From state integrals to q-series

STAVROS GAROUFALIDIS AND RINAT KASHAEV

It is well-known to the experts that multi-dimensional state integrals of products of Faddeev’s quantum dilogarithm which arise in Quantum Topology can be written as finite sums of products of basic hypergeometric series in $q = e^{2\pi i \tau}$ and $\tilde{q} = e^{-2\pi i / \tau}$. We illustrate this fact by giving a detailed proof for a family of one-dimensional integrals which includes state-integral invariants of 4_1 and 5_2 knots.

1. Introduction

1.1. State-integrals and their q-series

Multi-dimensional state integrals of products of Faddeev’s quantum dilogarithm appear in abundance in Quantum Topology, and were studied among others by Hikami [Hik01], Dimofte–Gukov–Lennels–Zagier [DGLZ09], Andersen–Kashaev [AK], and Kashaev–Luo–Vartanov [KLV16]. It is well-known to the experts that such state-integrals can be written as finite sums of products of pairs of q-series and \tilde{q}-series. The reason for this is a factorized structure of Faddeev’s quantum dilogarithm, the structure of the set of its poles, and the specific form of exponential factors of the integrand of the state-integrals, while its derivation is based on an application of the residue theorem. Instead of formulating a general theorem for multi-dimensional integrals which obscures the principle, we will give a detailed proof for the case of a family of 1-dimensional integrals and illustrate it with some concrete examples taken from [AK, KLV16]. Similar computations appear in mathematical physics [BDP14].
To state our results, recall that Faddeev’s quantum dilogarithm function $\Phi_b(x)$ is given by [Fad95]

$$\Phi_b(x) = \frac{(e^{2\pi b(x+c_b)}; q)_\infty}{(e^{2\pi b^{-1}(x-c_b)}; \tilde{q})_\infty},$$

where

$q = e^{2\pi ib^2}, \quad \tilde{q} = e^{-2\pi ib^2}, \quad c_b = \frac{i}{2}(b + b^{-1}), \quad \Im(b^2) > 0.$

Remarkably, this function admits an extension to all values of b with $b^2 \not\in \mathbb{R}_{\leq 0}$. $\Phi_b(x)$ is a meromorphic function of x with

poles: $c_b + iNb + iNb^{-1}$, \quad zeros: $-c_b - iNb - iNb^{-1}$.

The functional equation

$$\Phi_b(x)\Phi_b(-x) = e^{\pi ix^2}\Phi_b(0)^2, \quad \Phi_b(0) = q^{\frac{1}{24}}\tilde{q}^{-\frac{1}{24}}$$

allows us to move $\Phi_b(x)$ from the denominator to the numerator of the integrand of a state-integral.

For natural numbers A, B with $B > A > 0$, we consider the absolutely convergent integral

$$I_{A,B}(b) = \int_{\mathbb{R}+i\epsilon} \Phi_b(x)^B e^{-A\pi ix^2} dx$$

with small positive ϵ. The condition $B > A > 0$ ensures not only the convergence of $I_{A,B}(b)$ for $\Im(b^2) > 0$, but also the convergence of the q-series and the \tilde{q}-series (for $|q|, |\tilde{q}| < 1$) that appear in Theorem 1.1 below.

To express the above state-integral in terms of series, consider the generating series

$$F_{A,B}(q, x) = \sum_{m=0}^{\infty} \frac{(-1)^Am q^{A(m+1)/2}}{(q)_m} x^m, \quad \tilde{F}_{A,B}(q, x) = F_{b-A,B}(q, x).$$

Consider the operators δ and δ_k (for k a positive natural number) which act on the space of functions of x as follows

$$(\delta F)(x) = x\partial_x F(x), \quad (\delta_k F)(x) = \sum_{s=1}^{\infty} \frac{s^k q^s}{1-q^s} F(q^s x).$$
Likewise, there are operators δ and $\tilde{\delta}_k$ which act on the space of functions of \tilde{x} and with q replaced by \tilde{q}. It is easy to see that any two of the operators $\delta, \delta_k, \tilde{\delta}, \tilde{\delta}_k$ commute and they freely generate over \mathbb{Q} a commutative ring $\mathcal{D} \otimes \tilde{\mathcal{D}}$, where

$$\mathcal{D} = \mathbb{Q}[\delta, \delta_1, \delta_2, \ldots], \quad \tilde{\mathcal{D}} = \mathbb{Q}[\tilde{\delta}, \tilde{\delta}_1, \tilde{\delta}_2, \ldots].$$

Let

$$\mathcal{D}_b = \mathcal{D}[(2\pi i)^{-1}, b^\pm, e_2, e_4, e_6, \ldots], \quad \tilde{\mathcal{D}}_b = \tilde{\mathcal{D}}[(2\pi i)^{-1}, b^\pm, e_2, e_4, e_6, \ldots],$$

where $e_l = e_l(q) = \tilde{\delta}_l(1) \in \mathbb{Z}[[\tilde{q}]]$. Consider the following operator valued polynomial:

$$P_{A,B} = \text{Res}_{w=0} \left(e^{\frac{1}{4} w^2 + A w (b(\delta + \frac{1}{2}) + b^{-1}(\delta + \frac{1}{2}))} \right)^A \times \left(\frac{\phi(bw, \delta\bullet) \tilde{\phi}(b^{-1}w, \tilde{\delta}\bullet)}{b(1 - e^{b^{-1}w})} \right)^B \in \mathcal{D}_b \otimes \tilde{\mathcal{D}}_b,$$

where

$$\phi(w, \delta\bullet) = \exp \left(-\sum_{l=1}^{\infty} \frac{\delta_l}{l!} w^l \right)$$

$$\tilde{\phi}(w, \tilde{\delta}\bullet) = \exp(-\tilde{\delta}w) \exp \left(2 \sum_{l=even > 0} e_l(\tilde{q}) \frac{w^l}{l!} \right) \times \exp \left(-\sum_{l=1}^{\infty} \frac{\tilde{\delta}_l}{l!} (-w)^l \right).$$

