
Math. Res. Lett. 14 (2007), no. 3, 443–452 c© International Press 2007

GENERIC GALOIS EXTENSIONS FOR SL2(F5) OVER Q

Bernat Plans

Abstract. Let Gn be a double cover of either the alternating group An or the sym-
metric group Sn, and let Gn−1 be the corresponding double cover of An−1 or Sn−1.

For every odd n ≥ 3 and every field k of characteristic 0, we prove that the following

are equivalent: (i) there exists a generic extension for Gn−1 over k, (ii) there exists a
generic extension for Gn over k. As a consequence, there exists a generic extension over

Q for the group fA5
∼= SL2(F5).

1. Introduction

The problem originating the present paper concerns generic Galois extensions, as
introduced by D. Saltman [14], for the non-trivial double cover Ãn of the alternating
group An (n ≥ 4). More concretely, one may ask whether such extensions do exist
over Q.

In [13], Y. Rikuna obtains a positive answer to this question in the case n = 4. In
[10], J-F. Mestre gives a different proof of this same result.

On the other hand, J-P. Serre [17, Thm. 33.26] proved that the answer is ‘no’ for
n = 6 and n = 7.

Our initial purpose was to fill the gap corresponding to n = 5. It may be worth
mentioning that, in the context of Noether’s problem, this case is positively solved
over a field k (instead of Q) provided Ã5 can be embedded into GL2(k) (cf. [11] and,
e.g., [15]); actually, this is possible for k := Q[e2πi/5], but not for k := Q.

Serre’s result fits well our Thm. 3.1: there exists a generic extension for Ã2m over
Q if and only if so happens for Ã2m+1.

This, together with Rikuna’s result, solves in the affirmative the case n = 5. That
is, the binary icosahedral group Ã5

∼= SL2(F5) does admit a generic Galois extension
over Q.

Section 3 contains the proof of Thm. 3.1, as well as a generalization to other central
extensions of An. In addition, almost the same proofs produce analogous results for
the symmetric group Sn.

Previously, in Section 2, it is convenient to introduce the concept of “generic” Galois
extension (resp. polynomial) for a finite group extension G̃ → G. As a consequence
of the main result of Section 2 (Prop. 2.5), such an extension exists for a double cover
G̃ → G if and only if there exists a generic extension for G̃.

All of the above is relative to a fixed base field k. In Section 2, it can be an
arbitrary infinite field. In Section 3 we add the extra hypothesis, which comes from
[9], that the characteristic of k is 0.
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2. Generic embeddable extensions

In what follows G denotes a finite group.
By a G-extension S/R we mean a Galois extension of commutative rings R ⊂ S

with group G as defined, for example, in [4]. In particular, this implicitly assumes
that a faithful action of G on S (by R-algebra automorphisms) has been fixed. Let
us mention that, in this paper, S and R will always be k-algebras for some field k.

Usually, we deal with G-extensions up to Galois isomorphism. Recall that a Galois
isomorphism between two G-extensions S1/R and S2/R is an R-algebra isomorphism
S1 → S2 which commutes with the action of G.

Let G̃
π→ G denote a fixed epimorphism of finite groups and let C denote its kernel.

The embedding problem given by π and a G-extension S/R will be denoted by
(S/R, π). A solution to (S/R, π) is a G̃-extension S̃/R such that S/R is Galois
isomorphic to the (quotient) G-extension S̃C/R obtained from S̃/R and π.

A G-extension S/R such that the embedding problem (S/R, π) is solvable will be
called a (G̃ π→ G)-extension.

Let k be a field.

Definition 2.1. A (G̃ π→ G)-extension S/R is called a generic extension for
G̃

π→ G over k if
(i) R is a localised polynomial ring over k, i.e., R = k[U ][1/u] for some set of

indeterminates U = (U1, . . . , Um) and some u ∈ k[U ] \ {0}.
(ii) If K is a field containing k and L/K is a (G̃ π→ G)-extension, then there exists

a homomorphism ϕ : R → K of k-algebras (called a specialization) such that
L/K is Galois isomorphic to the natural G-extension S ⊗ϕ K/K obtained
from S/R.

