ELLIPTIC CURVES WITH A LOWER BOUND ON 2-SELMER RANKS OF QUADRATIC TWISTS

ZEV KLAGSBRUN

ABSTRACT. For any number field K with a complex place, we present an infinite family of elliptic curves defined over K such that $\dim_{\mathbb{F}_2} \mathrm{Sel}_2(E^F/K) \geq \dim_{\mathbb{F}_2} E^F(K)[2] + r_2$ for every quadratic twist E^F of every curve E in this family, where r_2 is the number of complex places of K. This provides a counterexample to a conjecture appearing in work of Mazur and Rubin.

1. Introduction

1.1. Distributions of Selmer ranks. Let E be an elliptic curve defined over a number field K and let $Sel_2(E/K)$ be its 2-Selmer group (see Section 2 for its definition). The 2-Selmer rank of E, denoted $d_2(E/K)$, is defined as

$$d_2(E/K) = \dim_{\mathbb{F}_2} \operatorname{Sel}_2(E/K) - \dim_{\mathbb{F}_2} E(K)[2].$$

For a given elliptic curve and positive integer r, we are able to ask whether E has a quadratic twist with 2-Selmer rank equal to r. A single restriction on which r can appear as a 2-Selmer rank within the quadratic twist family of a given curve E is previously known. Using root numbers, Dokchitser and Dokchitser identified a phenomenon called **constant 2-Selmer parity** where $d_2(E^F/K) \equiv d_2(E/K) \pmod{2}$ for every quadratic twist E^F of E and showed that E has constant 2-Selmer parity if and only if E is totally imaginary and E acquires everywhere good reduction over an abelian extension of E [2].

In this paper, we show the existence of an additional obstruction to small r appearing as 2-Selmer ranks within the quadratic twist family of E. We prove that there are curves having this obstruction over any number field K with a complex place. Specifically:

Theorem 1. For any number field K, there exist infinitely many elliptic curves E defined over K such that $d_2(E^F/K) \ge r_2$ for every quadratic F/K. Moreover, these curves do not have constant 2-Selmer parity and none of them become isomorphic over \overline{K} .

This result disproves a conjecture appearing in [7], which predicted that subject only to the restriction of constant 2-Selmer parity, the set of twists of E having 2-Selmer rank r has positive density within the set of all twists of E for every $r \geq 0$.

Received by the editors January 27, 2012.

We prove Theorem 1 by presenting a family of elliptic curves defined over \mathbb{Q} for which each curve in the family has the appropriate property when viewed over K. For $n \in \mathbb{N}$, let $E_{(n)}$ be the elliptic curve defined by the equation

(1.1)
$$E_{(n)}: y^2 + xy = x^3 - 128n^2x^2 - 48n^2x - 4n^2$$

and define \mathcal{F} as $\mathcal{F} = \{E_{(n)} : n \in \mathbb{N}, 1 + 256n^2 \notin (K^{\times})^2\}$. Each curve $E \in \mathcal{F}$ has a single point of order 2 in E(K) and a cyclic 4-isogeny defined over K(E[2]) but not K. Let $\phi : E \to E'$ be the isogeny whose kernel is C = E(K)[2]. Our results are obtained by using local calculations combined with a Tamagawa ratio of Cassels to establish a lower bound on the rank of the Selmer group associated to ϕ (to be defined in Section 2).

Although curves $E \in \mathcal{F}$ have the property that $d_2(E^F/K) \geq r_2$ for every quadratic F/K, this does not hold in general for curves E with $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ that have a cyclic 4-isogeny defined over K(E[2]) but not over K. In particular, the forthcoming work of this author can be used to show that every $r \geq 0$ appears infinitely often as a 2-Selmer rank within the quadratic twist family of E' for every $E \in \mathcal{F}$ [4].

2. Selmer groups

We begin by briefly recalling the constructions of the 2-Selmer and ϕ -Selmer groups along with some of the standard descent machinery. A more detailed explanation can by found in Section X.4 of [8].

If E is an elliptic curve defined over a field K, then the Kummer map $\delta_{[2]}$ maps E(K)/2(K) into $H^1(K, E[2])$. If K is a number field, then for each place v of K we define a distinguished local subgroup $H^1_f(K_v, E[2]) \subset H^1(K_v, E[2])$ by

Image
$$(\delta_{[2]}: E(K_v)/2E(K_v) \hookrightarrow H^1(K_v, E[2]))$$
.

