ON YAU RIGIDITY THEOREM FOR MINIMAL SUBMANIFOLDS IN SPHERES

Juan-Ru Gu and Hong-Wei Xu

ABSTRACT. In this paper, we investigate the well-known Yau rigidity theorem for minimal submanifolds in spheres. Using the parameter method of Yau and the DDVV inequality verified by Lu and Ge–Tang, we prove that if M is an n-dimensional oriented compact minimal submanifold in the unit sphere S^{n+p} , and if $K_M \geq \frac{p \cdot sgn(p-1)}{2(p+1)}$, then M is either a totally geodesic sphere, one of the Clifford minimal hypersurfaces in S^{n+1} , or the Veronese surface in S^4 . Here $\mathrm{sgn}(\cdot)$ is the standard sign function. We also extend the rigidity theorem above to the case where M is a compact submanifold with parallel mean curvature in a space form.

1. Introduction

Rigidity of minimal submanifolds plays an important role in submanifold geometry. After the pioneering rigidity theorem proved by Simons [24], a series of striking rigidity results for minimal submanifolds were proved by several geometers [2,14,29]. Let M^n be an n-dimensional compact Riemannian manifold isometrically immersed into an (n+p)-dimensional complete and simply connected Riemannian manifold $F^{n+p}(c)$ with constant curvature c. Denote by K_M and H the sectional curvature and mean curvature of M, respectively. In 1975, Yau [29] proved the following celebrated rigidity theorem for minimal submanifolds in spheres under sectional curvature pinching condition.

Theorem A. Let M be an n-dimensional oriented compact minimal submanifold in the unit sphere S^{n+p} . If $K_M \geq \frac{p-1}{2p-1}$, then M is either a totally geodesic sphere, one of the Clifford minimal hypersurfaces $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$ in S^{n+1} for $k = 1, \ldots, n-1$, or the Veronese surface in S^4 .

The pinching constant above is the best possible in the case where p=1, or n=2 and p=2. It improves the pinching constant of Simons [24] even though the latter is in the sense of the average of sectional curvatures. Later, Itoh [12,13] proved that if M^n is an oriented compact minimal submanifold in S^{n+p} whose sectional curvature satisfies $K_M \geq \frac{n}{2(n+1)}$, then M is the totally geodesic sphere or the Veronese submanifold. Further discussions in this direction have been carried out by many authors [5,15,22,26–28], etc. Even though, the following important problem remains unsolved.

Received by the editors May 5, 2011.

²⁰¹⁰ Mathematics Subject Classification. 53C24; 53C40; 53C42.

Key words and phrases. Minimal submanifold, Yau rigidity theorem, sectional curvature, mean curvature.

Open Problem B. What is the best pinching constant for the rigidity theorem for oriented compact minimal submanifolds in a unit sphere under sectional (Ricci, scalar, resp.) curvature pinching condition?

In particular, Lu's conjecture (see Conjecture 4 in [20]), a scalar curvature pinching problem for minimal submanifolds in a unit sphere, has not been verified yet. In this paper, using Yau's parameter method [29] and the DDVV inequality proved by Lu [20] Ge—Tang [7], we prove the following rigidity theorem for minimal submanifolds in spheres.

Theorem 1. Let M be an n-dimensional oriented compact minimal submanifold in the unit sphere S^{n+p} . If

$$K_M \ge \frac{p \cdot sgn(p-1)}{2(p+1)},$$

then M is either a totally geodesic sphere, one of the Clifford minimal hypersurfaces $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$ in S^{n+1} for k = 1, ..., n-1, or the Veronese surface in S^4 . Here $sgn(\cdot)$ is the standard sign function.

Remark 1. When 2 , our pinching constant in Theorem 1 improves the ones given by Yau [29] and Itoh [13].

Generalizing Theorem 1, we obtain the following rigidity result for submanifolds with parallel mean curvature in space forms.

Theorem 2. Let M be an n-dimensional oriented compact submanifold with parallel mean curvature $(H \neq 0)$ in $F^{n+p}(c)$. If $c + H^2 > 0$ and

$$K_M \ge \frac{(p-1) \cdot sgn(p-2)}{2p} (c + H^2),$$

then M is congruent to one of the following:

- (i) $S^n(\frac{1}{\sqrt{c+H^2}});$
- (ii) one of the Clifford hypersurfaces $S^k(\frac{1}{\sqrt{c+\lambda^2(k,n,H,c)}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}})$ in $F^{n+1}(c)$ with c>0, where $\lambda(k,n,H,c)=\frac{1}{2k}[nH+\sqrt{n^2H^2+4k(n-k)c}],$ $k=1,\ldots,n-1;$
- (iii) one of the Clifford minimal hypersurfaces $S^{k}(\sqrt{\frac{k}{n(c+H^{2})}}) \times S^{n-k}(\sqrt{\frac{n-k}{n(c+H^{2})}}) \quad in \quad F^{n+1}(c+H^{2}), \quad k=1,\ldots,n-1;$ (iv) the Clifford torus $S^{1}(r_{1}) \times S^{1}(r_{2})$ in $F^{3}(c+H^{2}-H_{0}^{2})$ with constant mean
- (iv) the Clifford torus $S^1(r_1) \times S^1(r_2)$ in $F^3(c+H^2-H_0^2)$ with constant mean curvature H_0 , where $r_1, r_2 = [2(c+H^2) \pm 2H_0(c+H^2)^{1/2}]^{-1/2}$, $0 \le H_0 \le H$, and $c+H^2-H_0^2 > 0$;
- (v) the Veronese surface in $F^4(c+H^2)$;
- (vi) the product of three spheres $S^{k_1}(\sqrt{\frac{k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{k-k_1}(\sqrt{\frac{k-k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}}) \ in \\ F^{n+2}(c) \ with \ c > 0, \ \ where \\ \lambda(k,n,H,c) = \frac{1}{2k}[nH + \sqrt{n^2H^2 + 4k(n-k)c}], \ 1 \le k_1 < k \le n-1.$