For a series $F(x, \tilde{x})$, we define:

$$\langle F(x, \tilde{x}) \rangle = F(1, 1).$$

Theorem 1.1. We have:

$$\mathcal{I}_{A,B}(b) = \left(\frac{\tilde{q}}{q} \right)^{\frac{B-3A}{24}} e^{\pi i \frac{B+2(A+1)}{4}} \left\langle P_{A,B} \left(F_{A,B}(q, x) \tilde{F}_{A,B}(\tilde{q}, \tilde{x}) \right) \right\rangle.$$
Corollary 1.2. Writing $P_{A,B} = \sum_k p_k P_k$ (a finite sum), for $p_k \in \mathcal{D}_b$ and $P_k \in \tilde{\mathcal{D}}_b$, it follows that

$$I_{A,B}(b) = \left(\frac{\bar{q}}{q} \right)^{\frac{B-2A}{24}} e^{\pi i \frac{B+2(A+1)}{4}} \sum_k g_k(q) G_k(\bar{q})$$

where

$$g_k(q) = \langle p_k F_{A,B} \rangle, \quad G_k(\bar{q}) = \langle P_k \tilde{F}_{A,B} \rangle.$$

Remark 1.3. The left hand side of Equation (8) has analytic continuation to the cut plane $\mathbb{C} \setminus \{b^2 | b^2 < 0\}$ whereas each of the series g_k and G_k is only well-defined in the upper-half plane $\{b^2 | \Im(b^2) > 0\}$.

Remark 1.4. $P_{A,B}$, as a polynomial in the variables e_2, e_4, \ldots has degree $B - 1$, where the degree of e_l is l. $P_{A,B}$ as a Laurent polynomial in b has b-monomials of degrees in $\{-B + 1, -B + 3, \ldots, B - 3, B - 1\}$.

1.2. q-difference equations

Next we describe a linear q-difference equation of $F_{A,B}(q, x)$. Consider the operators \hat{x} and \hat{E} which act on $f(x) \in \mathbb{Q}\langle q \rangle[[x]]$ by:

$$(\hat{E} f)(x) = f(qx), \quad (\hat{x} f)(x) = xf(x).$$

Observe that $\hat{E} \hat{x} = q \hat{x} \hat{E}$.

Lemma 1.5. (a) We have:

$$F_{A,B}(q^{-1}, x) = \tilde{F}_{A,B}(q, x).$$

(b) $F_{A,B}$ satisfies the linear q-difference equation

$$(1 - \hat{E})^B - (-1)^A q^A x \hat{E}^A \right) F_{A,B}(q, x) = 0.$$
Corollary 1.6. (a) If we define \(\omega(q, x) = F_{A,B}(q, qx)/F_{A,B}(q, x) \) and \(\omega(q, x)_n = \prod_{j=1}^n \omega(q, q^j x) \), then \(\omega \) satisfies the nonlinear equation

\[
\sum_{j=0}^B (-1)^j \left(\frac{B}{j} \right) \omega(q, x)_j - (-1)^A q^A x \omega(q, x)_A = 0.
\]

(b) \(F \) is an admissible power series in the sense of Kontsevich-Soibelman [KS11, Sec.6], the limit \(\lim_{q \to 1} \omega(q, x) = \omega(x) \in \mathbb{Q}[x] \) exists and satisfies the algebraic equation (also known as the Nahm equation or the gluing equation)

\[
(1 - \omega(x))^B = (-1)^A x \omega(x)^A.
\]

The Nahm equation has been studied by several authors including [Zag07, Sec.3], [Vla, VZ11], [RV, Sec.4].

1.3. The case of the 4_1 knot

We now specialize Corollary 1.2 to the invariant of the 4_1 and 5_2 knots is given by [KLV16, AK]

\[
\mathcal{I}_{1,2} = \mathcal{I}_{4_1}, \quad \mathcal{I}_{2,3} = \mathcal{I}_{5_2}.
\]

In this section, let

\[
F(q, x) = F_{1,2}(q, x) = \sum_{n=0}^{\infty}(-1)^n \frac{q^{n(n+1)/2}}{(q)_n^2} x^n.
\]

Corollary 1.7. (a) We have:

\[
\mathcal{I}_{4_1}(b) = -\frac{i}{2} \left(\frac{q}{\tilde{q}} \right)^{1/24} \left(bG(q)g(\tilde{q}) - b^{-1}G(\tilde{q})g(q) \right)
\]

where

\[
g(q) = \sum_{n=0}^{\infty}(-1)^n \frac{q^{n(n+1)/2}}{(q)_n^2}
\]

\[
G(q) = \sum_{m=0}^{\infty} \left(1 + 2m - 4 \sum_{s=1}^{\infty} \frac{q^{s(m+1)}}{1 - q^s} \right) (-1)^m \frac{q^{m(m+1)/2}}{(q)_m^2}
\]
(b) The series \(g(q) \) and \(G(q) \) are given in terms of \(F(q, x) \) by:

\[
\begin{align*}
g(q) &= \langle F \rangle \\
G(q) &= \langle (2 + 2\delta - 4\delta_1)F \rangle
\end{align*}
\]

(c) \(F \) satisfies the linear \(q \)-difference equation

\[
F(q, q^{-1}x) + F(q, qx) = (2 - x)F(q, x)
\]

The series \(g(q) \) that appears in Theorem 1.7 was known to the first author and Zagier to be closely related to the 4\(_1\) knot. For a detailed discussion of experimental facts below, see [GZ]. Empirically, it appears that

- the pair \((g(q), G(q))\) is related to the 3D index of the 4\(_1\) knot,
- the radial asymptotics of the pair \((g(q), G(q))\) are related to the asymptotics of the Kashaev invariant of the 4\(_1\) knot,
- the above observations for 4\(_1\) also hold for the case of 5\(_2\) knot discussed below.