We define the **2-Selmer group** of E, denoted $Sel_2(E/K)$, by

$$\operatorname{Sel}_{2}(E/K) = \ker \left(H^{1}(K, E[2]) \xrightarrow{\sum res_{v}} \bigoplus_{v \text{ of } K} H^{1}(K_{v}, E[2]) / H^{1}_{f}(K_{v}, E[2]) \right).$$

If E^F is the quadratic twist of E by F/K where F is given by $F = K(\sqrt{d})$, then there is an isomorphism $E \to E^F$ given by $(x,y) \mapsto (dx,d^{3/2}y)$ defined over F. Restricted to E[2], this map gives a canonical G_K isomorphism $E[2] \to E^F[2]$, allowing us to view $H^1_f(K_v, E^F[2])$ as sitting inside $H^1(K_v, E[2])$. The following lemma due to Kramer describes the connection between $H^1_f(K_v, E[2])$ and $H^1_f(K_v, E^F[2])$.

Given a place w of F above a place v of K, we get a norm map $E(F_w) \to E(K_v)$, the image of which we denote by $E_{\mathbf{N}}(K_v)$.

Lemma 2.1. Viewing $H_f^1(K_v, E^F[2])$ as sitting inside $H^1(K_v, E[2])$, we have

$$H_f^1(K_v, E[2]) \cap H_f^1(K_v, E^F[2]) \simeq E_{\mathbf{N}}(K_v)/2E(K_v)$$

Proof. This is Proposition 7 in [5] and Proposition 5.2 in [6]. The proof in [6] works even at places above 2 and ∞ .

If $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$, then there is an isogeny $\phi : E \to E'$ with kernel C = E(K)[2] that gives rise to a ϕ -Selmer group, $\operatorname{Sel}_{\phi}(E/K)$. There is a connecting map arising from Galois cohomology, $\delta_{\phi} : E'(K)/\phi(E(K)) \to H^1(K,C)$, taking the coset of

 $Q \in E'(K)$ to the coset defined by the cocycle $c(\sigma) = \sigma(R) - R$ where R is any point on $E(\overline{K})$ with $\phi(R) = Q$. Identifying C with μ_2 , we can view $H^1(K,C)$ as $K^{\times}/(K^{\times})^2$ and under this identification, $\delta_{\phi}(C) = \langle \Delta_E \rangle$, where Δ_E is the discriminant of (any model of) E. The map δ_{ϕ} can be defined locally as well and for each place v of K, we define a distinguished local subgroup $H^1_{\phi}(K_v, C) \subset H^1(K_v, C)$ as the image of $E'(K_v)/\phi(E(K_v))$ under δ_{ϕ} . We define the ϕ -Selmer group of E, denoted $Sel_{\phi}(E/K)$, as

$$\operatorname{Sel}_{\phi}(E/K) = \ker \left(H^{1}(K,C) \xrightarrow{\sum res_{v}} \bigoplus_{v \text{ of } K} H^{1}(K_{v},C) / H^{1}_{\phi}(K_{v},C) \right).$$

The isogeny ϕ on E gives gives rise to a dual isogeny $\hat{\phi}$ on E' whose kernel is $C' = \phi(E[2])$. Exchanging the roles of (E, C, ϕ) and $(E', C', \hat{\phi})$ in the above defines the $\hat{\phi}$ -Selmer group, $\operatorname{Sel}_{\hat{\phi}}(E'/K)$, as a subgroup of $H^1(K, C')$. The local conditions $H^1_{\hat{\phi}}(K_v, C)$ and $H^1_{\hat{\phi}}(K, C')$ are connected via the following exact sequence.

Proposition 2.2. The sequence

$$(2.1) 0 \to C'/\phi(E(K_v)[2]) \xrightarrow{\delta_{\phi}} H^1_{\phi}(K_v, C) \xrightarrow{i} H^1_f(K_v, E[2]) \xrightarrow{\phi} H^1_{\hat{\phi}}(K_v, C') \to 0$$
 is exact.

Proof. This well-known result follows from the sequence of kernels and cokernels arising from the composition $\hat{\phi} \circ \phi = [2]_E$. See Remark X.4.7 in [8] for example.

The following two theorems allow us to compare the ϕ -Selmer group, the $\hat{\phi}$ -Selmer group and the 2-Selmer group.