2. Notations and lemmas

Throughout this paper, let M^n be an n-dimensional compact Riemannian manifold isometrically immersed into an (n+p)-dimensional complete and simply connected space form $F^{n+p}(c)$. We shall make use of the following convention on the range of indices:

$$1 \le A, B, C, \ldots \le n + p; \ 1 \le i, j, k, \ldots \le n; \ n + 1 \le \alpha, \beta, \gamma, \ldots \le n + p.$$

We let $\{e_A\}$ be local orthonormal frames in $F^{n+p}(c)$ such that, restricted to M, the e_i 's are tangent to M. Let $\{\omega_A\}$ and $\{\omega_{AB}\}$ be the dual frame field and the connection 1-forms of $F^{n+p}(c)$ respectively. Restricting these forms to M, we have

(2.1)
$$\omega_{\alpha i} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, h_{ij}^{\alpha} = h_{ji}^{\alpha},$$

$$h = \sum_{\alpha, i, j} h_{ij}^{\alpha} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha}, \xi = \frac{1}{n} \sum_{\alpha, i} h_{ii}^{\alpha} e_{\alpha},$$

$$R_{ijkl} = c(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}) + \sum_{\alpha} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$R_{\alpha\beta kl} = \sum_{i} (h_{ik}^{\alpha} h_{il}^{\beta} - h_{il}^{\alpha} h_{ik}^{\beta}),$$

where h, ξ, R_{ijkl} , and $R_{\alpha\beta kl}$ are the second fundamental form, the mean curvature vector, the curvature tensor and the normal curvature tensor of M, respectively. We define

$$S = |h|^2, \ H = |\xi|, \ H_{\alpha} = (h_{ij}^{\alpha})_{n \times n}.$$

The scalar curvature R of M is given by

(2.2)
$$R = n(n-1)c + n^2H^2 - S.$$

Denote $K_M(p,\pi)$ the sectional curvature of M for 2-plane $\pi \subset T_pM$ at point $p \in M$. Set $K_{\min}(p) = \min_{\pi \subset T_pM} K_M(p,\pi)$. From [29], we have the following lemma.

Lemma 1. If M^n is a submanifold with parallel mean curvature and positive sectional curvature in $F^{n+p}(c)$, then M is pseudo-umbilical.

Let M be a submanifold with parallel mean curvature vector ξ . Choose e_{n+1} such that it is parallel to ξ . Then we have

(2.3)
$$\operatorname{tr} H_{n+1} = nH, \quad \operatorname{tr} H_{\alpha} = 0, \quad \alpha \neq n+1.$$

Set

(2.4)
$$S_H = \operatorname{tr} H_{n+1}^2, \quad S_I = \sum_{\alpha \neq n+1} \operatorname{tr} H_{\alpha}^2.$$

If M is pseudo-umbilical and $H \neq 0$,

$$(2.5) S_H = \operatorname{tr} H_{n+1}^2 = nH^2.$$

Denoting the first and second covariant derivatives of h_{ij}^{α} by h_{ijk}^{α} and h_{ijkl}^{α} , respectively. Then by definition

$$\begin{split} & \sum_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} - \sum_{k} h_{ik}^{\alpha} \omega_{kj} - \sum_{k} h_{kj}^{\alpha} \omega_{ki} - \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha}, \\ & \sum_{l} h_{ijkl}^{\alpha} \omega_{l} = dh_{ijk}^{\alpha} - \sum_{l} h_{ijl}^{\alpha} \omega_{lk} - \sum_{l} h_{ilk}^{\alpha} \omega_{lj} - \sum_{l} h_{ljk}^{\alpha} \omega_{li} - \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta\alpha}. \end{split}$$

In particular, we have

$$\begin{split} h_{ijk}^{\alpha} &= h_{ikj}^{\alpha}, \quad h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{m} h_{mj}^{\alpha} R_{mikl} - \sum_{\beta} h_{ij}^{\beta} R_{\alpha\beta kl}, \\ \Delta h_{ij}^{\alpha} &= \sum_{i} h_{ijkk}^{\alpha} \end{split}$$

$$(2.6) \qquad = \sum_{k} h_{kkij}^{\alpha} + \sum_{k} \left(\sum_{m} h_{km}^{\alpha} R_{mijk} + \sum_{m} h_{mi}^{\alpha} R_{mkjk} - \sum_{\beta} h_{ki}^{\beta} R_{\alpha\beta jk} \right).$$

The following lemma will be used in the proof of our main results.

Lemma 2 ([29]). If M^n is a submanifold with parallel mean curvature in $F^{n+p}(c)$, then either $H \equiv 0$, or H is non-zero constant and $H_{n+1}H_{\alpha} = H_{\alpha}H_{n+1}$ for all α .

For an $(n \times n)$ -matrix $A = (a_{ij})$, we denote by N(A) the square of the norm of A, i.e.,

$$N(A) = \text{tr}(AA^T) = \sum_{i,j=1}^{n} a_{ij}^2.$$

Then the DDVV inequality proved by Lu [20] and Ge-Tang [7] is stated as follows.