Definition 2.2. A monic polynomial F (U ;X) ∈ k(U)[X], where U = (U1, . . . , Um)
is a set of indeterminates, is called a generic polynomial for G̃

π→ G over k if
(i) F (U ;X) is a separable polynomial and its splitting field over k(U) is a (G̃ π→

G)-extension of k(U).
(ii) If L/K is a (G̃ π→ G)-extension of fields containing k, then there exists v ∈ Km

such that the polynomial F (v;X) ∈ K[X] is separable and its splitting field
over K is L.

Definition 2.3. We say that the lifting property for G̃
π→ G over k holds if,

for every local k-algebra (A,m) with residue field K := A/m and every (G̃ π→ G)-
extension of fields L/K, there exists a (G̃ π→ G)-extension B/A such that the G-
extensions L/K and B ⊗A K/K are Galois isomorphic.

Remark 2.4. If we take G̃ = G and π = id, then the above definitions correspond
to the usual concepts of generic extension (resp. generic polynomial) for G over k as
defined, for example, in [4]. This is also true for the lifting property if k is an infinite
field, although the usual definition (as in [4]) does not require that L is a field.

Proposition 2.5. Let k be an infinite field. Let G̃
π→ G be an epimorphism of finite

groups with kernel C := Ker(π) contained in the center of G̃. Assume that there
exists a generic extension for C over k. Then, the following properties are equivalent:
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(i) There exists a generic extension for G̃ over k.
(ii) There exists a generic polynomial for G̃ over k.

(iii) The lifting property for G̃ over k holds.
(i)′ There exists a generic extension for G̃

π→ G over k.
(ii)′ There exists a generic polynomial for G̃

π→ G over k.
(iii)′ The lifting property for G̃

π→ G over k holds.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) are well-known. See, for example, [4, Sec.
5.2] or [1]. Moreover, the proofs of (i) ⇒ (iii) and (ii) ⇒ (iii) given in [1, Thm. 1]
are easily adapted in order to obtain (i)′ ⇒ (iii)′ and (ii)′ ⇒ (iii)′.

It is also clear that (i) ⇒ (i)′. Indeed, if S̃/R is a generic extension for G̃ over k,
then the G-extension S̃C/R is generic for G̃

π→ G over k.
A stronger form of (i) ⇒ (ii)′ will be proved later in Lemma 2.8.
We are now going to prove (iii)′ ⇒ (iii), thus establishing Proposition 2.5.
Let (A,m) be a local k-algebra with residue field K := A/m and let be given a

G̃-extension of fields L̃/K.
Let us define L := (L̃)C . Then, L/K is a G-extension (via π) and L̃/K is a solution

to the embedding problem (L/K, π). Now, hypothesis (iii)′ ensures the existence of a
(G̃ π→ G)-extension B/A such that the G-extensions L/K and B ⊗A K/K are Galois
isomorphic.

Let B̃1/A be (a G̃-extension which is) a solution to (B/A, π) and let us define
L̃1 := B̃1⊗AK. Clearly, the (specialized) G̃-extension L̃1/K is a solution to (L/K, π).

Since L̃/K and L̃1/K are solutions to the same embedding problem (L/K, π), it
follows from [3, Thm. 3.15.4] (and our centrality assumption) that L̃/K must be
Galois isomorphic to the composition of L̃1/K and a solution to the trivial (central)
embedding problem (L/K,C ×G → G).

Here, the term composition refers to composition of solutions to embedding prob-
lems as defined, for example, in [3, 1.15], and “corresponds” to the Baer sum of group
extensions. Explicitly, the last paragraph says that there exists a C-extension L2/K

such that L̃/K is Galois isomorphic to the G̃-extension obtained as follows.
First, consider L2 ⊗K L̃1/K, which we view as a (C × G̃)-extension via the action

(c, g)(l1 ⊗ l2) := l1
c ⊗ l2

g (cf. [4, Thm. 4.2.9]).
Now, if C1 denotes the kernel of the epimorphism

C × G̃ −→ G̃, (c, g) 7−→ cg,

then (L2 ⊗K L̃1)C1/K is a G̃-extension (solution to (L/K, π)) via the corresponding
isomorphism G̃ ∼= (C × G̃)/C1. This G̃-extension is the one which must be Galois
isomorphic to L̃/K.