Theorem 2.3. The ϕ -Selmer group, the $\hat{\phi}$ -Selmer group, and the 2-Selmer group sit inside the exact sequence

$$(2.2) 0 \to E'(K)[2]/\phi(E(K)[2]) \xrightarrow{\delta_{\phi}} \operatorname{Sel}_{\phi}(E/K) \to \operatorname{Sel}_{2}(E/K) \xrightarrow{\phi} \operatorname{Sel}_{\hat{\phi}}(E'/K).$$

Proof. This is a diagram chase based on the exactness of (2.1). See Lemma 2 in [3] for example.

Theorem 2.4 (Cassels). The **Tamagawa ratio**, defined as $\mathcal{T}(E/E') = \frac{\left|\operatorname{Sel}_{\phi}(E/K)\right|}{\left|\operatorname{Sel}_{\hat{\phi}}(E'/K)\right|}$, is given by a local product formula

$$\mathcal{T}(E/E') = \prod_{v \text{ of } K} \frac{\left| H_{\phi}^{1}(K_{v}, C) \right|}{2}.$$

Proof. This is a combination of Theorem 1.1 and equations (1.22) and (3.4) in [1]. This product converges since $H^1_{\phi}(K_v, C)$ equals the unramified local subgroup $H^1_u(K_v, C)$ for all $v \nmid 2\Delta_E \infty$.

3. Local conditions for curves in \mathcal{F}

The goal of this section is to prove the following proposition.

Proposition 3.1. Let $E = E_{(n)} \in \mathcal{F}$. Then $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C^F) \ge H^1(K_v, C) - 1$ for every place v of K, where $C^F = E^F(K)[2]$.

Let $E = E_{(n)} \in \mathcal{F}$. The point $P = (-\frac{1}{4}, \frac{1}{8})$ on E has order 2 and $E' = E/\langle P \rangle$ can be given by a model $y^2 + xy = x^3 + 64n^2x^2 + 4n^2(1 + 256n^2)x$. The discriminants of the model (1.1) for E and this model for E' are given by $\Delta_E = 4n^2(1 + 256n^2)^3$ and by $\Delta_{E'} = 16n^4(1 + 256n^2)^3$, respectively. As $1 + 256n^2 \notin (K^{\times})^2$, we have $E(K)[2] = \langle P \rangle$. Since Δ_E and $\Delta_{E'}$ differ by a square, we get that K(E[2]) = K(E'[2]) and it follows that $\dim_{\mathbb{F}_2} E(K_v)[2] = \dim_{\mathbb{F}_2} E'(K_v)[2]$ for every place v of K. Proposition 3.1 will follow from some results applicable to all curves that have K(E[2]) = K(E'[2]) and some results that are specific to curves in \mathcal{F} .

Remark 3.2. Forthcoming work of this author shows if $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$, then E does not have a cyclic 4-isogeny defined over K but acquires one over K(E[2]) if and only if K(E[2]) = K(E'[2]). See Section 4 of [4] for more details.

Lemma 3.3. Let E be an elliptic curve with $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ and suppose further that K(E[2]) = K(E'[2]). If E has additive reduction at a place $v \nmid 2$, then $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C) = 1$.

Proof. Let $E_0(K_v)$ be the group of points on $E(K_v)$ with non-singular reduction, $E_1(K_v)$ the subgroup of points with trivial reduction, and \mathbb{F}_v the residue field of K_v . The formal group structure on $E_1(K_v)$ shows that $E_1(K_v)$ is uniquely divisible by 2 and since $E_0(K_v)/E_1(K_v) \simeq \mathbb{F}_v^+$, $E_0(K_v)$ is uniquely 2-divisible as well. Since $E(K_v)$ has a point of order 2, Tate's algorithm then shows that $E(K_v)/E_0(K_v)$ – and therefore $E(K_v)[2^{\infty}]$ – either injects to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or is cyclic of order 4.

Therefore, if $E(K_v)$ has a point R of order 4, then $2R \in C$. It follows that $\phi(R) \in E'(K_v)[2] - C'$ and $E'(K_v)[2] \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. This contradicts the fact that $\dim_{\mathbb{F}_2} E(K_v)[2] = \dim_{\mathbb{F}_2} E'(K_v)[2]$ since the 2-part of $E(K_v)$ is cyclic. This shows that $E(K_v)$ cannot have any points of order 4 and similar logic shows that the same is true for $E'(K_v)$. It then follows that $\dim_{\mathbb{F}_2} E'(K_v)/\phi(E(K_v)) = 1$ since $\dim_{\mathbb{F}_2} E(K_v)[2] = \dim_{\mathbb{F}_2} E'(K_v)[2]$ and ϕ has degree 2.