DDVV inequality. Let B_1, \ldots, B_m be symmetric $(n \times n)$ -matrices. Then

(2.7)
$$\sum_{r,s=1}^{m} N(B_r B_s - B_s B_r) \le \left[\sum_{r=1}^{m} N(B_r)\right]^2,$$

where the equality holds if and only if under some rotation¹ all B_r 's are zero except two matrices, which can be written as

$$\tilde{B}_{1} = P \begin{pmatrix} 0 & \mu & 0 & \cdots & 0 \\ \mu & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} P^{t}, \quad \tilde{B}_{2} = P \begin{pmatrix} \mu & 0 & 0 & \cdots & 0 \\ 0 & -\mu & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} P^{t}.$$

Here P is an orthogonal $(n \times n)$ -matrix.

For further discussions about the DDVV inequality, we refer to see [3,4,7,8,17–20].

¹An orthogonal $m \times m$ matrix $R = (R_{rs})$ acts as a rotation on (B_1, \ldots, B_m) by $(\tilde{B}_1, \ldots, \tilde{B}_m) = (B_1, \ldots, B_m)R$.

3. Proof of the theorems

When M^n is a minimal submanifold in S^{n+p} , we have $\operatorname{tr} H_{\alpha} = 0$ and $\sum_i h_{iikl}^{\alpha} = 0$ for all α . Consequently, from (2.6), we have

(3.1)
$$\Delta h_{ij}^{\alpha} = \sum_{k,m} h_{km}^{\alpha} R_{mijk} + \sum_{k,m} h_{mi}^{\alpha} R_{mkjk} - \sum_{k,\beta} h_{ki}^{\beta} R_{\alpha\beta jk}.$$

Thus

$$(3.2) \quad \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = \sum_{i,j,k,m,\alpha} (h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk}) - \sum_{i,j,k,\alpha,\beta} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta jk}.$$

Proof of Theorem 1. By using (2.1), we obtain

$$\begin{split} & \sum_{i,j,k,m,\alpha} h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + \sum_{i,j,k,m,\alpha} h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk} \\ & = nS + \sum_{\alpha,\beta} \operatorname{tr} H_{\beta} \cdot \operatorname{tr} (H_{\alpha}^{2} H_{\beta}) - \sum_{\alpha,\beta} [\operatorname{tr} (H_{\alpha} H_{\beta})]^{2} - \sum_{\alpha,\beta} [\operatorname{tr} (H_{\alpha}^{2} H_{\beta}^{2}) - \operatorname{tr} (H_{\alpha} H_{\beta})^{2}], \end{split}$$

and

$$\sum_{i,j,k,\alpha,\beta} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta jk} = \sum_{\alpha,\beta} [\operatorname{tr}(H_{\alpha}^{2} H_{\beta}^{2}) - \operatorname{tr}(H_{\alpha} H_{\beta})^{2}].$$

Since $(\operatorname{tr}(H_{\alpha}H_{\beta}))$ is a symmetric $(p \times p)$ -matrix, we can choose the normal frame fields $\{e_{\alpha}\}$ such that

$$\operatorname{tr}(H_{\alpha}H_{\beta}) = \operatorname{tr}H_{\alpha}^{2} \cdot \delta_{\alpha\beta}$$

Thus, we have

(3.3)
$$\sum_{\alpha,\beta} [\operatorname{tr}(H_{\alpha}H_{\beta})]^2 = \sum_{\alpha} (\operatorname{tr}H_{\alpha}^2)^2.$$

From above equalities, we obtain

$$(3.4) \qquad \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = -anS + (1+a) \sum_{i,j,k,m,\alpha} (h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk})$$
$$+ (a-1) \sum_{\alpha,\beta} [\operatorname{tr}(H_{\alpha}^{2} H_{\beta}^{2}) - \operatorname{tr}(H_{\alpha} H_{\beta})^{2}] + a \sum_{\alpha,\beta} (\operatorname{tr}H_{\alpha}^{2})^{2}$$

for any real number a. For a fixed α , we choose the orthonormal frame fields $\{e_i\}$ such that $h_{ij}^{\alpha} = \lambda_i^{\alpha} \delta_{ij}$. Then, using the trick used by Yau [29], we obtain

$$(3.5) \sum_{i,j,k,m} h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + \sum_{i,j,k,m} h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk} = \sum_{i,k} \lambda_{i}^{\alpha} \lambda_{k}^{\alpha} R_{kiik} + \sum_{i,k} \lambda_{i}^{\alpha} \lambda_{i}^{\alpha} R_{ikik}$$

$$= \frac{1}{2} \sum_{i,j} (\lambda_{i}^{\alpha} - \lambda_{j}^{\alpha})^{2} R_{ijij}$$

$$\geq \frac{1}{2} K_{\min} \sum_{i,j} (\lambda_{i}^{\alpha} - \lambda_{j}^{\alpha})^{2}$$

$$= n K_{\min} (\operatorname{tr} H_{\alpha}^{2}),$$

which implies that

(3.6)
$$\sum_{i,j,k,m,\alpha} h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + \sum_{i,j,k,m,\alpha} h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk} \ge n K_{\min} S.$$

