)} + \|g_1\|_{L^2(Q^*)} + \mu^{-1} \|g_2\|_{L^2(Q^*)}$$

One may similarly absorb $(a-\tilde{a})d(\phi f)$ into \tilde{g}_1 , and $\mu^2(\rho-\tilde{\rho})(\phi f)$ into \tilde{g}_2 . The result now follows from (7).

Corollary 7. Suppose that a and ρ are of class C^s , with $0 \le s \le 2$, and that

$$||a^{ij} - \delta^{ij}||_{C^s(\mathbb{R}^n)} + ||\rho - 1||_{C^s(\mathbb{R}^n)} \le c_0,$$

where c_0 is a small constant depending only on n.

Suppose that $R=\lambda^{-\sigma}$, where $\sigma=\frac{2-s}{2+s}$ and $\lambda\geq 1$. Assume Q_R is a cube of sidelength R, Q_R^* is its double, and on Q_R^* the following equation holds

$$d^*(a\,df) + \lambda^2 \rho \, f = d^*g_1 + g_2$$

Then

$$||f||_{L^{q_n}(Q_R)} \lesssim R^{-\frac{1}{2}} \lambda^{\frac{1}{q_n}} \left(||f||_{L^2(Q_R^*)} + \lambda^{-1} ||df||_{L^2(Q_R^*)} + R ||g_1||_{L^2(Q_R^*)} + R \lambda^{-1} ||g_2||_{L^2(Q_R^*)} \right).$$

Proof. We use the notation $f_R(x) = f(Rx)$. Then, for $\mu = R\lambda = \lambda^{1-\sigma}$,

$$d^*(a_R df_R) + \mu^2 \rho_R f_R = R d^*g_{1,R} + R^2 g_{2,R}$$

holds on Q^* , with Q a unit cube. If $\tilde{a} = S_{u^{1/2}}a_R$, then

$$\|\tilde{a} - a_R\|_{L^{\infty}} \lesssim \mu^{-\frac{1}{2}s} R^s \|a - I\|_{C^s} = c_0 \mu^{-1}$$

By the frequency localization, \tilde{a} satisfies the conditions of Theorem 4. We may thus apply Corollary 6 to yield

$$||f_R||_{L^{q_n}(Q)} \lesssim (R\lambda)^{\frac{1}{q_n}} \left(||f_R||_{L^2(Q^*)} + \lambda^{-1} ||(df)_R||_{L^2(Q^*)} + R ||g_{1,R}||_{L^2(Q^*)} + R\lambda^{-1} ||g_{2,R}||_{L^2(Q^*)} \right)$$

Recalling that $\frac{1}{q_n} = n(\frac{1}{2} - \frac{1}{q_n}) - \frac{1}{2}$, this yields the corollary after rescaling.

3. Proof of Theorem 1

The proof of Corollary 7 works for all $s \in [0, 2]$, but the energy estimates of this section require that a and ρ be Lipschitz, hence we assume $s \ge 1$ for the remainder.

The projection $\Pi_{\lambda} f$ satisfies

$$\|d^*(a d (\Pi_{\lambda} f)) + \lambda^2 \rho \Pi_{\lambda} f\|_{L^2(M, \rho dx)} \le (2\lambda + 1) \|\Pi_{\lambda} f\|_{L^2(M, \rho dx)}$$
$$\|d \Pi_{\lambda} f\|_{L^2(M, \rho dx)} \lesssim (\lambda + 1) \|\Pi_{\lambda} f\|_{L^2(M, \rho dx)}$$

hence Theorem 1 follows from showing that, if the following holds on M

(10)
$$d^*(a\,df) + \lambda^2 \rho \, f = g$$

then uniformly for $\lambda \geq 1$

(11)
$$||f||_{L^{q_n}(M)} \lesssim \lambda^{\frac{1+\sigma}{q_n}} \left(||f||_{L^2(M)} + \lambda^{-1} ||df||_{L^2(M)} + \lambda^{-1} ||g||_{L^2(M)} \right)$$

Assume that (10) holds, and let ϕ be a C^2 bump function on M. Then

$$d^*(a d(\phi f)) + \lambda^2 \rho \phi f = f d^*(a d\phi) + \langle a d\phi, df \rangle + \phi g$$

Absorbing the terms on the right into g leaves the right hand side of (11) unchanged, hence by a partition of unity argument we may assume that f is supported in a suitably small coordinate neighborhood on M.

We choose coordinate patches so that, in local coordinates, the conditions of Corollary 7 are satisfied after extending a and ρ to all of \mathbb{R}^n . Thus, we have an equation of the form (10) on \mathbb{R}^n , with f and g supported in a unit cube.

We next decompose $f = f_{<\lambda} + f_{>\lambda} + f_{\lambda}$ as in the proof of Corollary 5. As remarked following that proof, the bounds on $f_{<\lambda}$ and $f_{>\lambda}$ hold for a and ρ Lipschitz, hence we are reduced to considering f_{λ} , for which we have an equation

$$d^*(a_\lambda df_\lambda) + \lambda^2 \rho_\lambda f_\lambda = g_\lambda$$

where a_{λ} and ρ_{λ} are localized to frequencies smaller than $c^2\lambda$, and both f_{λ} and g_{λ} are localized to frequencies of size comparable to λ .

We then decompose $f_{\lambda} = \sum_{j=1}^{N} \Gamma_{j} f_{\lambda}$, where each $\Gamma_{j} = \Gamma_{j}(D)$ is an order 0 multiplier, with symbol $\Gamma_{j}(\xi)$ supported where $|\xi| \approx \lambda$ and in a cone of suitably small angle. It then suffices to bound each $\|\Gamma_{j} f_{\lambda}\|_{L^{q_{n}}(Q)}$ by the right hand side of (11). Without loss of generality we consider a term with $\Gamma(\xi)$ localized to a small cone about the ξ_{1} axis.