Recall that the index of an ideal triangulation was introduced in [DGG14, DGG13], necessary and sufficient conditions for its convergence was established in [Gar16] and its topological invariance was proven in [GHRS15]. For a detailed discussion of the above experimental facts, see [GZ].

1.4. The case of the 5\(_2\) knot

In this section, let

\[
F(q, x) = F_{2,3}(q, x) = \sum_{m=0}^{\infty} t_m(q)x^m, \quad \tilde{F}(q, \tilde{x}) = F_{1,3}(q, \tilde{x}) = \sum_{m=0}^{\infty} T_m(q)\tilde{x}^m
\]

where

\[
t_m(q) = \frac{q^{m(m+1)}}{(q^3)_m^3}, \quad T_n(q) = (-1)^n q^{\frac{1}{2}n(n+1)} \frac{1}{(q^3)_n^3} = t_n(q^{-1}).
\]

Let

\[
R_{m,n}(q, \tilde{q}) = -\frac{b^2}{2} \left(1 + 4m + 4m^2 - 6E_1^{(m)}(q) - 12mE_1^{(m)}(q) + 9E_1^{(m)}(q) - 3E_2^{(m)}(q)\right)
\]

\[
- \frac{1}{2\pi i} + \frac{1}{2} \left(1 + 2m - 3E_1^{(m)}(q)\right) \left(1 + 2n - 6E_1^{(n)}(\tilde{q})\right)
\]

\[
+ \frac{b^2}{2} \left(-n - n^2 - 6E_2^{(0)}(\tilde{q}) + 3E_1^{(n)}(\tilde{q}) + 6nE_1^{(n)}(\tilde{q}) - 9E_1^{(n)}(\tilde{q}) - 3E_2^{(n)}(\tilde{q})\right),
\]

\[
q = \exp(2\pi i \frac{1}{b}), \quad \tilde{q} = \exp(2\pi i \frac{1}{2b}).
\]
where $E_l^{(m)}(q)$ are defined in Equation (29a). For $k = 1, \ldots, 4$ let

(18) \quad g_k(q) = \sum_{m=0}^{\infty} p_k(m)t_m(q), \quad G_k(\tilde{q}) = \sum_{n=0}^{\infty} P_k(n)T_n(\tilde{q}),

where

(19a) \quad p_{1,m}(q) = 1 + 4m + 4m^2 - 6E_1^{(m)}(q) - 12mE_1^{(m)}(q) \\
+ 9E_1^{(m)^2}(q) - 3E_2^{(m)}(q)

(19b) \quad p_{2,m}(q) = 1 + 2m - 3E_1^{(m)}(q)

(19c) \quad p_{3,m}(q) = 1

and

(20a) \quad P_{1,m}(q) = 1

(20b) \quad P_{2,m}(q) = 1 + 2n - 6E_1^{(n)}(\tilde{q})

(20c) \quad P_{3,m}(q) = -n - n^2 - 6E_2^{(0)}(\tilde{q}) + 3E_1^{(n)}(\tilde{q}) + 6nE_1^{(n)}(\tilde{q}) \\
- 9E_1^{(n)^2}(\tilde{q}) + 3E_2^{(n)}(\tilde{q}).

Corollary 1.8. (a) We have:

(21) \quad I_{2,3}(q) = -e^{\frac{3\pi i}{4}} \left(\frac{q}{\tilde{q}} \right)^{\frac{1}{8}} \sum_{m,n=0}^{\infty} R_{m,n}(q, \tilde{q}) t_m(q) T_n(\tilde{q})

\quad = -e^{\frac{3\pi i}{4}} \left(\frac{q}{\tilde{q}} \right)^{\frac{1}{8}} \left(- \frac{b^2}{2} g_1(q) G_1(\tilde{q}) - \frac{1}{2\pi i} g_3(q) G_1(\tilde{q}) \\
+ \frac{1}{2} g_2(q) G_2(\tilde{q}) + \frac{b^2}{2} g_3(q) G_3(\tilde{q}) \right)

(b) F and \tilde{F} satisfy the linear q-difference equations

\[F(q, q^3 x) - (3 - q^2 x) F(q, q^2 x) + 3F(q, qx) - F(q, x) = 0 \]

\[\tilde{F}(q, q^3 x) - 3\tilde{F}(q, q^2 x) + (3 - q^2 x) \tilde{F}(q, qx) - \tilde{F}(q, x) = 0. \]

Remark 1.9. A computation gives that $P(A, B) = P(B - A, B)$ for $(A, B) = (1, 2)$ and $(A, B) = (2, 3)$ corresponding to the invariants of the 41 and 52 knots. In all other cases that we tried, we found that $P(A, B)$ is not equal to $P(B - A, B)$.
2. Proofs

2.1. A residue computation

To relate the state-integral $I_{A,B}$ to a sum, we will apply the residue theorem on a semicircle γ_R with center 0 and radius R, oriented counterclockwise in the upper half-plane:

![\gamma_R]

Then, we will take the limit $R \to \infty$. To compute the residue of the integrand, we need to expand $\Phi_b(x)$ near the pole

$$x_{m,n} = c_b + ibm + ib^{-1}n$$

for natural numbers m and n. Let

$$\phi_m(x) = \frac{(q^{m+1}e^x; q)_\infty}{(q^{m+1}; q)_\infty}$$

$$\tilde{\phi}_n(x) = \frac{(\tilde{q}; \tilde{q})_\infty (\tilde{q}^{-1}; \tilde{q}^{-1})_n}{(\tilde{q}e^x; \tilde{q})_\infty (\tilde{q}^{-1}e^x; \tilde{q}^{-1})_n}$$

Lemma 2.1. We have:

$$\Phi_b(x + x_{m,n}) = \Phi_b(x + c_b) \frac{1}{1 - e^{2\pi b^{-1}x}} \frac{1}{(q; q)_\infty} \frac{1}{(q^m; q)_\infty} \frac{\phi_m(2\pi bx)}{(q; q)_\infty} \frac{\tilde{\phi}_n(2\pi b^{-1}x)}{(\tilde{q}; \tilde{q})_\infty}. \tag{25}$$