On the other hand, by a direct computation and the DDVV inequality, we obtain

(3.7)
$$\sum_{\alpha,\beta} \operatorname{tr}(H_{\alpha}^{2}H_{\beta}^{2}) - \operatorname{tr}(H_{\alpha}H_{\beta})^{2} = \frac{1}{2} \sum_{\alpha,\beta} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})$$
$$\leq \frac{1}{2} \operatorname{sgn}(p-1) \Big(\sum_{\alpha} \operatorname{tr}H_{\alpha}^{2} \Big)^{2}$$
$$= \frac{1}{2} \operatorname{sgn}(p-1)S^{2},$$

where $\operatorname{sgn}(\cdot)$ is the standard sign function. It follows from (3.4), (3.6) and (3.7) that

$$\frac{1}{2}\Delta S = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 + \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha}$$

$$(3.8) \geq \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 - anS + (1+a)nK_{\min}S + \left[\frac{a}{p} + \frac{\operatorname{sgn}(p-1)}{2}(a-1)\right]S^2$$

for $0 \le a < 1$. Taking $a = \operatorname{sgn}(p-1) \frac{p}{p+2}$, we obtain

$$\frac{1}{2}\Delta S \ge nS\left[\left(1 + \operatorname{sgn}(p-1)\frac{p}{p+2}\right)K_{\min} - \operatorname{sgn}(p-1)\frac{p}{p+2}\right].$$

By the assumption and the maximum principle, S is a constant, and

$$S\left[\left(1+\operatorname{sgn}(p-1)\frac{p}{p+2}\right)K_{\min}-\operatorname{sgn}(p-1)\frac{p}{p+2}\right]=0.$$

If there is a point $q \in M$ such that $K_{\min}(q) > \frac{p \cdot \operatorname{sgn}(p-1)}{2(p+1)}$, then S = 0, i.e., M is totally geodesic. If $K_{\min} \equiv \frac{p \cdot \operatorname{sgn}(p-1)}{2(p+1)}$, then inequalities in (3.6), (3.7) and (3.8) become equalities. From the DDVV inequality, we obtain $p \leq 2$. This together with Theorem A implies that M is either one of the Clifford minimal hypersurfaces $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$ in S^{n+1} for $k = 1, \ldots, n-1$, or the Veronese surface in S^4 . This completes the proof of Theorem 1.

Similar to (3.1) and (3.2), when M^n is a submanifold with parallel mean curvature in $F^{n+p}(c)$, we have $\xi = He_{n+1}$, and $\sum_i h_{iikl}^{\alpha} = 0$ for $\alpha \neq n+1$. It follows from (2.6) and Lemma 2 that

$$(3.9) \qquad \Delta h_{ij}^{\alpha} = \sum_{k,m} h_{km}^{\alpha} R_{mijk} + \sum_{k,m} h_{mi}^{\alpha} R_{mkjk} - \sum_{k,\beta \neq n+1} h_{ki}^{\beta} R_{\alpha\beta jk}, \quad \alpha \neq n+1.$$

Thus

(3.10)
$$\sum_{i,j,\alpha\neq n+1} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} = \sum_{i,j,k,m,\alpha\neq n+1} (h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk}) - \sum_{i,j,k,\alpha,\beta\neq n+1} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta jk}.$$

Before the proof of Theorem 2, we give the following lemma first.

Lemma 3. Let M be an n-dimensional oriented compact submanifold with parallel mean curvature $(H \neq 0)$ in $F^{n+p}(c)$ with $p \leq 2$. If $c + H^2 > 0$ and $K_M \geq 0$, then M is congruent to one of the following:

- (i) $S^n(\frac{1}{\sqrt{c+H^2}});$
- (ii) one of the Clifford hypersurfaces $S^{k}(\frac{1}{\sqrt{c+\lambda^{2}(k,n,H,c)}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^{2}+c\lambda^{2}(k,n,H,c)}}) \text{ in } F^{n+1}(c) \text{ with } c > 0,$ where $\lambda(k,n,H,c) = \frac{1}{2k}[nH + \sqrt{n^{2}H^{2} + 4k(n-k)c}], k = 1,...,n-1;$
- (iii) one of the Clifford minimal hypersurfaces $S^{k}(\sqrt{\frac{k}{n(c+H^{2})}}) \times S^{n-k}(\sqrt{\frac{n-k}{n(c+H^{2})}}) \text{ in } F^{n+1}(c+H^{2}), \ k=1,\ldots,n-1;$
- (iv) the Clifford torus $S^1(r_1) \times S^1(r_2)$ in $F^3(c+H^2-H_0^2)$ with constant mean curvature H_0 , where $r_1, r_2 = [2(c+H^2) \pm 2H_0(c+H^2)^{1/2}]^{-1/2}$, $0 \le H_0 \le H$, and $c+H^2-H_0^2 > 0$;
- $(v) \ \ the \ product \ of \ three \ spheres \\ S^{k_1}(\sqrt{\frac{k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{k-k_1}(\sqrt{\frac{k-k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}}) \\ \ \ in \ F^{n+2}(c) \ \ with \ c>0, \ \ where \\ \lambda(k,n,H,c) = \frac{1}{2k}[nH + \sqrt{n^2H^2 + 4k(n-k)c}], \ 1 \leq k_1 < k \leq n-1.$

Proof. When p=1, M is a compact hypersurface with nonzero constant mean curvature and non-negative sectional curvature in $F^{n+1}(c)$. In this case, Lemma 3 was proved by Nomizu and Smyth [21] for $c\geq 0$ and by Walter [25] for c<0, i.e., M is either a totally umbilical sphere, or one of the Clifford hypersurfaces $S^k(\frac{1}{\sqrt{c+\lambda^2(k,n,H,c)}})\times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}})$ in $F^{n+1}(c)$ with c>0, where

$$\lambda(k, n, H, c) = \frac{1}{2k} [nH + \sqrt{n^2 H^2 + 4k(n - k)c}], \quad k = 1, \dots, n - 1.$$

When p = 2, we have $K_M \ge 0$ and $H = \text{constant} \ne 0$.