On the other hand, since we are assuming that the lifting property holds for C over
k, there exists a C-extension B2/A such that the C-extensions L2/K and B2⊗A K/K
are Galois isomorphic.

Thus, B2 ⊗A B̃1/A is a (C × G̃)-extension and L2 ⊗K L̃1/K is Galois isomorphic
to (B2 ⊗A B̃1)⊗A K/K.

As above, (B2⊗AB̃1)C1/A is a G̃-extension and, certainly, L̃/K is Galois isomorphic
to (B2 ⊗A B̃1)C1 ⊗A K/K.
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Remark 2.6. It is well-known that, over Q, there exists a generic extension for C if
and only if the (finite abelian) group C has no elements of order 8 (cf. [14, Thm. 2.1,
Thm. 5.11]).

Remark 2.7. Proposition 2.5 also holds for an epimorphism G̃
π→ G with abelian

kernel C not necessarily contained in the center of G̃, under the assumption that
there exists a generic extension over k for the semidirect product of C and G with
respect to the G-action given by π. Note that this hypothesis implies the existence
of a generic extension for G over k (cf. [14, Thm. 3.1]).

The following fact will also be used in the next section.

Lemma 2.8. In Proposition 2.5, we can replace (ii)′ by (ii)′′:
Given a transitive embedding G ↪→ Sn, there exists a generic polynomial F (U ;X)

for G̃
π→ G over k with the following additional properties:

(a) degX(F (U ;X)) = n and Galk(U)(F ) is conjugate to G in Sn.
(b) For every subgroup H ⊆ G and every (π−1(H) π→ H)-extension L/K of fields

containing k, there exists v ∈ Km such that the polynomial F (v;X) ∈ K[X]
is separable, its splitting field over K is L and, on the (suitably ordered) set
of roots of F (v;X), the permutation action of H (from the fixed embedding
H ↪→ Sn) coincides with the Galois action of H (from the given H-extension
L/K).

Proof. It suffices to show that (i) ⇒ (ii)′′.
Recall that we are assuming that k is an infinite field.
Let R := k[U ][1/u] be a localised polynomial ring over k, and let S̃/R be a generic

extension for G̃ over k. It is known that we can assume that S̃/R has a normal basis
α = {αeg}eg∈ eG, as shown in [8, Rem. 2.1]. Moreover, given a set of indeterminates
Y = {Yeg}eg∈ eG and a non-zero polynomial d(Y ) ∈ k[Y ], we can assume too that d(α)
is a unit in S. This also follows from the argument given in [8, Rem. 2.1], as a
consequence of a result of Kuyk [7] (or [2, Lemma 3]).

For every g ∈ G, let us define

βg :=
∑

eg∈π−1(g)

αeg.
Obviously, {βg}g∈G is a normal basis for the G-extension S̃C/R, which is generic for
G̃

π→ G over k.
Let G1 ⊂ G be the stabilizer of 1 with respect to the fixed (faithful and transitive)

action of G on {1, . . . , n}. Given a set {g1, . . . , gn} of representatives of the left cosets
of G1 in G, we define:

γi :=
∑

g∈giG1

βg, i ∈ {1, . . . , n}.

We are going to show that (ii)′′ holds with the polynomial

F (U ;X) :=
∏

1≤i≤n

(X − γi) ∈ k[{βg}g∈G]G[X] ⊂ R[X],
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whose discriminant can (and will) be assumed to being a unit in R.
Only property (b) deserves some explanation.
Given a subgroup H ⊆ G, let us define H̃ := π−1(H) and let πH : H̃ → H denote

the restriction of π to H̃.
Let be given a (H̃ π→ H)-extension L/K of fields containing k.
Let IndG

H(L)/K be the G-extension induced from the H-extension L/K and the
inclusion H ⊆ G. Recall (e.g., [4, p.89]) that, up to Galois isomorphism, IndG

H(L)/K
is the direct product of r := (G : H) copies of L with the following G-action. Let
{σ1, . . . , σr} be a set of representatives of the left cosets of H in G. If g ∈ G satisfies
gσi = σjh ∈ σjH, then the j-th component of g((l1, . . . , lr)) is h(li).