We write

$$d^*(a_{\lambda} d\Gamma f_{\lambda}) + \lambda^2 \rho_{\lambda} \Gamma f_{\lambda} = \Gamma g_{\lambda} + d^*[a_{\lambda}, \Gamma] df_{\lambda} + \lambda^2 [\rho_{\lambda}, \Gamma] f_{\lambda}$$

Simple commutator estimates show that the right hand side has L^2 norm bounded by $\lambda ||f||_{L^2} + ||g||_{L^2}$, hence we are reduced to establishing

(12)
$$||f||_{L^{q_n}(Q)} \lesssim \lambda^{\frac{1+\sigma}{q_n}} \left(||f||_{L^2(\mathbb{R}^n)} + \lambda^{-1} ||df||_{L^2(\mathbb{R}^n)} + \lambda^{-1} ||g||_{L^2(\mathbb{R}^n)} \right)$$

for f satisfying the equation

$$d^*(a_\lambda df) + \lambda^2 \rho_\lambda f = g$$

where $\widehat{f}(\xi)$ and $\widehat{g}(\xi)$ are localized to $|\xi| \approx \lambda$ and ξ in a small cone about the ξ_1 axis. By Corollary 7, for any cube Q_R of sidelength $R = \lambda^{-\sigma}$, we have

$$(13) \|f\|_{L^{q_n}(Q_R)} \lesssim \lambda^{\frac{1}{q_n}} \left(R^{-\frac{1}{2}} \|f\|_{L^2(Q_R^*)} + R^{-\frac{1}{2}} \lambda^{-1} \|df\|_{L^2(Q_R^*)} + R^{\frac{1}{2}} \lambda^{-1} \|g\|_{L^2(Q_R^*)} \right).$$

Let S_R denote a slab of the form $\{x \in \mathbb{R}^n : |x_1 - c| \le R\}$. By summing over cubes Q_R contained in S_R , and noting $R \le 1$, we obtain

$$(14) ||f||_{L^{q_n}(S_R)} \lesssim \lambda^{\frac{1}{q_n}} \left(R^{-\frac{1}{2}} ||f||_{L^2(S_R^*)} + R^{-\frac{1}{2}} \lambda^{-1} ||df||_{L^2(S_R^*)} + \lambda^{-1} ||g||_{L^2(S_R^*)} \right)$$

We will show that

$$(15) R^{-\frac{1}{2}} (\|f\|_{L^{2}(S_{R}^{*})} + \lambda^{-1} \|df\|_{L^{2}(S_{R}^{*})}) \lesssim \|f\|_{L^{2}(\mathbb{R}^{n})} + \lambda^{-1} \|df\|_{L^{2}(\mathbb{R}^{n})} + \lambda^{-1} \|g\|_{L^{2}(\mathbb{R}^{n})}$$

Given this, inequality (12) follows from (14) by adding over the $R^{-1} = \lambda^{\sigma}$ disjoint slabs that intersect Q. Also, the bound (13) implies the conclusion of Theorem 2 for $q = q_n$ (hence for all q by the heat kernel arguments following that theorem.)

We establish (15) by energy inequality arguments. Let V denote the vector field

$$V = 2(\partial_1 f) a_{\lambda} df + (\lambda^2 \rho_{\lambda} f^2 - \langle a_{\lambda} df, df \rangle) \overrightarrow{e_1}$$

Then

$$d^*V = 2(\partial_1 f) g + \lambda^2(\partial_1 \rho_\lambda) f^2 - \langle (\partial_1 a_\lambda) df, df \rangle$$

Applying the divergence theorem on the set $x_1 \leq r$ yields

$$\int_{T_1-T} V_1 dx' \lesssim \lambda^2 \|f\|_{L^2(\mathbb{R}^n)}^2 + \|df\|_{L^2(\mathbb{R}^n)}^2 + \|g\|_{L^2(\mathbb{R}^n)}^2$$

Since a_{λ} and ρ are pointwise close to the flat metric, we have pointwise that

$$V_1 \ge \frac{3}{4} |\partial_1 f|^2 + \frac{3}{4} \lambda^2 |f|^2 - |\partial_{x'} f|^2$$

The frequency localization of \hat{f} to $|\xi'| < c\lambda$ yields

$$\int_{x_1=r} V_1 \, dx' \ge \frac{1}{2} \int_{x_1=r} |df|^2 + \lambda^2 |f|^2 \, dx'$$

Integrating this over r in an interval of size R yields (15).

References

- X.T. Duong, E.M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), 443–485.
- [2] V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients, Internat. Math. Res. Notices 2000 no. 22, 1155–1166.
- [3] G. Mockenhaupt, A. Seeger and C. Sogge, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65–130.
- [4] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), 417–450.
- [5] H. Smith, Spectral cluster estimates for $C^{1,1}$ metrics, Amer. Jour. Math., to appear.
- [6] H. Smith and C. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett. 1 (1994), 729-737.
- [7] H. Smith and D. Tataru, Sharp counterexamples for Strichartz estimates for low regularity metrics, Math. Res. Lett. 9 (2002), 199–204.
- [8] C. Sogge, Concerning the L^p norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), no. 1, 123–134.
- [9] D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III., J. Amer. Math. Soc. 15 (2002), 419–442.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195 $E\text{-}mail\ address:}$ hart@math.washington.edu