If n=2, we know from Theorem 4 in [29] that M is a surface in $F^3(c+H^2-H_0^2)$ with constant mean curvature H_0 . A direct computation shows that M is either a totally umbilical sphere, or the Clifford torus $S^1(r_1) \times S^1(r_2)$ in $F^3(c+H^2-H_0^2)$ with constant mean curvature H_0 . Here $0 \le H_0 \le H$, $c+H^2-H_0^2 > 0$, and $r_1, r_2 = [2(c+H^2) \pm 2H_0(c+H^2)^{1/2}]^{-1/2}$.

If $n \geq 3$, it follows from Lemma 2 that the matrices H_{n+1} and H_{n+2} can be diagonalized simultaneously. Let $\{e_i\}$ be a frame such that

(3.11)
$$h_{ij}^{n+1} = \lambda_i^{n+1} \delta_{ij}, h_{ij}^{n+2} = \lambda_i^{n+2} \delta_{ij}$$

for all i, j. It is seen from Theorem 9 in [29] that M is either a minimal hypersurface in the totally umbilical hypersurface $F^{n+1}(c+H^2)$, or $M = M_1 \times M_2$, where M_i is a minimal hypersurface in a totally umbilical submanifold N_i of $F^{n+2}(c)$ for i = 1, 2.

For the first case, it follows from Theorem 1 that M is either the totally umbilical sphere $S^n(\frac{1}{\sqrt{c+H^2}})$, or one of the Clifford minimal hypersurfaces $S^k(\sqrt{\frac{k}{n(c+H^2)}}) \times S^{n-k}(\sqrt{\frac{n-k}{n(c+H^2)}})$ in $F^{n+1}(c+H^2)$ for $k=1,\ldots,n-1$.

For the second case, we see from (2.6), (3.11) and the assumption that

$$\frac{1}{2}\Delta S_H = \sum_{i,j,k} (h_{ijk}^{n+1})^2 + \sum_{i,j} h_{ij}^{n+1} \Delta h_{ij}^{n+1}
\geq \sum_{i,j,k,m} h_{ij}^{n+1} h_{km}^{n+1} R_{mijk} + \sum_{i,j,k,m} h_{ij}^{n+1} h_{mi}^{n+1} R_{mkjk}
= \frac{1}{2} \sum_{i,j} (\lambda_i^{n+1} - \lambda_j^{n+1})^2 R_{ijij}
\geq 0.$$

This together with the maximum principle implies that $R_{ijij} = 0$ for $\lambda_i^{n+1} \neq \lambda_j^{n+1}$, $1 \leq i, j \leq n$. Moreover, it follows from the proof of Theorem 9 in [29] that $\lambda_1^{n+1} = \cdots = \lambda_k^{n+1} = \lambda$, $\lambda_{k+1}^{n+1} = \cdots = \lambda_n^{n+1} = \mu$, where $\lambda \neq \mu$, $1 \leq k \leq n-1$. Then we see from the Guass equation that

$$(3.12) R_{ijij} = c + \lambda \mu + \lambda_i^{n+2} \lambda_i^{n+2} = 0$$

for i = 1, ..., k and j = k + 1, ..., n.

If $\lambda_i^{n+2}=0$ for $i=1,\ldots,n$, then M lies in $F^{n+1}(c)$, and $\lambda=\lambda(k,n,H,c)$. It follows from a theorem due to Nomizu and Smyth [21] and Walter [25] that M is one of the Clifford hypersurfaces $S^k(\frac{1}{\sqrt{c+\lambda^2(k,n,H,c)}})\times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}})$ in $F^{n+1}(c)$ with c>0 for $k=1,\ldots,n-1$.

If $\operatorname{tr} H_{n+2}^2 \neq 0$, without loss of generality, we assume that $\lambda_1^{n+2} \neq 0$. This together with (3.12) implies that $\lambda_i^{n+2} = \lambda_j^{n+2}$ for $i,j=k+1,\ldots,n$. Since M_2 is a minimal hypersurface in N_2 , we have $\sum_{i=k+1}^n \lambda_i^{n+2} = 0$. Thus, we get $\lambda_i^{n+2} = 0$ for $i=k+1,\ldots,n$, and M_2 is a totally geodesic hypersurface in N_2 . Moreover, we have $c+\lambda\mu=0$. Note that $k\lambda+(n-k)\mu=nH$. A direct computation shows that

$$\lambda = \lambda(k, n, H, c) = \frac{1}{2k} [nH + \sqrt{n^2H^2 + 4k(n-k)c}], 2 \le k \le n - 1.$$

Hence, $N_1 = S^{k+1}(\frac{1}{\sqrt{c+\lambda^2(k,n,H,c)}})$, $N_2 = S^{n-k+1}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}})$ and c>0. Since M_1 is a minimal hypersurface in $S^{k+1}(\frac{1}{\sqrt{c+\lambda^2(k,n,H,c)}})$ with $K_{M_1} \geq 0$, it follows from Theorem 1 and the assumption that M_1 is congruent to $S^{k_1}(\sqrt{\frac{k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{k-k_1}(\sqrt{\frac{k-k_1}{k(c+\lambda^2(k,n,H,c))}})$ for $1 \leq k_1 < k$. Therefore, M is the product of three spheres $S^{k_1}(\sqrt{\frac{k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{k-k_1}(\sqrt{\frac{k-k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{k-k_1}(\sqrt{\frac{k-k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}})$ in $F^{n+2}(c)$ with c>0, where $1 \leq k_1 < k \leq n-1$.

This proves Lemma 3.