Lemma 3.4. Let E be an elliptic curve with $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ and suppose that K(E[2]) = K(E'[2]). If E has split multiplicative reduction at a place v where the Kodaira symbols of E and E' are I_n and I_{2n} , respectively, then $H^1_{\phi}(K_v, C) = H^1(K_v, C)$. Further, if F/K is a quadratic extension in which v does not split, then $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C^F) = \dim_{\mathbb{F}_2} H^1(K_v, C) - 1$ and $H^1_{\phi}(K_v, C^F) = N_{F_w/K_v} F_w^{\times}/(K_v^{\times})^2$, where w is the place of F above v.

Proof. Since E and E' have split multiplicative reduction at v, E/K_v and E'/K_v are G_{K_v} isomorphic to Tate curves E_q and $E_{q'}$, respectively. By the condition on the Kodaira symbols, $|q|_v^2 = |q'|_v$. Observe that E_q can be two-isogenous to three different curves: E_{q^2} , $E_{\sqrt{q}}$, and $E_{-\sqrt{q}}$. The curve $E_{q'}$ must therefore be one of these possibilities and the only possibility with $|q|_v^2 = |q'|_v$ is $q' = q^2$. We therefore get G_{K_v}

isomorphisms $\overline{K_v}^{\times}/q^{\mathbb{Z}} \to E(\overline{K_v})$ and $\overline{K_v}^{\times}/q^{2\mathbb{Z}} \to E'(\overline{K_v})$ such that the following diagram commutes.

$$\begin{array}{cccc}
\overline{K_v}^{\times}/q^{\mathbb{Z}} & \xrightarrow{x \mapsto x^2} \overline{K_v}^{\times}/q^{2\mathbb{Z}} & \xrightarrow{x \mapsto x} \overline{K_v}^{\times}/q^{\mathbb{Z}} \\
\downarrow & & \downarrow & & \downarrow \\
E(\overline{K_v}) & \xrightarrow{\phi} E'(\overline{K_v}) & \xrightarrow{\hat{\phi}} E(\overline{K_v})
\end{array}$$

Since the maps in this diagram are G_{K_v} equivariant, we can restrict to K_v giving the following diagram, where the vertical arrows are isomorphisms.

$$K_{v}^{\times}/q^{\mathbb{Z}} \xrightarrow{x \mapsto x^{2}} K_{v}^{\times}/q^{2\mathbb{Z}} \xrightarrow{x \mapsto x} K_{v}^{\times}/q^{\mathbb{Z}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E(K_{v}) \xrightarrow{\phi} E'(K_{v}) \xrightarrow{\hat{\phi}} E(K_{v})$$

We therefore get a sequence of G_K -isomorphisms

$$H_{\phi}^{1}(K_{v},C) \simeq E'(K_{v})/\phi(E(K_{v})) \simeq (K_{v}^{\times}/q^{2\mathbb{Z}})/(K_{v}^{\times}/q^{\mathbb{Z}})^{2} \simeq K_{v}^{\times}/(K_{v}^{\times})^{2} \simeq H^{1}(K_{v},C)$$

and that $H^1_{\hat{\phi}}(K_v, C') = 0$ proving the first part of the lemma.

Further, by the exactness of (2.1), the map $i: H^1(K_v, C) \to H^1_f(K_v, E[2])$ is surjective. Because $E'(K_v) \simeq K_v^{\times}/q^{2\mathbb{Z}}$, we see that $E'(K_v)[2] = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Since K(E[2]) = K(E'[2]), we then see that $E(K_v)[2] = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ as well. The exactness of (2.1) then shows that i is injective. We therefore get that the restriction $\tilde{i}: H^1_\phi(K_v, C^F) \to H^1_f(K_v, E[2]) \cap H^1_f(K_v, E^F[2])$ is also injective.

Let $c \in H^1_f(K_v, E[2]) \cap H^1_f(K_v, E^F[2])$. As $H^1_\phi(K_v, C) = 0$, c maps trivially into $H^1_{\hat{\phi}}(K_v, C'^F)$ under the map ϕ in (2.1). It follows from Proposition 2.2 that c is in the image of $H^1_\phi(K_v, C^F)$ and that $\tilde{i}: H^1_\phi(K_v, C^F) \to H^1_f(K_v, E[2]) \cap H^1_f(K_v, E^F[2])$ is surjective. Therefore \tilde{i} is an isomorphism.