Since we are assuming that the embedding problem (L/K, πH) is solvable, so must
be (IndG

H(L)/K, π). More precisely, if L̃/K is a solution to (L/K, πH), then one easily
checks that Ind

eGeH(L̃)/K is a solution to (IndG
H(L)/K, π).

Then, because the G-extension S̃C/R is generic for G̃
π→ G over k, there exists a

specialization ϕ : R → K such that the G-extensions IndG
H(L)/K and S̃C ⊗ϕ K/K

are Galois isomorphic.
Let us take v := ϕ(U) ∈ Km.
Note that the (specialised) polynomial F (v;X) ∈ K[X] must be separable, since

its discriminant belongs to ϕ(R∗).
One can show that L is the splitting field of F (v;X) over K as follows (see also

the proof of [1, Thm. 2]).
The elements {γi ⊗ 1}1≤i≤n generate the K-algebra S̃C ⊗ϕ K and they satisfy

F (v;X) =
∏

i(X − (γi ⊗ 1)). Thus, if

f : S̃C ⊗ϕ K
∼=−→ IndG

H(L) = L×
r
^· · · ×L

defines a Galois isomorphism between G-extensions of K, and θi ∈ L denotes the (say)
first component of f(γi ⊗ 1) ∈ L × · · · × L, then L = K[θ1, . . . , θn] and F (v;X) =∏

i(X − θi).
Moreover, the (given) Galois action of H on {θi}i is conjugate in Sn to the fixed

H-action on {1, . . . , n}. In fact, if we choose σ1 = id, then the H-actions on {θi}i

and on {γi}i coincide.
�

Remark 2.9. In accordance with the usual terminology in the case of G-extensions
(see [5]), a generic polynomial for G̃

π→ G over k with property (b) may be called
descent-generic for G̃

π→ G over k.

3. The cases G = An and G = Sn

We first consider, for n ≥ 4, the central extension

1 → {±1} → Ãn
π→ An → 1,

which is the unique non-split extension of the alternating group An by {±1}. As
above, if H is a subgroup of An, then we define H̃ := π−1(H) and πH : H̃ → H

denotes the restriction of π to H̃.
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Theorem 3.1. Let k be a field of characteristic 0. For every odd integer n ≥ 5, the
following properties are equivalent:

(i) There exists a generic extension for Ãn−1 over k.
(ii) There exists a generic extension for Ãn over k.

Proof. In this proof we use the following terminology. Given a characteristic 0 field K,
we say that a separable monic polynomial f(X) ∈ K[X] of degree n is a ∗-polynomial
over K if:

(1) The discriminant of f(X) is a square in K. Equivalently, the Galois group of
f(X) over K is a subgroup H of An.

(2) If Kf/K denotes the (H-extension defined by the) splitting field of f(X) over
K, then the embedding problem (Kf/K, πH) is solvable.

This is equivalent to the vanishing of the two first Stiefel-Whitney invariants of the
(quadratic) trace form Tr(X2) of K[X]/(f(X)) over K (see [17, 33.18]).

In addition, we are going to view monic polynomials as points in affine space.
Namely, a monic polynomial f(X) := Xn + a1X

n−1 + · · · + an ∈ K[X] of degree n
over K will be identified with the point (a1, . . . , an) ∈ An(K).

From Proposition 2.5, it suffices to prove the equivalence between:

(i) There exists a generic polynomial for Ãn−1
π→ An−1 over k.

(ii) There exists a generic polynomial for Ãn
π→ An over k.

(i) ⇒ (ii).
Let F (U ;X) be a generic polynomial for Ãn−1

π→ An−1 over k. We can (and will)
assume that F (U ;X) satisfies properties (a) and (b) of Lemma 2.8 with respect to
An−1 ⊂ Sn−1. In particular, its degree is n− 1.