Proof. Equation (1) implies the functional equations

$$\frac{\Phi_b(x + c_b + ib)}{\Phi_b(x + c_b)} = \frac{1}{1 - qe^{2\pi bx}}$$

$$\frac{\Phi_b(x + c_b + ib^{-1})}{\Phi_b(x + c_b)} = \frac{1}{1 - \tilde{q}^{-1}e^{2\pi b^{-1}x}}$$

which give

$$\Phi_b(x + x_{m,n}) = \Phi_b(x + c_b) \frac{1}{(qe^{2\pi bx}; q)_\infty} \frac{1}{(q^{-1}e^{2\pi b^{-1}x}; \tilde{q}^{-1})_\infty}$$

$$\Phi_b(x + c_b) = \frac{1}{1 - e^{2\pi b^{-1}x}} \frac{(qe^{2\pi bx}; q)_\infty}{(\tilde{q}e^{2\pi b^{-1}x}; \tilde{q})_\infty}. \tag{23}$$
Thus,

\[
\Phi_b(x + x_{m,n}) = \frac{(q; q)_\infty}{(\tilde{q}; q)_\infty} \frac{1}{(q_{e^{2\pi bx}}; q)_\infty} \frac{1}{(\tilde{q}; q)^{-1}_\infty} \frac{(q; q)_m}{(q_{e^{2\pi bx}}; q)_m} \frac{(q_{e^{2\pi b^{-1}x}}; \tilde{q}^{-1})_n}{(q; q)^{-1}_n}
\]

\[
\times \frac{1}{1 - e^{2\pi b^{-1}x}} \frac{(q; q)^{-1}_\infty}{(q^{m+1}e^{2\pi bx}; q)^{-1}_\infty} \frac{(q; q)^{-1}_\infty}{(q_{e^{2\pi b^{-1}x}}; \tilde{q})^{-1}_\infty} \frac{(q; q)^{-1}_\infty}{(q_{e^{2\pi b^{-1}x}}; \tilde{q}^{-1})_n}
\]

\[
= \frac{(q; q)_\infty}{(q; q)^{-1}_\infty} \frac{1}{(q^{m+1}e^{2\pi bx}; q)^{-1}_\infty} \frac{(q; q)^{-1}_\infty}{(q_{e^{2\pi b^{-1}x}}; \tilde{q})^{-1}_\infty} \frac{(q; q)^{-1}_\infty}{(q_{e^{2\pi b^{-1}x}}; \tilde{q}^{-1})_n}
\]

The result follows. □

The decoupling of \((m, n)\) in the quadratic form comes as follows: since \(A, m, n\) are integers, \(e^{A\pi imn} = 1\) and a computation gives

\[
e^{-A\pi i(x + x_{m,n})^2} = i^A \left(\frac{q}{\tilde{q}} \right)^{\frac{A}{2}} t_m^A(q) \tilde{t}_n^A(\tilde{q}) e^{-A\pi i x^2 + 2A\pi x(b(m + \frac{1}{2}) + b^{-1}(n + \frac{1}{2}))}
\]

where

\[
t_m^A(q) = (-1)^Am q^{-\frac{A(m+1)}{2}}, \quad \tilde{t}_n^A(\tilde{q}) = (-1)^An \tilde{q}^{-\frac{A(n+1)}{2}}.
\]

The Dedekind function \(\eta(\tau) = q^{1/24}(q; q)_\infty\) (with \(q = e^{2\pi i \tau}\)) satisfies the modular equation \(\eta(-\tau^{-1}) = \sqrt{-i}\eta(\tau)\) [And76]. It follows that

\[
(26) \quad \frac{(q; q)_\infty}{(q; q)^{-1}_\infty} = e^{\frac{\pi i}{24}} \left(\frac{q}{\tilde{q}} \right)^{\frac{1}{24}} b^{-1}.
\]

After we set \(w = x/(2\pi)\), the above discussion implies that

\[
(27) \quad \mathcal{I}_{A,B}(b) = \left(\frac{\tilde{q}}{q} \right)^{\frac{B-A}{24}} e^{\pi i \frac{B+2(A+1)}{4}} \times \sum_{m,n=0}^{\infty} (\text{Res}_{w=0} F_{A,B,m,n}(w)) t_m^A(q) \tilde{t}_n^A(\tilde{q}) \frac{(q; q)_m}{(\tilde{q}; q^B)_n} \frac{(\tilde{q}^{-1}; q^{-1})^B_n}{(q^{-1}; \tilde{q}^{-1})^B_n},
\]

where

\[
(28) \quad F_{A,B,m,n}(w) = e^{\frac{A}{4\pi i}w^2 + Aw(b(m + \frac{1}{2}) + b^{-1}(n + \frac{1}{2}))} \left(\frac{\phi_m(bw) \tilde{\phi}_n(b^{-1}w)}{b(1 - e^{b^{-1}w})} \right)^B.
\]
2.2. The Taylor series of $\phi_m(x)$ and $\tilde{\phi}_n(x)$

In this section we express the Taylor series of $\phi_m(x)$ and $\tilde{\phi}_n(x)$ in terms of the q-series $E_l^{(m)}(q)$ and $\tilde{E}_l^{(m)}(\tilde{q})$ defined by:

\begin{align}
E_l^{(m)}(q) &= \sum_{s=1}^{\infty} \frac{s^{l-1} q^s (m+1)}{1 - q^s} = \langle \delta_l(x^m) \rangle \\
\tilde{E}_l^{(m)}(\tilde{q}) &= \begin{cases}
-n + E_1^{(n)}(\tilde{q}) & \text{if } l = 1 \\
E_l^{(n)}(\tilde{q}) & \text{if } l > 1 \text{ is odd} \\
2E_l^{(0)}(\tilde{q}) - E_l^{(n)}(\tilde{q}) & \text{if } l > 1 \text{ is even}
\end{cases}
\end{align}