By Lemma 2.1, $H^1_f(K_v, E[2]) \cap H^1_f(K_v, E^F[2]) = N_{F_w/K_v} E(F_w)/2E(K_v)$. The elliptic curve norm map $N_{F_w/K_v}: E(F_w) \to E(K_v)$ translates into the usual field norm $N_{F_w/K_v}: F_w^\times/q^\mathbb{Z} \to K_v^\times/q^{2\mathbb{Z}}$, so $H^1_f(K_v, E[2]) \cap H^1_f(K_v, E^F[2])$ can be identified with

$$\left(N_{F_w/K_v}F_w^{\times}/q^{2Z}\right)/\left(K_v^{\times}/q^{\mathbb{Z}}\right)^2 \simeq N_{F_w/K_v}F_w^{\times}/(K_v^{\times})^2.$$

The isomorphism $E'^F(K_v)/\phi(E^F(K_v)) \to E(K_v)/2E(K_v) \cap E^F(K_v)/2E^F(K_v)$ is given by $\hat{\phi}$. As $\hat{\phi}$ is given by $x \mapsto x$ in the above diagram, the identification of $H^1_f(K_v, E[2]) \cap H^1_f(K_v, E^F[2])$ with $N_{F_w/K_v} F_w^{\times}/(K_v^{\times})^2$ identifies $H^1_{\phi}(K_v, C^F)$ with $N_{F_w/K_v} F_w^{\times}/(K_v^{\times})^2$. Standard results from the theory of local fields then give that $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C^F) = \dim_{\mathbb{F}_2} H^1(K_v, C) - 1$.

Lemma 3.5. If $E = E_{(n)} \in \mathcal{F}$, then E has multiplicative reduction at primes $\mathfrak{p} \mid 2n$. Further, if $k = \operatorname{ord}_{\mathfrak{p}} 2n$, then E has Kodaira symbol I_{2k} at \mathfrak{p} and E' has Kodaira symbol I_{4k} at \mathfrak{p} .

Proof. If $\mathfrak{p} \mid 2n$, then the model (1.1) is minimal at \mathfrak{p} . The reduction of (1.1) mod \mathfrak{p} has a node so E has multiplicative reduction at \mathfrak{p} . We can then read the Kodaira symbols for E and E' at \mathfrak{p} off of the denominators of their j-invariants, which are $j(E) = \frac{(1+1024n^2)^3}{4n^2}$ and $j(E') = \frac{(1+64n^2)^3}{16n^4}$ respectively.

Proof of Proposition 3.1. Lemma 3.5 combined with Lemma 3.4 show that the proposition is true for all places $v \mid 2n$. The j-invariant of E shows that these are the only places where E^F can have multiplicative reduction and the result then follows from Proposition 3.3.

4. Proof of main theorem

We begin by relating $d_2(E/K)$ to the 2-adic valuation of $\mathcal{T}(E/E')$.

Proposition 4.1. If
$$E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$$
 and $K(E[2]) = K(E'[2])$, then $d_2(E/K) > \operatorname{ord}_2 \mathcal{T}(E/E')$.

Proof. From the definition, we have

$$(4.1) \qquad \operatorname{ord}_{2} \mathcal{T}(E/E') = \dim_{\mathbb{F}_{2}} \operatorname{Sel}_{\phi}(E/K) - \dim_{\mathbb{F}_{2}} \operatorname{Sel}_{\hat{\phi}}(E'/K).$$

Since $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ and K(E[2]) = K(E'[2]), we get that $E'(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ as well. It then follows from Theorem 2.3 that $\dim_{\mathbb{F}_2} \operatorname{Sel}_{\hat{\phi}}(E'/K) \geq 1$ and that the map of $\operatorname{Sel}_{\phi}(E/K)$ into $\operatorname{Sel}_2(E/K)$ is 2-to-1. Combined with (4.1), we get that the image of $\operatorname{Sel}_{\phi}(E/K)$ in $\operatorname{Sel}_2(E/K)$ has \mathbb{F}_2 -dimension at least $\operatorname{ord}_2 \mathcal{T}(E/E')$.

Let P generate E(K)[2] and let $c \in \operatorname{Sel}_2(E/K)$ be the image of P in $\operatorname{Sel}_2(E/K)$. We can represent c by a cocycle $\hat{c}: G_K \to E[2]$ given by $\hat{c}(\gamma) = \gamma(R) - R$ for some $R \in E(\overline{K})[4]$ with 2R = P. Observe that since 2R = P, it must be that $\phi(R) \in E'[2] - C'$. If $\sigma(R) - R \in C$ for every $\sigma \in G_K$, then $\phi(R) \in E'(K)$ since $\phi(C) = 0$ and $\phi(\sigma(R) - R) = \sigma(\phi(R)) - R$ for $\sigma \in G_K$. Since this would contradict $E'(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$, it must be that $\sigma(R) - R \notin C$ for some $\sigma \in G_K$ and c therefore does not come from $H^1(K, C)$. We therefore get that $d_2(E/K) \geq \operatorname{ord}_2 \mathcal{T}(E/E')$. \square

Theorem 1 now follows easily from Proposition 3.1.