Recall that, given a monic polynomial
∏

1≤i≤m(X−θi) of degree m, its Tschirnhaus
transformation with respect to a polynomial ϕ(X) of degree < m is the polynomial∏

1≤i≤m(X − ϕ(θi)) (see, e.g., [4, p.141]).
Let S := (S1, . . . , Sn−1) be a set of indeterminates and let us define FS(U ;X) as the

(“generic”) Tschirnhaus transformation of F (U ;X) with respect to the polynomial
ϕS(X) := S1X

n−2 + · · ·+ Sn−2X + Sn−1. That is,

FS(U ;X) = ResY (F (U ;Y ), X − ϕS(Y )) ∈ k(U, S)[X],

where ResY (·, ·) denotes the resultant with respect to Y .
The polynomials FS(U ;X) and F (U ;X) have the same splitting field over k(U, S),

and they satisfy F (U ;X) = Fs(U ;X) for s := (0, . . . , 0, 1, 0). Hence, the polyno-
mial FS(U ;X) ∈ k(U, S)[X] is also generic for Ãn−1

π→ An−1 over k, and satisfies
properties (a) and (b) of Lemma 2.8.

Moreover, FS(U ;X) satisfies the following stronger property:
Every ∗-polynomial f(X) of degree n − 1 over a field K ⊇ k arises
as Fs(v;X), for some v ∈ Km and s ∈ Kn−1.

This is clear since, from property (b) of Lemma 2.8, f(X) must be Tschirnhaus equi-
valent over K to F (v;X) for some v ∈ Km.
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Now, [9] produces a “P (X) − TQ(X) polynomial” corresponding to P (X) =
X.FS(U ;X). We are going to prove that this polynomial is generic for Ãn

π→ An

over k. For this purpose, we rephrase (some of) the properties of Mestre’s construc-
tion [9] as follows (see also [12]).

Let us define H := {(x1, . . . , xn) ∈ An | xn = 0} and let T be an indeterminate.
Then, one deduces from [9] that there exist a Zariski open set W ⊆ An and a rational
map

Θ : An × A1 −→ An,

both defined over Q, with the following properties:
(I) W (Q) ∩H(Q) 6= ∅.

(II) For every field K of characteristic 0 and every f ∈ W (K), f is a separable
polynomial in K[X] and Θ(f, T ) is a (well-defined) separable polynomial in
K(T )[X] such that:

(II.1) Θ(f, T ) ∈ K[T,X] and Θ(f, 0) = f .
(II.2) The trace form of K(T )[X]/(Θ(f, T )) over K(T ) is constant, i.e. it is

K(T )-equivalent to a quadratic form over K.
(II.3) The Galois group of Θ(f, T ) over K(T ) contains An.

(III) Restriction of Θ to H × A1 defines a Q-birational map between H × A1 and
An. Moreover, if we denote its inverse by

(Ψ, λ) : An −→ H × A1,

then Ψ|H = idH , as rational maps.
It may be convenient to mention here that the map Θ above corresponds, with

Mestre’s notation, to the assignment (P (X), T ) 7→ P (X)− TQ(X). In particular, Θ
is linear in T .

Let us denote X.FS(U ;X) simply by G. We claim that Θ(G, T ), as a polynomial
in k(U, S, T )[X], is generic for Ãn

π→ An over k.
First, note that G is a ∗-polynomial over k(U, S) which, as a consequence of prop-

erty (I), must belong to W (k(U, S)). Thus, Θ(G, T ) is a ∗-polynomial over k(U, S, T )
by (II.1) and (II.2), with Galois group An by (II.3).

Secondly, let L/K be a (Ãn
π→ An)-extension of fields containing k.

We can view L/K as the splitting field of some ∗-polynomial f ∈ K[X] of degree
n. Moreover, “Kuyk’s Lemma” (see, e.g., [2, Lemma 3]) shows that the set of such
polynomials is Zariski-dense in An(K).

Hence, we can assume that (Θ ◦ (Ψ, λ))(f) is well-defined and equal to f , and that
Ψ(f) belongs to W (K).

Then, Ψ(f) is a ∗-polynomial over K of degree n by (II). Since Ψ(f) belongs to
H(K), it must be Ψ(f) = X.Fs(v;X), for some v ∈ Km and s ∈ Kn−1. This shows
that f arises by specialization from Θ(G, T ) at (U, S, T ) = (v, s, λ(f)).

(ii) ⇒ (i).
This implication can be proved in a similar (but simpler) manner to the above one,

and the details are left to the reader. We only mention that the equality Ψ|H = idH

in (III) can be used to show that, for a suitable generic polynomial F for Ãn
π→ An

over k, the polynomial 1
X Ψ(F ) must be generic for Ãn−1

π→ An−1 over k.
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In [13], Y. Rikuna gives a generic polynomial for SL2(F3) ∼= Ã4 over Q. We thus
have

Theorem 3.2. There exists a generic extension for SL2(F5) ∼= Ã5 over Q.