Proposition 2.2. We have:

\begin{align}
\phi_m(x) &= \exp \left(-\sum_{l=1}^{\infty} \frac{1}{l!} E_l^{(m)}(q) x^l \right) \\
\tilde{\phi}_n(x) &= \exp \left(\sum_{l=1}^{\infty} \frac{1}{l!} \tilde{E}_l^{(m)}(\tilde{q}) x^l \right).
\end{align}

The proof of this proposition is given in Section 2.6. The first few terms in Equations (30a)–(30a) are given by:

\begin{align}
\phi_m(x) &= \exp \left(-E_1^{(m)} x - \frac{1}{2} E_2^{(m)} x^2 - \frac{1}{6} E_3^{(m)} x^3 - \frac{1}{24} E_4^{(m)} x^4 - \cdots \right) \\
&= 1 - E_1^{(m)} x + \frac{1}{2} (E_1^{(m)2} - E_2^{(m)}) x^2 \\
&\quad + \frac{1}{6} (-E_1^{(m)3} + 3E_1^{(m)} E_2^{(m)} - E_3^{(m)}) x^3 \\
&\quad + \frac{1}{24} (E_1^{(m)4} - 6E_1^{(m)2} E_2^{(m)} + 3E_2^{(m)2} + 4E_1^{(m)} E_3^{(m)} - E_4^{(m)}) x^4 + \cdots \\
\tilde{\phi}_n(x) &= \exp \left(\tilde{E}_1^{(n)} x + \frac{1}{2} \tilde{E}_2^{(n)} x^2 + \frac{1}{6} \tilde{E}_3^{(n)} x^3 + \frac{1}{24} \tilde{E}_4^{(n)} x^4 - \cdots \right) \\
&= 1 + \tilde{E}_1^{(n)} x + \frac{1}{2} (\tilde{E}_1^{(n)2} + \tilde{E}_2^{(n)}) x^2 \\
&\quad + \frac{1}{6} (\tilde{E}_1^{(n)3} + 3\tilde{E}_1^{(n)} \tilde{E}_2^{(n)} + \tilde{E}_3^{(n)}) x^3 \\
&\quad + \frac{1}{24} (\tilde{E}_1^{(n)4} + 6\tilde{E}_1^{(n)2} \tilde{E}_2^{(n)} + 3\tilde{E}_2^{(n)2} + 4\tilde{E}_1^{(n)} \tilde{E}_3^{(n)} + \tilde{E}_4^{(n)}) x^4 + \cdots
\end{align}
where $E_l^{(m)} = E_l^{(m)}(q)$ and $\tilde{E}_l^{(m)} = \tilde{E}_l^{(m)}(\tilde{q})$.

2.3. The connection with the differential operators δ_l and $\tilde{\delta}_l$

In this section we connect the series $E_l^{(m)}(q)$ and $\tilde{E}_l^{(m)}(\tilde{q})$ with the action of the differential operators δ_l and $\tilde{\delta}_l$ on a series $F(x)$ and $\tilde{F}(\tilde{x})$ respectively. Consider formal power series

$$F(x) = \sum_{m=0}^{\infty} t(m)x^m \quad \tilde{F}(\tilde{x}) = \sum_{m=0}^{\infty} \tilde{t}(m)\tilde{x}^m.$$

Lemma 2.3. We have:

\begin{align*}
\sum_{m=0}^{\infty} \left(\prod_{j=1}^{r} E_{l_j}^{(m)}(q) \right) t(m) &= \left\langle \prod_{j=1}^{r} \delta_{l_j} F \right\rangle \\
\sum_{m=0}^{\infty} m^r t(m) &= \langle \delta^r F \rangle \\
\sum_{n=0}^{\infty} \left(\prod_{j=1}^{r} \tilde{E}_{l_j}^{(n)}(\tilde{q}) \right) \tilde{t}(n) &= \left\langle \prod_{j=1}^{r} \tilde{\delta}_{l_j} \tilde{F} \right\rangle \\
\sum_{n=0}^{\infty} n^r \tilde{t}(n) &= \langle \tilde{\delta}^r \tilde{F} \rangle.
\end{align*}

Proof. For a positive natural number l we have:

$$\sum_{m=0}^{\infty} E_l^{(m)}(q)t(m) = \sum_{m=0}^{\infty} \langle \delta_l(x^m) \rangle t(m) = \left\langle \delta_l \left(\sum_{m=0}^{\infty} t(m)x^m \right) \right\rangle = \langle \delta_l F \rangle.$$

Moreover, for positive natural numbers l, l' we have:

$$\sum_{m=0}^{\infty} E_l^{(m)}(q)E_{l'}^{(m)}(q)t(m) = \sum_{m=0}^{\infty} \langle \delta_l(x^m) \rangle \langle \delta_{l'}(x^m) \rangle t(m)$$

$$= \left\langle \delta_l \left(\sum_{m=0}^{\infty} \langle \delta_{l'}(x^m) \rangle t(m)x^m \right) \right\rangle.$$
Now,
\[\langle \delta \nu (x^m) \rangle t(m)x^m = \sum_{s=1}^{\infty} \frac{s' - 1}{q^s} q^{s' m} t(m) x^m = \delta \nu (x^m) t(m) \]
and summing up over \(m \), we obtain that
\[\sum_{m=0}^{\infty} \langle \delta \nu (x^m) \rangle t(m)x^m = \delta \nu F(q, x). \]
It follows that
\[\sum_{m=0}^{\infty} E_{l}^{(m)}(q) \tilde{E}_{l}^{(m)}(q) t(m) = \langle \delta_{l} \delta_{l} F \rangle. \]
The general case of Equation (32) follows by induction on \(r \). Equation (33) is obvious. □