Proof of Theorem 2. Applying (2.1), we obtain

$$\begin{split} & \sum_{i,j,k,m,\alpha \neq n+1} h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + \sum_{i,j,k,m,\alpha \neq n+1} h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk} \\ &= ncS_I + \sum_{\alpha \neq n+1,\beta} \mathrm{tr} H_{\beta} \cdot \mathrm{tr} (H_{\alpha}^2 H_{\beta}) - \sum_{\alpha \neq n+1,\beta} [\mathrm{tr} (H_{\alpha} H_{\beta})]^2 \\ & - \sum_{\alpha,\beta \neq n+1} [\mathrm{tr} (H_{\alpha}^2 H_{\beta}^2) - \mathrm{tr} (H_{\alpha} H_{\beta})^2], \end{split}$$

and

$$\sum_{i,j,k,\alpha,\beta\neq n+1} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta jk} = \sum_{\alpha,\beta\neq n+1} [\operatorname{tr}(H_{\alpha}^{2} H_{\beta}^{2}) - \operatorname{tr}(H_{\alpha} H_{\beta})^{2}].$$

Since $\alpha, \beta \neq n+1$, $(\operatorname{tr}(H_{\alpha}H_{\beta}))$ is a symmetric $(p-1) \times (p-1)$ -matrix. We choose the normal vector fields $\{e_{\alpha}\}_{\alpha \neq n+1}$ such that

$$\operatorname{tr}(H_{\alpha}H_{\beta}) = \operatorname{tr}H_{\alpha}^{2} \cdot \delta_{\alpha\beta},$$

which implies

(3.13)
$$\sum_{\alpha,\beta\neq n+1} [\operatorname{tr}(H_{\alpha}H_{\beta})]^2 = \sum_{\alpha\neq n+1} (\operatorname{tr}H_{\alpha}^2)^2.$$

For any real number a, we have

(3.14)

$$\begin{split} \sum_{i,j,\alpha\neq n+1} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} &= (1+a) \sum_{i,j,k,m,\alpha\neq n+1} (h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk}) - ancS_I \\ &+ (a-1) \sum_{\alpha,\beta\neq n+1} [\operatorname{tr}(H_{\alpha}^2 H_{\beta}^2) - \operatorname{tr}(H_{\alpha} H_{\beta})^2] + a \sum_{\alpha\neq n+1} (\operatorname{tr}H_{\alpha}^2)^2 \\ &+ a \left\{ - \sum_{\alpha\neq n+1} \operatorname{tr}(H_{\alpha}^2 H_{n+1}) \cdot \operatorname{tr}H_{n+1} + \sum_{\alpha\neq n+1} [\operatorname{tr}(H_{\alpha} H_{n+1})]^2 \right\}. \end{split}$$

When $p \leq 2$, the assertion follows from Lemma 3.

When $p \geq 3$, it follows from Lemma 1 and the assumption that M is pseudo-umbilical, i.e., $h_{ij}^{n+1} = H\delta_{ij}$. Hence, we have

(3.15)
$$\sum_{\alpha \neq n+1} \operatorname{tr}(H_{\alpha}^{2}H_{n+1}) \cdot \operatorname{tr}H_{n+1} - \sum_{\alpha \neq n+1} \left[\operatorname{tr}(H_{\alpha}H_{n+1})\right]^{2}$$

$$= \sum_{i,j,k,m,\alpha \neq n+1} h_{ij}^{\alpha}h_{mi}^{\alpha}h_{mj}^{n+1}h_{kk}^{n+1} - \sum_{i,j,k,m,\alpha \neq n+1} h_{ij}^{\alpha}h_{km}^{\alpha}h_{mk}^{n+1}h_{ij}^{n+1}$$

$$= nH^{2} \sum_{i,j,\alpha \neq n+1} (h_{ij}^{\alpha})^{2} - H^{2} \sum_{\alpha \neq n+1} (\operatorname{tr}H_{\alpha})^{2}$$

$$= nH^{2}S_{I}.$$

On the other hand, we get from (3.5)

(3.16)
$$\sum_{i,j,k,m,\alpha\neq n+1} h_{ij}^{\alpha} h_{km}^{\alpha} R_{mijk} + \sum_{i,j,k,m,\alpha\neq n+1} h_{ij}^{\alpha} h_{mi}^{\alpha} R_{mkjk} \ge n K_{\min} S_I.$$

By a direct computation and the DDVV inequality, we obtain

(3.17)
$$\sum_{\alpha,\beta\neq n+1} \operatorname{tr}(H_{\alpha}^{2}H_{\beta}^{2}) - \operatorname{tr}(H_{\alpha}H_{\beta})^{2} = \frac{1}{2} \sum_{\alpha,\beta\neq n+1} N(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})$$

$$\leq \frac{1}{2} \left(\sum_{\alpha\neq n+1} \operatorname{tr}H_{\alpha}^{2}\right)^{2}$$

$$= \frac{1}{2} S_{I}^{2}.$$

It follows from (3.14)–(3.17) that

$$(3.18) \quad \frac{1}{2}\Delta S_{I} = \sum_{i,j,k,\alpha\neq n+1} (h_{ijk}^{\alpha})^{2} + \sum_{i,j,\alpha\neq n+1} h_{ij}^{\alpha}\Delta h_{ij}^{\alpha}$$

$$\geq (1+a)nK_{\min}S_{I} + a\sum_{\alpha\neq n+1} (\operatorname{tr}H_{\alpha}^{2})^{2} + \frac{1}{2}(a-1)S_{I}^{2} - an(c+H^{2})S_{I}$$

$$\geq (1+a)nK_{\min}S_{I} + \left(\frac{a}{p-1} + \frac{a-1}{2}\right)S_{I}^{2} - an(c+H^{2})S_{I}$$

$$= S_{I}\left[(1+a)nK_{\min} + \left(\frac{a}{p-1} + \frac{a-1}{2}\right)S_{I} - an(c+H^{2})\right]$$

for $0 \le a < 1$. Taking $a = \frac{p-1}{p+1}$, we get

$$\frac{1}{2}\Delta S_I \ge nS_I[(1+a)K_{\min} - a(c+H^2)]$$

$$= nS_I\left[\left(1 + \frac{p-1}{p+1}\right)K_{\min} - \frac{p-1}{p+1}(c+H^2)\right].$$