Proof of Theorem 1. Let $E = E_{(n)} \in \mathcal{F}$ and F/K quadratic. By Lemma 2.4, $\operatorname{ord}_2 \mathcal{T}(E^F/E'^F)$ is given by

$$\operatorname{ord}_{2} \mathcal{T}(E^{F}/E'^{F}) = \sum_{v \text{ of } K} \left(\dim_{\mathbb{F}_{2}} H_{\phi}^{1}(K_{v}, C^{F}) - 1 \right).$$

By Proposition 3.1, we get that $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C^F) - 1 \ge 0$ for all places $v \nmid 2\infty$. This yields

$$\operatorname{ord}_{2} \mathcal{T}(E^{F}/E'^{F}) \ge -(r_{1} + r_{2}) + \sum_{v|2} \left(\dim_{\mathbb{F}_{2}} H_{\phi}^{1}(K_{v}, C^{F}) - 1 \right)$$
$$\ge -(r_{1} + r_{2}) + \sum_{v|2} \left(\dim_{\mathbb{F}_{2}} H^{1}(K_{v}, C) - 2 \right),$$

with the second inequality following from Proposition 3.1 as well.

As $H^1(K_v, C) \simeq K_v^{\times}/(K_v^{\times})^2$, we get that $\dim_{\mathbb{F}_2} H^1(K_v, C) = 2 + [K_v : \mathbb{Q}_2]$ for places $v \mid 2$. We therefore have

$$\operatorname{ord}_2 \mathcal{T}(E^F/E'^F) \ge -(r_1 + r_2) + \sum_{v|2} [K_v : \mathbb{Q}_2] = -(r_1 + r_2) + [K : \mathbb{Q}] = r_2.$$

Proposition 4.1 then shows that $d_2(E^F/K) \geq r_2$.

The family \mathcal{F} is infinite since every number field K has infinitely many n with $1 + 256n^2 \notin (K^{\times})^2$. The curves E_n have distinct j-invariants and therefore are not isomorphic over \overline{K} . Since all of the E_n have multiplicative reduction at all places above 2, work of Mazur and Rubin in [7] shows that none of them have constant 2-Selmer parity.

Acknowledgments

This paper is based on work conducted by the author as part of his doctoral thesis at UC-Irvine under the direction of Karl Rubin and was supported in part by the NSF grants DMS-0457481 and DMS-0757807. I would like to express my utmost gratitude to Karl Rubin for the guidance and assistance he provided while undertaking this research. I would also like to thank the reviewer for making many helpful suggestions, in particular suggesting the model (1.1) for $E_{(n)}$.

References

- J. Cassels, Arithmetic on curves of genus 1. VIII: on the conjectures of Birch and Swinnerton-Dyer, Journal für die reine und angewandte Mathematik (Crelles Journal), 1965(217) (1965), 180–199.
- [2] T. Dokchitser and V. Dokchitser, Root numbers and parity of ranks of elliptic curves, Journal für die reine und angewandte Mathematik (Crelles Journal), 658 (2011), 39–64.
- [3] E. Flynn and C. Grattoni, Descent via isogeny on elliptic curves with large rational torsion subgroups, J. Symbolic Comput. 43(4) (2008), 293–303.
- [4] Z. Klagsbrun, Selmer ranks of quadratic twists of elliptic curves with partial rational two-torsion, Preprint available at http://arxiv.org/abs/1201.5408 (2011).
- [5] K. Kramer, Arithmetic of elliptic curves upon quadratic extension, Trans. Amer. Math. Soc. **264**(1) (1981), 121–135.
- [6] B. Mazur and K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Annal. Math. 166 (2007), 579–612.
- [7] ———, Ranks of twists of elliptic curves and Hilbert's tenth problem, Inventiones mathematicae 181(3) (2010), 541–575.
- [8] J. Silverman, The arithmetic of elliptic curves, Vol. 106 (Springer-Verlag, 2009).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, 480 LINCOLN DRIVE, MADISON, WI 53706, USA

E-mail address: klagsbru@math.wisc.edu