2.4. Proof of Theorem 1.1

Fix natural numbers \(A \) and \(B \) with \(B > A \geq 1 \), and let
\[t(m) = \frac{(-1)^A q^{\frac{A(m+1)}{2}}}{(q)_m^B}, \quad F(q, x) = \sum_{m=0}^{\infty} t(m)x^m \]
and
\[\tilde{t}(n) = \frac{(-1)^{(B-A)n} q^{\frac{(B-A)(n+1)}{2}}}{(\tilde{q})_n^B}, \quad \tilde{F}(\tilde{q}, \tilde{x}) = \sum_{n=0}^{\infty} \tilde{t}(n)x^n. \]
Use Equations (27) and (28) and Proposition 2.2 to expand \(F_{A,B,m,n}(w) \) as a power series with coefficients polynomials in the variables \(m, E_{l}^{(m)}(q) \) and \(n, \tilde{E}_{l}^{(n)}(\tilde{q}) \) and \(b^{\pm 1} \) and \((2\pi i)^{-1}\). Now apply Lemma 2.3 to convert the variables \(m, E_{l}^{(m)}(q), n, \tilde{E}_{l}^{(n)}(\tilde{q}) \) in terms of the action of the operators \(\delta, \delta_{l}, \tilde{\delta}, \tilde{\delta}_{l} \) respectively. This concludes the proof of Theorem 1.1. □

2.5. Some auxiliary power series

Consider the auxiliary series
From state integrals to q-series

(36) $\frac{1}{ae^x - 1} = \sum_{n=0}^{\infty} p_n(a)x^n$

where

$$p_n(a) = -\frac{a}{n!(1-a)^{n+1}} \sum_{m=0}^{n-1} A_{n,m}a^m \quad p_0(a) = -\frac{1}{1-a}$$

and $A_{n,m}$ are Euler triangular numbers (sequence A008292 in the online encyclopedia of integer sequences [Slo]) that satisfy the recursion

$$A_{n,m} = (n - m)A_{n-1,m-1} + (m + 1)A_{n-1,m}$$

and also given by the sum

$$A_{n,m} = \sum_{k=0}^{m} (-1)^k \binom{n+1}{k} (m + 1 - k)^n.$$

For a detailed discussion on this subject, see [FS70]. A table of the first few numbers $A_{n,m}$ is given by

<table>
<thead>
<tr>
<th>$n \setminus m$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>26</td>
<td>66</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>57</td>
<td>302</td>
<td>302</td>
<td>57</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>120</td>
<td>1191</td>
<td>2416</td>
<td>1191</td>
<td>120</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>247</td>
<td>4293</td>
<td>15619</td>
<td>15619</td>
<td>4293</td>
<td>247</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>502</td>
<td>14608</td>
<td>88234</td>
<td>156190</td>
<td>88234</td>
<td>14608</td>
<td>502</td>
<td>1</td>
</tr>
</tbody>
</table>

Lemma 2.4. For $l \geq 1$, we have:

(37) $\frac{d^l}{dx^l} \log(1 - q^k e^{bx})|_{x=0} = b^l p_{l-1}(q^k) + b \delta_{l,1}$
Proof. It follows from
\[\frac{d}{dx} \log(1 - q^k e^{bx}) = b \left(1 + \frac{1}{q^k e^{bx} - 1} \right) \]
and Equation (36).
\[\Box \]

For positive natural numbers \(l, r \) with \(l \geq r \) and \(m \) consider the \(q \)-series \(E_{l,r}^{(m)}(q) \) defined by

\[E_{l,r}^{(m)}(q) = \sum_{k=m+1}^{\infty} \frac{q^{kr}}{(1 - q^k)^l} \]

Lemma 2.5. (a) We have

\[E_{l,r}^{(m)}(q) = \sum_{s=r}^{\infty} \frac{a_{l,s} q^{s(m+1)}}{1 - q^s} \]

where
\[\frac{x^r}{(1-x)^l} = \sum_{s=r}^{\infty} a_{l,s} x^s \]

(b) It follows that

\[\sum_{r=0}^{l-1} A_{l-1,r} E_{l,r+1}^{(m)}(q) = E_{l}^{(m)}(q) \]

Proof. For (a), interchange \(k \) and \(s \) summation:

\[E_{l,r}^{(m)}(q) = \sum_{k=m+1}^{\infty} \sum_{s=r}^{\infty} a_{l,s} q^{sk} = \sum_{s=r}^{\infty} \sum_{k=m+1}^{\infty} a_{l,s} q^{sk} \]

\[= \sum_{s=r}^{\infty} q^{(m+1)s} \sum_{k=0}^{\infty} a_{l,s} q^{sk} = \sum_{s=r}^{\infty} a_{l,s} \frac{q^{(m+1)s}}{1 - q^s} \]

(b) follows from (a) and the fact that

\[\sum_{r=0}^{l-1} A_{l-1,r} x^r \frac{x^r}{(1-x)^l} = \sum_{s=1}^{\infty} s^{l-1} x^s. \]

\[\Box \]
Lemma 2.6. We have:

\[
\phi_m(x) = \exp \left(- \sum_{l=1}^{\infty} \frac{1}{l!} \sum_{r=0}^{l-1} A_{l-1,r} E_{l,r+1}^{(m)}(q)x^l \right)
\]

Proof. It follows from Lemma 2.4 combined with

\[
\log(\phi_m(x)) = \log \left(\frac{(q^{m+1}e^x;q)_{\infty}}{(q^m;q)_{\infty}} \right)
= \sum_{l=m+1}^{\infty} \left(\log(1 - q^l e^x) - \log(1 - q^l) \right)
\]

\[
\square
\]

2.6. Proof of Proposition 2.2

Part (a) of Proposition 2.2 follows from Lemma 2.5 and Lemma 2.6. For part (b), we will use the series

\[
E_{l}^{[m]}(q) = \sum_{s=1}^{\infty} \frac{s^{k-1}q^{s(m+1)}}{1 - q^s}
\]