It follows from the assumption and the maximum principle that S_I is a constant, and

$$S_I\left[\left(1 + \frac{p-1}{p+1}\right)K_{\min} - \frac{p-1}{p+1}(c+H^2)\right] = 0.$$

If there is a point $q \in M$ such that $K_{\min}(q) > \frac{(p-1)(c+H^2)}{2p}$, then $S_I = 0$. It follows from the codimension reduction theorem due to Erbacher [6] that M is a compact hypersurface with non-zero constant mean curvature and positive sectional curvature in the totally geodesic submanifold $F^{n+1}(c)$. Therefore, M is the totally umbilical sphere $S^n(\frac{1}{\sqrt{c+H^2}})$.

If $K_{\min} \equiv \frac{(p-1)(c+H^2)}{2p}$, then inequalities in (3.16)–(3.18) become equalities. This, together with the DDVV inequality, implies that p=3 and $K_{\min}=\frac{c+H^2}{3}$. Taking a=0 in (3.18), we get $S_I=\frac{2n}{3}(c+H^2)$. By the same argument as in [2], we conclude that n=2. Hence, $K_M=\frac{c+H^2}{3}$ and M is the Veronese surface in $F^4(c+H^2)$. This completes the proof of Theorem 2.

Combing Theorems 1, 2 and rigidity results in [13, 22, 28], we present a general version of the Yau rigidity theorem.

Generalized Yau rigidity theorem. Let M be an n-dimensional oriented compact submanifold with parallel mean curvature in $F^{n+p}(c)$, where $c+H^2 > 0$. Set $\tau(m,n) =$

 $\min\{m \cdot sgn(m-1), n\}$. Then we have

(1) if H = 0 and

$$K_M \ge \frac{\tau(p,n)c}{2[\tau(p,n)+1]},$$

then M is either a totally geodesic sphere, one of the Clifford minimal hypersurfaces $S^k(\sqrt{\frac{k}{nc}}) \times S^{n-k}(\sqrt{\frac{n-k}{nc}})$ in $F^{n+1}(c)$ for $k=1,\ldots,n-1$, or the Veronese submanifold in $F^{n+d}(c)$, where $d=\frac{1}{2}n(n+1)-1$; (2) if $H \neq 0$ and

$$K_M \ge \frac{\tau(p-1,n)(c+H^2)}{2[\tau(p-1,n)+1]},$$

then M is congruent to one of the following:

- (i) $S^n(\frac{1}{\sqrt{c+H^2}});$
- (ii) one of the Clifford hypersurfaces $S^{k}(\frac{1}{\sqrt{c+\lambda^{2}(k,n,H,c)}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^{2}+c\lambda^{2}(k,n,H,c)}}) \text{ in } F^{n+1}(c) \text{ with } c > 0,$ where $\lambda(k,n,H,c) = \frac{1}{2k}[nH + \sqrt{n^{2}H^{2} + 4k(n-k)c}], k = 1,\ldots,n-1;$
- (iii) one of the Clifford minimal hypersurfaces $S^{k}(\sqrt{\frac{k}{n(c+H^{2})}}) \times S^{n-k}(\sqrt{\frac{n-k}{n(c+H^{2})}}) \text{ in } F^{n+1}(c+H^{2}), \ k=1,\ldots,n-1;$
- (iv) the Clifford torus $S^1(r_1) \times S^1(r_2)$ in $F^3(c + H^2 H_0^2)$ with constant mean curvature H_0 , where $r_1, r_2 = [2(c + H^2) \pm 2H_0(c + H^2)^{1/2}]^{-1/2}$, $0 \le H_0 \le H$, and $c + H^2 H_0^2 > 0$;
- (v) the Veronese submanifold in $F^{n+d}(c+H^2)$, where $d=\frac{1}{2}n(n+1)-1$;
- (vi) the product of three spheres $S^{k_1}(\sqrt{\frac{k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{k-k_1}(\sqrt{\frac{k-k_1}{k(c+\lambda^2(k,n,H,c))}}) \times S^{n-k}(\frac{\lambda(k,n,H,c)}{\sqrt{c^2+c\lambda^2(k,n,H,c)}})$ in $F^{n+2}(c)$ with c>0, where $\lambda(k,n,H,c) = \frac{1}{2k}[nH + \sqrt{n^2H^2 + 4k(n-k)c}], 1 \le k_1 < k \le n-1.$

Recently Andrews and Baker [1] generalized a weaker version of Huisken's convergence theorem [10] for mean curvature flow of convex hypersurfaces in \mathbb{R}^{n+1} to higher codimensional cases. Motivated by the generalized Yau rigidity theorem, we would like to propose the following conjecture on mean curvature flow in higher codimensions, which can be considered as a generalization of the Huisken convergence theorem [10].