Remark 3.3. In [12] we established the analogue of Thm. 3.1 for An (resp. An−1)
instead of Ãn (resp. Ãn−1). In fact, from [12], the following stronger result holds:
for every faithful finite-dimensional linear representation Vn of An (n odd) over a
field k of characteristic 0, the invariant fields k(Vn)An and k(Vn)An−1 are k-stably
isomorphic. We don’t know, however, whether this remains valid when replacing
An (resp. An−1) by Ãn (resp. Ãn−1). If it were, then Q(Ṽ5)

fA5 would be Q-stably
rational for every faithful finite-dimensional linear representation Ṽ5 of Ã5 over Q.
This is because Q(Ṽ5)

fA4 is known to be Q-stably rational by [13, Thm. 5.2]. What
we have proved (Thm. 3.2) is that Q(Ṽ5)

fA5 is Q-retract rational. See, e.g., [15].

Let us finally note that Theorem 3.1 can be generalized as follows.

Theorem 3.4. Let k be a field of characteristic 0. Let n ≥ 3 be an odd positive
integer and let G denote either the alternating group An or the symmetric group Sn.
Let

1 → C → G̃
π→ G → 1

be a finite central extension. Assume that there exists a generic extension for C over
k. In the case G = A7 assume, moreover, that 3 does not divide the order of C. Then,
the following properties are equivalent:

(i) There exists a generic extension for G̃ over k.
(ii) There exists a generic extension for π−1(G ∩ Sn−1) over k.

Proof. We first note that the result is immediate in the case G = A3, G̃ being abelian.
So, from now on we assume G 6= A3.

Note also that, if the given central extension splits, then the result is a direct
consequence of [12] and the following fact: given finite groups G1 and G2, there exists
a generic extension for G1 ×G2 over k if and only if so happens for both G1 and G2

(cf. [14, Thm. 1.5, Thm. 3.1]).
Now, we claim that Thm. 3.4 can be reduced to the case:
(*) C is a 2-group.

This reduction step, which is similar to [6, Thm. 6], can be proved as follows.
Let G̃′ (resp. G′) denote the derived subgroup of G̃ (resp. G). Note that, since we

excluded the case G = A3, we have G′ = An.
Let C2 be the 2-Sylow subgroup of C, which we view as a subgroup of G̃. One

easily checks that it is possible to find an element τ ∈ G̃ such that τ2 ∈ C2 and
< π(τ) > ·G′ = G.

It is well-known that C ∩ G̃′ must be isomorphic to a subgroup of the Schur multi-
plier of G. Because of our extra hypothesis in the case G = A7, it must be C∩G̃′ ⊆ C2.
It follows that, if we define G := C2· < τ > ·G̃′, then C ∩ G = C2. From this, a
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complement C0 of C2 in C must be a (central) complement of G in G̃. Hence, G̃ is
isomorphic to the direct product C0 ×G, and the claim is proved.

Finally, under assumption (*), Theorem 3.4 can be proved analogously to Theorem
3.1. The main point here is that, from [9] and [16, II.Annexe], it follows that in the
proof of Theorem 3.1 one can replace property (II.2) by (II.2)+(II.2)’, where
(II.2)’ Let G be the Galois group of Θ(f, T ) over K(T ) and let LT /K(T ) denote the

corresponding G-extension. Let 1 → C → G̃
π→ G → 1 be a finite central

extension. If 3 does not divide the order of C, then the embedding problem
(LT /K(T ), π) has constant obstruction.

�

Remark 3.5. It is obvious from the given proof that the extra hypothesis in the case
G = A7 can be replaced by the weaker assumption that 3 does not divide the order
of C ∩ G̃′.

Remark 3.6. If G̃ is a finite central extension of S3, then π−1(S2) is an abelian group
which contains a 2-Sylow subgroup of G̃. Hence, as a direct consequence of Thm.
3.4, there exists a generic extension for G̃ over Q if and only if G̃ does not contain an
element of order 8.
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