Using

\[
\log(\tilde{\phi}_n(x)) = \log \left(\frac{(\tilde{q}; \tilde{q})_{\infty}}{q e^x; \tilde{q})_{\infty}} \right) + \log \left(\frac{(\tilde{q}^{-1}; \tilde{q}^{-1})_{n}}{(\tilde{q}^{-1}e^x; \tilde{q}^{-1})_{n}} \right)
\]

and the proof of part (a) of Proposition 2.2, it follows that

\[
\log(\tilde{\phi}_n(x)) = \log \left(\frac{(\tilde{q}; \tilde{q})_{\infty}}{q e^x; \tilde{q})_{\infty}} \right) + \log \left(\frac{(\tilde{q}^{-1}; \tilde{q}^{-1})_{n}}{(\tilde{q}^{-1}e^x; \tilde{q}^{-1})_{n}} \right)
= \sum_{l=1}^{\infty} \frac{1}{l!} \sum_{r=0}^{l-1} A_{l-1,r} E_{l,r+1}^{(0)}(\tilde{q})x^l + \sum_{l=1}^{\infty} \frac{1}{l!} \sum_{r=0}^{l-1} A_{l-1,r} E_{l,r+1}^{[n]}(\tilde{q})x^l
= \sum_{l=1}^{\infty} \frac{1}{l!} \sum_{r=0}^{l-1} A_{l-1,r} \left(E_{l,r+1}^{(0)}(\tilde{q}) + E_{l,r+1}^{[n]}(\tilde{q}^{-1}) \right)x^l
\]

where

\[
E_{l,r}^{[n]}(q) = \sum_{k=1}^{n} \frac{q^{kr}}{(1 - q^k)^{l+r}}.
\]
Let

\[
\widetilde{E}_{l,r}^{(n)}(\tilde{q}) = \begin{cases}
-n + E_{1,1}^{(n)}(\tilde{q}) & \text{if } l = r = 1 \\
E_{l,r}^{(n)}(\tilde{q}) & \text{if } l > 1 \text{ is odd} \\
2E_{l,r}^{(0)}(\tilde{q}) - E_{l,r}^{(n)}(\tilde{q}) & \text{if } l > 1 \text{ is even}
\end{cases}
\]

We claim that

\[
E_{l,r}^{(0)}(\tilde{q}) + E_{l,l-r}^{[n]}(\tilde{q}^{-1}) = \widetilde{E}_{l,r}^{(n)}(\tilde{q})
\]

for \(l > r \geq 1\) and

\[
E_{1,1}^{(0)}(\tilde{q}) + E_{1,1}^{[n]}(\tilde{q}^{-1}) = \widetilde{E}_{1,1}^{(n)}(\tilde{q})
\]

Assuming Equations (44) and (45), it follows that

\[
\log(\tilde{\phi}_n(x)) = \sum_{l=1}^{\infty} \frac{1}{l!} \sum_{r=0}^{l-1} A_{l-1,r} \widetilde{E}_{l,r+1}^{(n)}(\tilde{q}) x^l
\]

where the last step follows from part (b) of Lemma 2.5.

It remains to prove Equations (44) and (45). Equation (44) follows from the definition of \(\widetilde{E}_{1,1}^{(n)}(\tilde{q})\) and

\[
E_{l,r}^{(0)}(\tilde{q}) + E_{l,l-r}^{[n]}(\tilde{q}^{-1}) = \sum_{k=1}^{\infty} \frac{\tilde{q}^{kr}}{(1 - \tilde{q}^k)^l} + \sum_{k=1}^{n} \frac{\tilde{q}^{-k(l-r)}}{(1 - \tilde{q}^{-k})^l}
\]

\[
= \sum_{k=1}^{\infty} \frac{\tilde{q}^{kr}}{(1 - \tilde{q}^k)^l} + (-1)^l \sum_{k=1}^{n} \frac{\tilde{q}^{kr}}{(1 - \tilde{q}^{-k})^l}
\]

\[
= (1 + (-1)^l) \sum_{k=1}^{n} \frac{\tilde{q}^{kr}}{(1 - \tilde{q}^k)^l} + \sum_{k=n+1}^{\infty} \frac{\tilde{q}^{kr}}{(1 - \tilde{q}^k)^l}
\]

Equation (45) follows from

\[
E_{1,1}^{(0)}(\tilde{q}) + E_{1,1}^{[n]}(\tilde{q}^{-1}) = \sum_{k=1}^{\infty} \frac{\tilde{q}^k}{1 - \tilde{q}^k} + \sum_{k=1}^{n} \frac{\tilde{q}^{-k}}{1 - \tilde{q}^{-k}}
\]

\[
= \sum_{k=1}^{\infty} \frac{1 - \tilde{q}^k}{1 - \tilde{q}^k} - \sum_{k=1}^{n} \frac{1}{1 - \tilde{q}^k} = -n + \sum_{k=n+1}^{\infty} \frac{\tilde{q}^k}{1 - \tilde{q}^k}
\]
This completes the proof of Proposition 2.2. □

2.7. Proof of Lemma 1.5

Part (a) of Lemma 1.5 follows from the definition of $F_{A,B}$ and $\tilde{F}_{A,B}$.

Part (b) follows from an application of Zeilberger’s creative telescoping [Zei91]. To apply the method, define

$$t(m, x) = \frac{(-1)^m A^n_{m+1}}{(q)_m^B} x^m$$

Then, observe that t satisfies the recursions with respect to m and x:

$$(1 - q^{m+1}) B t(m + 1, x) = (-1)^A q^{A(m+1)} t(m, x)$$

$$(m, qx) = q^m t(m, x).$$

Now, we eliminate q^m from the above equations as follows. The second equation implies that $t(m + 1, q^j x) = q^{j(m+1)} t(m + 1, x)$. Expanding the first equation, it follows that

$$\sum_{j=0}^{B} (-1)^j \binom{B}{j} t(m + 1, q^j x) = (-1)^A q^{A x} t(m, q^A x)$$

Summing for $m \geq 0$ implies (b). □

Proof. (of Corollary 1.6) The admissibility of F in the sense of Kontsevich-Soibelman, follows from [KS11, Sec.6.1] and [KS11, Thm.9]. Given this, the Nahm Equation (12) for ω follows easily from part (b) of Lemma 1.5. □