Conjecture A. Let $M_0 = F_0(M)$ be an n-dimensional compact submanifold in an (n+p)-dimensional space form $F^{n+p}(c)$ with $c+H^2>0$. If the sectional curvature of M_0 satisfies

$$K_{M_0} > \frac{\tau(p,n)(c+H^2)}{2[\tau(p,n)+1]},$$

then the mean curvature flow

$$\begin{cases} \frac{\partial}{\partial t} F(x,t) = n\xi(x,t), & x \in M, \ t \ge 0, \\ F(\cdot,0) = F_0(\cdot), & \end{cases}$$

exists smooth solution $F_t(\cdot)$, and $F_t(\cdot)$ converges to a round point in finite time, or c > 0 and $F_t(\cdot)$ converges to a totally geodesic sphere as $t \to \infty$. In particular, M is diffeomorphic to S^n .

At this moment, only a very few cases of the above conjecture is known [1,10,11,16]. When p=1 and c=0, the conjecture was verified by Huisken [10]. When p=1 and c=1, a weaker version of the conjecture was proved by Huisken [11]. We hope our results will be helpful in generalizing the result of Andrews–Baker [1] and Liu et al. [16]. Motivated by the generalized Yau rigidity theorem and a convergence theorem for Ricci flow in [9], we propose the following conjecture on the normalized Ricci flow.

Conjecture B. Let (M, g_0) be an n-dimensional compact submanifold in an (n+p)-dimensional space form $F^{n+p}(c)$ with $c+H^2>0$. If the sectional curvature of M satisfies

$$K_M > \frac{\tau(p,n)(c+H^2)}{2[\tau(p,n)+1]},$$

then the normalized Ricci flow with initial metric g_0

$$\frac{\partial}{\partial t}g(t) = -2Ric_{g(t)} + \frac{2}{n}r_{g(t)}g(t),$$

exists for all time and converges to a constant curvature metric as $t \to \infty$. Moreover, M is diffeomorphic to S^n .

Acknowledgments

The authors would like to thank the referee for his valuable suggestions. The Research supported by the NSFC, Grant numbers 11071211 and 10771187; the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China.

References

- [1] B. Andrews and C. Baker, Mean curvature flow of pinched submanifolds to spheres, J. Differ. Geom., 85 (2010), 357–396.
- [2] S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in 'Functional Analysis and Related Fields,' Springer-Verlag, New York, 1970.
- [3] T. Choi and Z. Lu, On the DDVV conjecture and the comass in calibrated geometry (I), Math. Z., 260 (2008), 409–429.
- [4] P. J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken, A pointwise inequality in submanifold theory, Arch. Math., 35 (1999), 115–128.
- [5] N. Ejiri, Compact minimal submanifolds of a sphere with positive Ricci curvature, J. Math. Soc. Japan, 31 (1979), 251–256.
- [6] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differ. Geom., 5 (1971), 333–340.
- [7] J. Q. Ge and Z. Z. Tang, A proof of the DDVV conjecture and its equality case, Pacific J. Math., 237 (2008), 87–95.
- [8] J. Q. Ge and Z. Z. Tang, A survey on the DDVV conjecture, Harmonic maps and differential geometry, 247–254, Contemp. Math., **542**, Amer. Math. Soc., Providence, RI, 2011.
- [9] J. R. Gu and H. W. Xu, The sphere theorem for manifolds with positive scalar curvature, arXiv:math.DG/1102.2424, to appear in J. Differ. Geom.
- [10] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237–266.
- [11] G. Huisken, Deforming hypersurfaces of the sphere by their mean curvature, Math. Z., 195 (1987), 205–219.
- [12] T. Itoh, On veronese manifolds, J. Math. Soc. Japan, 27 (1975), 497–506.

- [13] T. Itoh, Addendum to my paper 'On Veronese manifolds', J. Math. Soc. Japan., 30 (1978), 73–74.
- [14] B. Lawson, Local rigidity theorems for minimal hyperfaces, Ann. Math., 89 (1969), 187–197.
- [15] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582–594.
- [16] K. F. Liu, H. W. Xu, F. Ye, and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, arXiv:math.DG/1105.5686, to appear in Comm. Anal. Geom.
- [17] Z. Lu, On the DDVV conjecture and the comass in calibrated geometry (II), arXiv:math.DG/0708.2921v1.
- [18] Z. Lu, Proof of the normal scalar curvature conjecture, arXiv:math.DG/0711.3510v1.
- [19] Z. Lu, Recent developments of the DDVV conjecture, Bull. Transil. Univ. Brasov Ser. B, 14 (2008), 133–144.
- [20] Z. Lu, Normal scalar curvature conjecture and its applications, J. Funct. Anal., 261 (2011), 1284–1308.
- [21] K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differential Geom., 3 (1969), 367–377.
- [22] Y. B. Shen, Submanifolds with nonnegative sectional curvature, Chin. Ann. Math. Ser. B, 5 (1984), 625–632.
- [23] K. Shiohama and H. W. Xu, A general rigidity theorem for complete submanifolds, Nagoya Math. J., 150 (1998), 105–134.
- [24] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), 62–105.
- [25] R. Walter, Compact hypersurfaces with a constant higher mean curvature function, Math. Ann., 270 (1985), 125–145.
- [26] H. W. Xu, A rigidity theorem for submanifolds with parallel mean curvature in a sphere, Arch. Math., 61 (1993), 489–496.
- [27] H. W. Xu, On closed minimal submanifolds in pinched Riemannian manifolds, Trans. Amer. Math. Soc., 347 (1995), 1743–1751.
- [28] H. W. Xu and W. Han, Geometric rigidity theorem for submanifolds with positive curvature, Appl. Math. J. Chinese Univ. Ser. B, 20 (2005), 475–482.
- [29] S. T. Yau, Submanifolds with constant mean curvature I, II, Amer. J. Math., 96, 97 (1974, 1975), 346–366, 76–100.

Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China

E-mail address: gujr@cms.zju.edu.cn E-mail address: xuhw@cms.zju.edu.cn