3. An application: state-integrals of the 41 and 52 knots

3.1. Proof of Corollary 1.7

Assume now that $(A, B) = (1, 2)$. Then,

$$\frac{1}{(b(1 - e^{b^{-1}w}))^2} = \frac{1}{w^2} - \frac{b^{-1}}{w} + O(1)$$

$$\phi_m(bw) = 1 - 2E_1^{(m)}(q)bw + O(w^2)$$

$$\tilde{\phi}_n(b^{-1}w) = 1 + 2E_1^{(n)}(\tilde{q})b^{-1}w + O(w^2)$$

$$e^{\frac{1}{4\pi}w^2 + w(b(m+1/2) + b^{-1}(n+1/2))} = 1 + \left(\frac{1}{2} + m\right) bw + \left(\frac{1}{2} + n\right) b^{-1}w + O(w^2)$$
Combined with $\tilde{E}_1^{(n)}(\tilde{q}) = -n + E_1^{(n)}(\tilde{q})$, it follows that the residue $R = \text{Res}_{w=0}(F_{1,2,m,n}(w))$ is given by

$$R = \left(b \left(\frac{1}{2} + m - 2E_1^{(m)}(q) \right) - b^{-1} \left(\frac{1}{2} + n - 2E_1^{(n)}(\tilde{q}) \right) \right).$$

The above, together with the fact that $t_n(q) = (-1)^n q^{\frac{1}{2}n(n+1)}$ satisfies $t_n(q^{-1}) = t_n(q)$ implies Equation (14). Equation (17) follows from Equation (11) for $(A, B) = (1, 2)$.

3.2. Proof of Corollary 1.8

Assume now that $(A, B) = (2, 3)$. Then,

$$\frac{1}{(b(1 - e^{b^{-1}w}))^3} = -\frac{1}{w^3} + \frac{3b^{-1}}{2w^2} - \frac{b^{-2}}{w} + O(1),$$

$$(\phi_m(bw))^3 = 1 - 3E_1^{(m)}(q) bw + \frac{3}{2} \left(3E_1^{(m)^2}(q) - E_2^{(m)}(q) \right) b^2 w^2$$
$$+ O(w^3),$$

$$(\tilde{\phi}_n(b^{-1}w))^3 = 1 + 3E_1^{(n)}(\tilde{q}) b^{-1} w + \frac{3}{2} \left(3\tilde{E}_1^{(n)^2}(\tilde{q}) + \tilde{E}_2^{(n)}(\tilde{q}) \right) b^{-2} w^2$$
$$+ O(w^3),$$

$$e^{\frac{2}{4\pi i} w^2 + 2w(b(m+1/2) + b^{-1}(n+1/2))}$$
$$= 1 + ((1 + 2m)b + (1 + 2n)b^{-1}) w$$
$$+ \left(1 + \frac{b^2 + b^{-2}}{2} + \frac{1}{2\pi i} + 2b^2 m^2 + 2b^{-2} n^2 + 4mn \right) w^2 + O(w^3).$$

If $R = \text{Res}_{w=0}(F_{2,3,m,n}(w))$, then

$$R_{m,n} = -\frac{b^2}{2} \left(1 + 4m + 4m^2 - 6E_1^{(m)}(q) - 12m E_1^{(m)}(q) + 9E_1^{(m)^2}(q) - 3E_2^{(m)}(q) \right)$$
$$- \frac{1}{2\pi i} + \frac{1}{2} \left(1 + 2m - 3E_1^{(m)}(q) \right) \left(1 + 2n - 6E_1^{(n)}(\tilde{q}) \right)$$
$$+ \frac{b^{-2}}{2} \left(-n - n^2 - 6E_2^{(0)}(\tilde{q}) + 3E_1^{(n)}(\tilde{q}) + 6n E_1^{(n)}(\tilde{q}) - 9E_1^{(n)^2}(\tilde{q}) + 3E_2^{(n)}(\tilde{q}) \right).$$
This proves part (a) of Corollary 1.8. Part (b) follows from Equation (11) for $(A, B) = (2, 3)$ and $(A, B) = (1, 3)$. Note that Theorem 1.1 states that

\begin{equation}
I_{2, 3}(q) = -e^{\frac{3\pi i}{4}} \langle P_{2, 3}(F \tilde{F}) \rangle
\end{equation}

where

\begin{align*}
P_{2, 3} &= \frac{-b^2}{2} \left(1 + 4 \delta + 4 \delta^2 - 6 \delta_1 - 12 \delta_1 \delta_1 + 9 \delta_1^2 - 3 \tilde{\delta}_2 \right) \\
&\quad + \frac{1}{2} \left(1 + 2 \delta + \frac{i}{\pi} + 2 \tilde{\delta} + 4 \delta \tilde{\delta} - 3 \delta_1 - 6 \tilde{\delta} \delta_1 - 6 e_2(\tilde{q}) - 6 \tilde{\delta}_1 - 12 \delta_1 \delta_1 + 18 \delta_1 \tilde{\delta}_1 \right) \\
&\quad + \frac{b^{-2}}{2} \left(-\tilde{\delta} - \delta^2 + 3 \tilde{\delta}_1 + 6 \tilde{\delta} \delta_1 - 9 \delta_1^2 + 3 \delta_2 \right) .
\end{align*}

Acknowledgments

The paper was conceived during a visit of the first author in Geneva in the spring of 2013. The first author wishes to thank the University of Geneva for its hospitality, and Don Zagier for encouragement and stimulating conversations.

References

[DGLZ09] Tudor Dimofte, Sergei Gukov, Jonatan Lenells, and Don Zagier, Exact results for perturbative Chern-Simons theory with complex

School of Mathematics, Georgia Institute of Technology
Atlanta, GA 30332-0160, USA
E-mail address: stavros@math.gatech.edu

Section de Mathématiques, Université de Genève
2-4 rue du Lièvre, Case Postale 64, 1211 Genève 4, Switzerland
E-mail address: Rinat.Kashaev@unige.ch

Received April 29, 2013